- 1. Warm up: Answer the following questions.
 - (a) Let A, B be sets. True / False: if there exists an injection $A \to B$, then $|A| \leq |B|$.
 - (b) How many distinct 5-character strings do there exist, using the English 26-letter alphabet (all lowercase)?
 - (c) Order these sets in terms of their cardinality: $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$
- 2. Let X, Y, Z be sets, and suppose that there exist:
 - an injection $f: X \to Y$,
 - an injection $g: Y \to Z$,
 - an injection $h: Z \to X$.

Using these assumptions, answer the following questions.

- (a) Prove that X, Y, and Z all have the same cardinality.
- (b) Construct an injection $X \cup Y \to Z \times \{0, 1\}$.
- (c) Let $X = \mathbf{N}$. Find examples of sets Y, Z and functions f, g, h that satisfy the given assumptions, and so that none of X, Y, Z are the same.
- 3. Let f be a function mapping positive integers \mathbf{Z}^+ to positive integers. In other words, $f(1), f(2), f(3), \ldots$ is an infinite sequence, its terms are elements from \mathbf{Z}^+ . Translate the following predicate expressions into plain English:
 - (a) $\forall c \in \mathbf{Z}^+ \ \forall a \in \mathbf{Z}^+ \ \exists b \in \mathbf{Z}^+ \ (c > a \ \rightarrow f(c+b) = f(c)).$
 - (b) $\exists a \in \mathbf{Z}^+ \exists b \in \mathbf{Z}^+ \forall c \in \mathbf{Z}^+ (c \ge a \rightarrow f(c) = b).$
 - (c) $\exists a \in \mathbf{Z}^+ \ \forall c \in \mathbf{Z}^+ \ \exists b \in \mathbf{Z}^+ \ (c \ge a \ \rightarrow \ f(c) = b).$
 - (d) $\forall c \in \mathbf{Z}^+ \ \forall a \in \mathbf{Z}^+ \ \exists b \in \mathbf{Z}^+ \ (c > a \land f(c) = b).$

4. Fill in "yes" or "no" identifying properties of relations on **Z**. The number $n \in \mathbf{Z}$ is fixed.

relation	reflexive	symmetric	anti-symmetric	transitive
$a \geqslant b$				
a > b				
a = b				
a = b				
a = 2 + b				
$a \leqslant 2 - b$				
$a = b + kn$ for some $k \in \mathbf{Z}$				

5. Let $A = \{1, 2, 3, 4, 5\}$, and consider the relation ~ represented in four equivalent ways:

- (a) Is \sim an equivalence relation?
- (b) For each $a \in A$, let $\overline{a} = \{b \in A : a \sim a_1 \sim a_2 \sim \cdots \sim a_n \sim b \text{ for some } a_i \in A\}$. Compute \overline{a} for all $a \in A$.
- (c) Let $S_1 = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)\}$ be the relation on A with $S_1(a, b)$ whenever $a + 1 \equiv b \pmod{5}$.
 - i. Define a relation S_2 on A such that $S_2 \oplus S_1 = R$.
 - ii. Define a relation S_3 on A such that $S_3 \circ S_1 = R$.
- 6. Complete the following tasks for next lab (Tuesday). They will be presented at the beginning of the lab.
 - (a) Let $A = \{1, 2, 3, 4\}$ and consider the relation $a \sim b$ whenever the product $a \cdot b$ is not a multiple of 3.
 - i. Show that \sim is not an equivalence relation.
 - ii. Draw the relation \sim as a table.
 - (b) Consider the relation on **N** given by $a \sim b$ whenever $b = 2^k a$ for some nonnegative integer $k \in \mathbb{Z}_{\geq 0}$.
 - i. Show the relation \sim is reflexive.
 - ii. Show the relation \sim is antisymmetric.
 - iii. Show the relation \sim is transitive.
 - (c) How many transitive relations are there on the set $\{1, 2\}$?
 - (d) Let A be the set of all characters in the English alphabet, that is,

 $A = \{ \texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e},\texttt{f},\texttt{g},\texttt{h},\texttt{i},\texttt{j},\texttt{k},\texttt{l},\texttt{m},\texttt{n},\texttt{o},\texttt{p},\texttt{q},\texttt{r},\texttt{s},\texttt{t},\texttt{u},\texttt{v},\texttt{w},\texttt{x},\texttt{y},\texttt{z} \}.$

Two letters are related to each other if they have the same number of holes. For example, c has no holes and b has one hole.

- i. Explain why this is an equivalence relation.
- ii. How many "groups" does this relation split the set A into? In each group, every element should be related to every other element (and no elements in other groups).