Be aware of several different ways to write the same thing:

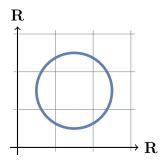
- the set of natural numbers is $\mathbf{N}=\{1,2,3,\dots,\}$, but some people use $\mathbf{N}=\{0,1,2,3,\dots\}$
- the symbol separating elements from statements in **set builder notation** is either | or :

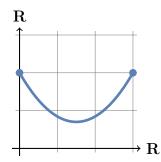
$$\{x \in \mathbf{R} \mid 2x^4 = 10\} = \{x \in \mathbf{R} : 2x^4 = 10\} = \{\sqrt[4]{5}, -\sqrt[4]{5}\}$$

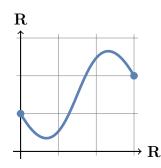
- the **complement** of a set A is either \overline{A} or A^C
- the **symmetric difference** of sets A, B is either $A \oplus B$ or $A \triangle B$
- generalized unions and intersections may be written with the indices in different spots

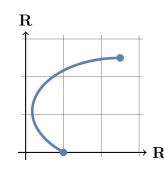
$$\bigcup_{i=1}^{50} \left[-\frac{i}{2}, \frac{1}{2} \right] = \bigcup_{i=1}^{50} \left[-\frac{i}{2}, \frac{1}{2} \right] = [-25, 25]$$

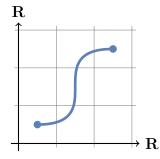
1. Warm up: Recall that a graph if a function $f: A \to B$ is the set of points $\{(a, f(a)): a \in A \in B : a \in A \in A \}$ $a \in A$ } $\subseteq A \times B$. Consider the following subsets of $\mathbf{R} \times \mathbf{R}$:

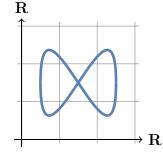


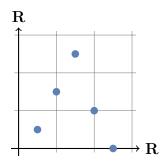


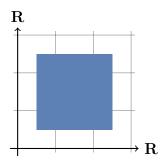












For each of the drawings, indicate which can be considered as a graph. For those that can, give the **domain** A and the **codomain** B.

2. Let $A = \{x : x(x-2)(x-1) = 0\}$ and $B = \{y : x^2 - 2x + 1 = 0\}$. Find the size of:

$$A \qquad A \cup B$$

$$A \cup \{B\}$$

$$A \times B$$

$$A \times \{B\}$$

$$A \cup B$$
 $A \cup \{B\}$ $A \times B$ $A \times \{B\}$ $\mathcal{P}(A)$ $\mathcal{P}(\{A\})$

$$\mathcal{P}(\{A\})$$

- 3. (Adapted from Rosen ex. 2.2.56) Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ for each of the following A_i , where i is a natural number.
 - (a) $A_i = \{i, i+1, i+2, \dots\}$

(e) $A_i = [-i, i]$

(b) $A_i = \{0, i\}$

(f) $A_i = (i, \infty)$

(c) $A_i = \{-i, i\}$

(g) $A_i = [i, \infty)$

(d) $A_i = (0, i)$

- (h) $A_i = \{-i, -i+1, \dots, i-1, i\}$
- 4. (a) Prove that $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = 2x is injective.
 - (b) Prove that $g: \mathbf{R} \to \mathbf{R}^2$ given by $g(x) = (\frac{x}{2}, 0)$ is injective.
 - (c) Prove that $k \colon \mathbf{R}^2 \to \mathbf{R}$ given by k(x,y) = -6x is surjective.
- 5. Let A,B be sets, and let $f\colon A\to B$ be a function. Using logical symbols, express the following statements.
 - (a) f is injective
 - (b) f is surjective
 - (c) the range of f is a proper subset of B
 - (d) there is an element in B whose preimage contains three distinct elements

Note. Recall the set $\{b \in B \mid \exists a \in A \ (f(a) = b)\}$ is the **range** of f. The function $f: A \to B$ is surjective iff the range is the same as the codomain.

6. Find inverses of each of the following functions. Check that $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$ for each function!

- 7. Complete the following tasks for next lab (Tuesday). They will be presented at the beginning of the lab.
 - (a) Let $A' \subseteq A, B' \subseteq B$ be sets, and $g: A' \to B'$ a function. Suppose that f(a) = g(a) for every $a \in A'$.
 - i. Prove that if f is injective, then g is injective.
 - ii. Prove that if g is surjective and B' = B, then f is surjective.
 - (b) Prove that each of the three functions in Task 6. are surjections.
 - (c) (Adapted from Cummings ex. 8.28) Let A, B, C, D be sets with $C, D \subseteq A$. Let $f: A \to B$ be a function, and consider the claim

$$f(C \cap D) = f(C) \cap f(D).$$

Give examples of A, B, C, D, f for which

- i. the claim is true,
- ii. the claim is false.
- (d) Let $f \colon \mathbf{R} \to \mathbf{R}$ be a continuous, differentiable, increasing function. Explain why f is injective.