1. Warm up: Determine which of the following statements are True and which are False.

 $A \cup \emptyset = A \qquad \{\emptyset\} = \emptyset \qquad (A \cup B) - C = (A - C) \cup (B - C) \qquad \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

2. Consider the following game: There is a pile of n chips. A move consists of removing any proper factor of n chips from the pile. The player to leave a pile with one chip wins. For which n does a winning strategy exist? What is it?

For the purposes of this question, a proper factor of n is any factor, including 1, that is strictly less than n.

3. (Adapted from Rosen ex. 2.2.35) Prove the following set identity:

 $\overline{A \cup B} \cap \overline{B \cup C} \cap \overline{A \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}.$

Choose the proof method you prefer. For example:

- Use set identities (Rosen, p.136)
- Build a membership table (Rosen, p.138)
- Shade regions in two Venn diagrams and compare the left-side and the right-side.
- 4. (Adapted from Cummings Proposition 3.5) Consider the following sets:

 $A = \{n \in \mathbb{Z} : 12 \mid n\}, \qquad B = \{n \in \mathbb{Z} : 3 \mid n\}, \qquad C = \{n \in \mathbb{Z} : 4 \mid n\}.$ Prove that $A = B \cap C$.

5. (Adapted from Cummings Proposition 3.15) Let A, B be sets. Recall that the **power set** of A is the set $\mathcal{P}(A)$, which is the set of all subsets of A. Prove the following statement:

If
$$\mathcal{P}(A) \subseteq \mathcal{P}(B)$$
, then $A \subseteq B$.

- 6. Complete the following tasks for next lab (Friday). They will be presented at the beginning of the lab.
 - (a) Let $\{a_n\}_{n=1}^{\infty}$ be the sequence of numbers defined by $a_1 = \frac{5}{2}$ and $a_{n+1} = \frac{1}{2}(a_n^2 + 6)$.
 - i. What are the first six elements in the sequence?
 - ii. Prove that the sequence is decreasing. That is, show that $a_{n+1} < a_n$ for every $n \in \mathbb{N}$.
 - (b) (Adapted from Cummings Exercise 3.21) Consider the following sets:

 $A = \{ n \in \mathbf{Z} : 2 \mid n \}, \qquad B = \{ n \in \mathbf{Z} : 9 \mid n \}, \qquad C = \{ n \in \mathbf{Z} : 6 \mid n \}.$ Prove that $A \cap B \subseteq C$.

(c) (Adapted from Cummings Exercise 3.34) Prove the following statement, for any sets A, B:

 $A \subseteq B$ if and only if $A \cap B = A$.

As before, since this is an "if and only if" \leftrightarrow statement, you should have two parts: one of the forwards direction \rightarrow , and one of the backwards direction \leftarrow .