This worksheet uses the following definitions:

- The symbols " $a \mid b$ ", for $a, b \in \mathbb{Z}$, mean "a divides b", or in other words, there exists $k \in \mathbb{Z}$ with ak = b
- a statement is in conjunctive normal form (CNF) if $P = (\cdots \lor \cdots) \land (\cdots \lor \cdots)$
- a statement is in **disjunctive normal form** (DNF) if $P = (\dots \wedge \dots) \lor (\dots \wedge \dots)$

In other words, CNF is "ands of ors" and DNF is "ors of ands".

- 1. Warm up: Answer the following questions.
 - (a) What is the negation of $\exists x \in X, P(x)$?
 - (b) What is the negation of $\forall x \in X, Q(x)$?
 - (c) The set $\mathbf{Z} \times \mathbf{Z}$ contains ordered pairs (a, b), where $a, b \in \mathbf{Z}$. On what subset $X \subseteq \mathbf{Z} \times \mathbf{Z}$ is the statement $\forall x \in X, \forall y \in X, (x^2 + y^2 \leq 4)$ true?
- 2. For each of the following statements, find the truth value when $X = \mathbf{N}$ and when $X = \mathbf{Q}$.

Statement	Truth value for $X = \mathbf{N}$	Truth value for $X = \mathbf{Q}$
$\forall x \in X, \ (-x) \in X$		
$\forall \ x \in X, \exists \ y \in X, \ xy = 1$		
$\exists \ x \in X, \ \forall \ y \in X, \ x < y$		
$\exists \ x \in X, \ \forall \ y \in X, \ x \leqslant y$		
$\forall \ x \in X, \ \forall \ y \in X, \exists \ z \ \in X, ((x < y) \rightarrow ((x < z) \land (z < y)))$		
$\forall \ x \in X, \ \forall \ y \in X, \exists \ z \ \in X, ((x < y) \rightarrow ((x < z) \land (z \leqslant y)))$		

- 3. This question is about disjunctive and conjunctive normal form. Let P, Q, R be atomic predicates.
 - (a) Express the following statements in conjunctive and disjunctive normal form. Use a truth table to help you out.

 $P \to Q$ $P \to (Q \to R)$ $(P \to Q) \to R$

- (b) In what cases is CNF the same as DNF? Give an example.
- (c) Use part (a) to rephrase the following senetence using "and" and "or", and not using "if...then" or "whenever":

If I win the lottery, then whenever I see a homeless person, I will give them 100 euros.

- 4. (Adapted from Cummings, Exercise 5.4) Each of the following statements can be written in the form $P \wedge Q$, or $P \vee Q$, or $\neg P$. For each statement, decide which form it takes, and give the explicit statement for P and Q.
 - (a) $3 \mid 12$ and $6 \mid 12$ (c) x < y(e) 10 is odd while 11 is not(b) $3 \neq 5$ (d) $x \leq y$ (f) $x \in \mathbf{R} \setminus \mathbf{Z}$
- 5. (Adapted from Cummings, Exercise 6.16) Each of the following statements are false. For each, find a counterexample.
 - (a) If $n \in \mathbf{N}$, then $2n^2 4n + 31$ is prime.
 - (b) If $a, b \in \mathbf{N}$, then a + b < ab.
 - (c) If $a, b \in \mathbb{Z}$, $a \mid b$ and $b \mid a$, then a = b.
 - (d) If $x \in \mathbf{R}$, then $x^2 x \ge 0$.
 - (e) If $x \in \mathbf{R}$, then $\frac{x^2+x}{x^2-x} = \frac{x+1}{x-1}$.
 - (f) If $x, y \in \mathbf{R}$, then |x + y| = |x| + |y|.
 - (g) If $x, y \in \mathbf{R}$ and |x + y| = |x y|, then y = 0.
- 6. Complete the following tasks for next lab (Tuesday). They will be presented at the beginning of the lab.
 - (a) Prove the following statement:

For every $n \in \mathbf{N}$, n is odd if and only if 3n + 5 is even.

Since this is an "if and only if" \leftrightarrow statement, you should have two parts to your proof: one of the forwards direction \rightarrow , and one of the backwards direction \leftarrow .

(b) Prove the following statement, for the sequence $\{a_n\}_{n=1}^{\infty}$, where $a_n = \frac{3n+1}{n+2}$:

For every $\epsilon > 0$, there exists $n \in \mathbf{N}$ with $|a_n - 3| < \epsilon$.

(c) This problem is about chessboards and dominoes.

- i. Prove by construction that the chessboard can be covered with with dominoes.
- ii. Prove that if any one square is removed from the chessboard, then it can not be covered by dominoes. *Hint: How many squares does a domino cover? How many squares does a chessboard with one removed have?*