Recall the following logical symbols:

\wedge	and	Ξ	there exists	\rightarrow	implies
\vee	or	\forall	for all, for each	\leftrightarrow	if and only if
-	not	\in	belongs to	(),	gives order to parts of proposition

This worksheet will use the sets ${\bf N}$ (the natural numbers), ${\bf Z}$ (the integers), and ${\bf R}$ (the real numbers.

1. Warm up: Let P and Q be propositions and $x \in X$ some number. Consider the sentences on the left and the sequences of logical symbols on the right.

If P is true, then $(P \lor Q)$ is true	$Q \lor (\exists x \in X, \neg P)$
If P is true, then $(P \land Q)$ is true	$P \leftrightarrow (\neg P)$
P is true for every $x \in X$	$P \to (P \lor Q)$
Either Q is true or P is false for some $x \in X$	$\forall \ x \in X, \ P$
P implies Q is the same as $\neg Q$ implies $\neg P$	$P \to (P \land Q)$
P is the same as $\neg P$	$(P \to Q) \leftrightarrow (\neg Q \to \neg P)$

- (a) Connect the sentences on the left with their matching symbols on the right.
- (b) For each sentences, come up with another sentence in English that has the same meaning.
- (c) What is the difference between the last two sentences on the left?
- 2. Consider the five propositions below.
 - (P_1) I like pineapple on my pizza.
 - (P_2) All odd-numbered propositions are false.
 - (P_3) All even-numbered propositions are true.
 - (P_4) At least one of P_2 or P_3 is true.
 - (P_5) If P_1 is false then P_2 is true.

Assign the values *True* and *False* to each of the above five propositions so that there are no contradictions, or say why it is not possible.

Hint: Some of these propositions refer to other propositions on the list. Notice that if P_3 is true then all even-numbered propositions must be true, and so P_2 must be true. The truth of P_2 implies all odd-numbered propositions are false, and so P_3 is false. So if P_3 is true then it must also be false. This contradiction means P_3 must not be true.

- 3. There are 100 propositions written on a piece of paper, as below.
 - (1) Exactly 1 of the propositions on this paper is false.
 - (2) Exactly 2 of the propositions on this paper are false.
 - (3) Exactly 3 of the propositions on this paper are false.

•••

- (100) Exactly 100 of the propositions on this paper are false.
- Which of these propositions are true, and which ones are false?
- 4. Rewrite the following propositions using only symbols.
 - (a) Every natural number is a rational number.
 - (b) Not every real number is a natural number.
 - (c) Dividing a real number by a rational number always gives a positive or negative natural number.
- 5. Complete the following truth table.

P	Q	$(P \to Q) \leftrightarrow (\neg Q \to \neg P)$	$(P \lor Q) \lor (\neg P \lor Q)$	$(P \land \neg P) \lor (Q \land \neg Q)$
Т	T			
Т	F			
F	T			
F	F			

- 6. Prove the following statements by construction:
 - (a) For every function $f: \mathbf{R} \to \mathbf{R}$, there exists a real number c_f such that the function $g: \mathbf{R} \to \mathbf{R}$ defined by $g(x) = f(x) + c_f$ satisfies g(0) = 0.
 - (b) There is a function $f: \mathbf{R} \to \mathbf{R}$ that is not continuous at any $x \in \mathbf{R}$.