
Discrete
Structures

Worksheet 14 Spring 2021
April 16

1. Warm up: Answer the following questions about the 3-ary (ternary) trees:

(a) Every full ternary tree of height 3 has at least x vertices and at most y vertices.

(b) A full ternary tree with 11 internal vertices has z vertices.

(c) There are u full (ordered) ternary trees with 6 vertices.

(d) There are v full (ordered) ternary trees with 7 vertices.

2. Answer the following True/False questions:

(a) Every tree is bipartite.

(b) There is a tree with degrees 3, 2, 2, 2, 1, 1, 1, 1, 1.

(c) There is a tree with degrees 3, 3, 2, 2, 1, 1, 1, 1.

(d) If two trees have the same number of vertices and the same degrees, then the two
trees are isomorphic.

(e) If T is a tree with n vertices, the largest degree that any vertex can have is n− 1.

(f) If T is a binary tree with 15 vertices, then there is a simple path in T of length 6.

(g) In a binary tree with 16 vertices, there must be a path of length 4.

(h) If T is a rooted binary tree of height 5, then T has at most 25 leaves.

3. Consider the binary tree in Figure 1.

Figure 1: A Labeled Binary Tree

(a) List the vertice labels, if they are visited in preorder, inorder and postorder sequence.

(b) Draw a tree that is the mirror image of Figure 1. List the vertices of this tree in
preorder, inorder and postorder sequence.

(c) Is any of the sequences obtained in (a) and (b) a reverse image of another?

4. Prove or disprove the following statement: If the degrees of vertices are positive integers
d1, . . . , dn and their total is 2(n − 1), then there exists a tree with n vertices and these
degrees.

5. Construct trees T1 and T2 with the following preorder traversal of the 11 vertices (labeled
a to k):

a, b, c, d, e, f, g, h, i, j, k.



(a) Tree T1 is a regular ordered tree. In the tree T1 vertex a has 1 child, vertex b has 3
children, vertex d has 2 children, vertex g has 4 children (and the remaining vertices
are leaves).

(b) Tree T2 is a binary tree; children are ordered; left and right children are distinguish-
able (internal vertices may have just the left child, or just the right child, or both
left and right children). In the tree T2 vertex a has two children, vertex b has two
children, vertex d has one child (right only), vertex f has two children, vertex g has
two children, vertex j has one child (left only).

6. Construct trees T1 and T2 (containing 8 vertices each), if they have the following preorder
and postorder traversal orders:

(a) Tree T1 has these traversals:{
Preorder traversal: a, b, c, d, e, f, g, h;
Postorder traversal: c, d, b, g, h, f, e, a

(b) Tree T2 has these traversals:{
Preorder traversal: a, b, c, d, e, f, g, h;
Postorder traversal: c, d, e, b, g, h, f, a.

7. Figure 2 shows a directed graph.

Figure 2: Directed graph for topological sorting

(a) Do a DFS traversal on this tree, show the discovery and finishing times for ever
vertex. (Start from the alphabetically first garment as a root. If the DFS vertex
discovery runs out of vertices at some point, select the next alphabetically smallest
name as a new root.)

(b) Label all edges into 4 categories: as tree edges, back edges, forward edges and cross
edges. (Tree edges belong to the DFS tree; back edges point from some vertex to
its ancestor; forward edges point from an ancestor to its descendant - but were not
chosen for the tree; cross edges – all the remaining ones).



(c) Perform topological sort in this graph. (Arrange the items in decreasing order by
their finishing times; verify that this is a feasible order how to put on these garments)

8. Some questions on Trees and Catalan numbers:

(a) Count how many full binary trees are there with 3 inner nodes (all the other nodes
are leaves).

(b) Count how many arithmetic expressions one can write using 4 variables A,B,C,D,
exactly three binary minus operations, and no more than 4 unary minus operations
(denote them by tilde symbol to avoid confusion with binary minus).

(c) Describe a method, how to determine, if an expression containing letters, binary
minus (−) and unary minus (∼) is a syntactically correct postfix notation.


