1. **Warm up:** For each of the following words, find the number of unique strings that can be formed from its letters.

(a) country (b) brittle (c) popping (d) crevice (e) mississippi

- 2. Answer questions about groups of 3:
	- (a) How many ways are there to split a group of 9 people into 3 groups, where each group has at least one member?
	- (b) How many ways are there to split a group of 9 people into 3 groups, where each group has exactly 3 members?
	- (c) What is the coefficient for $x^3y^3z^3$ in the expansion of $(x+y+z)^9$?

Note. Polynomial expansions can also be verified by typing them into Wolfram Alpha.

- 3. Suppose that there are *n* people in a group, $n \geq 2$. Every person has a birthday; assume that it is one of the 365 calendar dates, and nobody has birthday on February 29.
	- (a) When $n = 2$, what is the probability that both people have the same birthday?
	- (b) When $n = 3$, what is the probability that at least two people out of the three have the same birthday?
	- (c) Find the smallest *n* so that it is guaranteed that two people in the group have the same birthday.

Note. In this exercise a *probability* (of coinciding birthdays etc.) is a ratio m/n , where *n* is the total number of all ways how to assign birthdays to *n* people, but *m* is the number of those birthday assignments, where some people have the same birthday.

- 4. Evaluate coefficients in the polynomial expressions, rational fractions and derivatives:
	- (a) Let $f(x) = (x+1)^4$. Express it as $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$.
	- (b) Let $f(x) = (x+y)^{20}$. Find the coefficients for $x^{11}y^9$, $x^{10}y^{10}$ and x^9y^{11} in its expansion.
	- (c) Let $f(x) = (2x + 5y)^{10}$. Find the largest coefficient in its expansion.
	- (d) Let $f(x) = (x + y^2)^{12}$. Find the coefficient for x^8y^8 .
	- (e) Let $f(x) = \left(x + \frac{1}{x}\right)$ 1 *x* \int_{0}^{8} . What powers of *x* are present in the expansion? Find the constant term in the expansion.
	- (f) Find the term for x^6 in the expansion of the squared polynomial:

$$
\left(\binom{6}{0} x^6 + \binom{6}{1} x^5 + \binom{6}{2} x^4 + \binom{6}{3} x^3 + \binom{6}{4} x^2 + \binom{6}{5} x^1 + \binom{6}{6} x^0 \right)^2.
$$

- (g) Let $f(x) = (x+1)^5$. Find the value of its derivative $f'(1)$. Also express $f'(1)$ using the binomial coefficients $\binom{5}{k}$ $\binom{5}{k}$.
- 5. **Identities involving binomial coefficients.** Let *n* be a positive integer. Verify that the following identities are true:

(a) $\sqrt{2n}$ 0 $\bigg) + \bigg(\frac{2n}{2} \bigg)$ 2 $\bigg) + \ldots + \bigg(\frac{2n}{2} \bigg)$ 2*n −* 2 $\bigg) + \bigg(\frac{2n}{2} \bigg)$ 2*n* $\bigg) = \bigg(\begin{matrix} 2n \\ 1 \end{matrix}$ 1 $\bigg) + \bigg(\frac{2n}{2} \bigg)$ 3 $\Big) + \ldots \Big(\frac{2n}{2} \Big)$ 2*n −* 3 $\bigg) + \bigg(\bigg)$ ^{2*n*} 2*n −* 1) *.* (b) ∑*n i*=1 $k \cdot \binom{n}{k}$ *k* $= n \cdot 2^{n-1}.$

(c)

$$
{\binom{n}{0}}^2 + {\binom{n}{1}}^2 + {\binom{n}{2}}^2 + \ldots + {\binom{n}{n}}^2 = {\binom{2n}{n}}.
$$

Note. Some favorite methods to prove identities with binomial coefficients involve using binomial formula (and substituting certain values for *x* and/or *y*), or using polynomial derivatives or some algebraic manipulations with polynomials. You can also use "interpretations" – translate the identity into a combinatorial problem.

Figure 1: 4 ways to insert a mattress in a bed frame.

6. **Composing permutations.** Permutations on a set $A_n = \{1, 2, \ldots, n\}$ are just bijective functions from the set A_n to itself; so their compositions can be written, and they may lead to new permutations. In this problem we study two different collections of permutations on the set $A_4 = \{1, 2, 3, 4\}.$

Let us have a rectangular bed frame of size $1m \times 2m$. It has a mattress that can be rotated in 4 ways before it is inserted into the frame. We introduce permutations on 4 mattress vertices. For example, flipping the mattress over the short edge (orange arrow *H* in the Figure 1) and flipping the mattress over the long edge (purple arrow *V* in the same Figure). We write them in tables that tell where every vertex goes.

$$
\mathbf{H} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} . \quad \mathbf{V} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} . \tag{1}
$$

Let us also introduce some permutations that multiply the congruence classes *{*1*,* 2*,* 3*,* 4*}* by numbers $a \not\equiv 5 \pmod{5}$ (all multiplication is modulo 5):

$$
M_2 = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{array}\right). \qquad M_3 = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{array}\right). \tag{2}
$$

- (a) Compute the compositions of two permutations $(V \circ H)$ and $(H \circ V)$ from the "mattress permutations" (1). Write the result as $a \, 2 \times 4$ table that tells where every number $1, 2, 3, 4$ is mapped.
- (b) Compute the composition of two permutations $M_3 \circ M_2$ from the "multiplication" permutations" (2).
- (c) Compute the composition of permutation *V* with M_2 in two ways: $V \circ M_2$ and also the opposite one: $M_2 \circ V$.

Note. During the co[m](#page-1-0)position of permutations (just like composition of functions and of binary relations) the rightmost permutation (function, relation) is applied first; the compositions read from right to left.

7. **Combinations with or without Repetition.**

- (a) How many ways to choose 20 candies, if there are 3 varieties of candy. (The order of selecting does not matter; just the count of each variety.)
- (b) How many nonnegative integer solutions are there to the equation

$$
x_1 + x_2 + x_3 + x_4 = 17.
$$

- (c) There is a line of 20 chairs. In how many ways can we seat 3 people in three chairs on that line? (Assume that all chairs are distinguishable, e.g. enumerated from $\#1$ to #20, but the people are not distinguishable.)
- (d) How many ways are there to seat 5 people on 20 chairs arranged in a line so that there is *physical isolation*: No two people can sit on adjacent chairs. (Once again, assume that people are not distinguishable: If some of them exchange their seats, it is still the same arrangement.)
- 8. **Pigeonhole-based Proof.** Consider the set containing the first 100 positive integers: $A = \{1, 2, 3, \ldots, 100\}$. Let $S \subseteq A$ and $|S| = 51$. We want to prove that *S* contains two numbers numbers which are relatively prime. We build the proof in multiple steps:
	- (a) How many different subsets *S* of size 51 exist? Could we just analyze all such subsets *S*, find two relatively prime numbers in every possible *S*?
	- (b) How to partition the set *A* into 50 "buckets" of equal size so that whenever two elements from the same "bucket" belong to *S*, they are relatively prime?
	- (c) Formulate the Pigeonhole principle for the set *S* and the buckets you defined in **(b)**.