3 December 2020

1. Warm up: Answer the following questions about the directed graph G below.

- (a) Which vertices span the largest strongly connected component?
- (b) An *n*-clique is an ordered set of vertices v_1, \ldots, v_n such that i < j implies (v_i, v_j) is an edge. Which vertices span the largest directed *n*-clique?
- (c) If Dijkstra's algorithm is initiated at a, how many vertices will have weight 3 when the algorithm finishes? You may assume all edges have weight 1.
- 2. Without looking at your notes, give definitions of the following terms, in your own words.
 - (a) partition of a graph
 - (b) weighted directed graph
 - (c) subtree of a graph
- 3. Consider the following graphs.

- (a) Compute the output of the topological sorting algorithm on G_1 , with vertices initially ordered by their alphabetical label.
- (b) Compute the output of Kruskal's algorithm on G_2 , but stop it before edges of weight ≥ 10 are added.
- 4. Recall the **travelling salesperson problem**, which tries to find a spanning cycle of smallest weight in an undirected weighted graph G = (V, E). For each of the conditions below, what can you say about a / any solution to the travelling salesperson proplem?
 - (a) Suppose you know that G has a cut edge. A cut edge of G = (V, E) is an edge $e \in E$ such that $G' = (V, E \setminus \{e\})$ is disconnected.
 - (b) **Bonus:** Suppose you know $\deg(v) + \deg(u) \ge |V|$ whenever $\{u, v\} \notin E$, and $|V| \ge 3$.