5 November 2020

This worksheet uses the following definitions.

- binary search tree: For every node $v, v.key \ge v.left.key$ and $v.key \le v.right.key$.
- height-balanced (AVL) tree: For every node v, $|\text{height}(v.right) \text{height}(v.left)| \leq 1$
- 1. Warm up: Answer the following questions.
 - (a) True / False: For every hash function $h: \mathbb{N} \to \{1, \dots, 100\}$ there are 100 numbers on which h is constant.
 - (b) What is the difference between the *height* of a node and the *level* of a node?
 - (c) How many different binary search trees are there for the key collection $\{1, 2, 3\}$?
- 2. Let T be the following binary search tree (with external nodes marked as squares), and TreeInsert(k, x) the algorithm which inserts element x into T at key value k.

Suppose the commands $\texttt{TreeInsert}(k_1, x_1), \ldots, \texttt{TreeInsert}(k_6, x_6)$ are called.

- (a) Give distinct integer keys k_1, \ldots, k_6 so the commands leave T with height 6.
- (b) Give distinct integer keys k_1, \ldots, k_6 so the commands leave T with height 2.
- (c) Find a (justified) upper bound on the number of different trees resulting from every sequence of n distinct integer keys.

- 3. The *x*-over-*y* rotation of *T*, for nodes x, y of *T* where *x* is a child of *y*, is a new tree *T'* identical to *T*, except for:
 - if T.y.parent = z, then T'.x.parent = z and T'.y.parent = x
 - if T.y.leftchild = x, then T'.y.leftchild = T.x.rightchild
 - if T.y.rightchild = x, then T'.y.rightchild = T.x.leftchild

Let T be the following tree.

- (a) What is the height of each node?
- (b) Suppose that TreeInsert(0, x) is called. Draw the resulting tree and the 3-over-7 rotation of this tree.
- (c) Suppose that TreeInsert(4, y) is called. Draw the resulting tree T.
 - i. Draw the 5-over-3 rotation of T, call it T'.
 - ii. Draw the 5-over-7 rotation of T'.