8 October 2020

1. Warm up:

- (a) What is the difference between a stack and a queue?
- (b) True or False: A stack takes up less space than a queue.
- (c) True or False: An implementation can be made that is both a stack and a queue.
- 2. The **complexity** of an algorithm is O(f(n)) if as $n \to \infty$, where n is the size of the input, the algorithm takes at most M|f(n)| time, for some $M \in \mathbf{R}$.

Suppose that Algorithm 1 is $O(n^a)$ and Algorithm 2 is $O(n^b)$, where $a, b \in \mathbf{N}$.

- (a) Give another function $f(n) \neq n^a$, so that Algorithm 1 is O(f(n)).
- (b) What is the complexity of both algorithms together?
- (c) What is the complexity of Algorithm 1 on an input of size n + c, for $c \in \mathbf{N}$?

Suppose that Algorithm 3 is $O(2^{n+1})$ and Algorithm 4 is $O(2^{2n})$.

- (d) Is Algorithm 3 $O(2^n)$? Is Algorithm 4 $O(2^n)$?
- 3. Suppose that you have implemented a **circularly linked list** as in Exercise 5, and that your cursor is at the first element (index 0) of an input of length n.
 - (a) If you repeatedly call add(0); advance(); advance();, how many times must this pattern be repeated for the cursor to pass index 0 n times?
 - (b) If you can only remember one value of the list at a time, what is the smallest number of commands that must be made called to reverse the input? Use only the commands of the circularly linked list class.