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0.1 Introduction

The Atiyah–Singer index theorem (1962-8) is the most important mathematical result of the 20th century.
It combines geometry, topology, algebra, and analysis. It is the generalization of several theorems, among
them the following:

· Gauss–Bonnet: For M2 compact, oriented in R3,
∫
M2 KdA = 2πχ = 2π(2g− 2), where K is the Gauss

curvature and χ is the Euler characteristic of M2.

· Gauss–Bonnet–Chern: For M2n a compact, oriented Riemann 2n-manifold,
∫
M2n e(M) = (2π)χ, where

e is the Euler form.

· Riemann–Roch: For X a Riemann surface and L a holomorphic vector bundle over X, h0(X,L) −
h0(X,N−1 ⊗K) = deg(L) + 1− g, where h0 is the dimension of the space of holomorphic sections, and g is
the genus.

· Riemann–Roch–Hirzebruch: For X a compact oriented manifold, E a holomorphic vector bundle, the
holomorphic Euler characteristic of E is χ(X,E) = (alternating sum of dimensions of sheaf cohomology
groups) =

∫
X
c(E)Td(X), where c is the Chern class and Td is the Todd character.

· Hirzebruch signature theorem: Let M4n be a compact, oriented manifold. Then there exists an in-

tersection form H2n(M,R), a symmetric bilinear form of the signature (p, q). The theorem says that
sign(M) = p− q =

∫
M4n L(M), where L is the L-genus.

· Lefschetz fixed-point theorem.

All of these results are of the form (integral of curvature stuff) = (topological invariants). The Atiyah–Singer
theorem states that this also equals the index of an elliptic operator, which is

ind(p) = dim(ker(p))− dim(coker(p)) =

∫
M

(char. classes of E,F ) · (homotopy class of symbol of p),

where, given two vector bundles E
π−−→M and F

τ−−→M , the map p : E → F relates the two total spaces.

Remark 0.1.1. Consider a “baby” version of the Atiyah–Singer theorem. Suppose V n,Wm are finite-
dimensional real vector spaces, and p : V →W is a linear map. Then ker(p) is a subspace of V and measures
the failure of p to be injective. Similarly, coker(p) = W/Im(p) is a quotiont space of W that measures the
failure of p to be surjective. Then

ind(p) = dim(ker(p))− dim(coker(p)) = dim(ker(p))− (dim(W )− dim(Im(p))) = dim(V )− dim(W ).

So, with reference to solutions for the above, ker is an obstruction to solutions existing, and coker is an
obstruction to solutions being unique.

Remark 0.1.2. In this course, we will make the following assumptions:
· All manifolds are Hausdorff and 2nd-countable (so we have partitions of unity)
· All manifolds are smooth and with a fixed smooth structure
· All maps are smooth (i.e. C∞), unless otherwise stated

Definition 0.1.3. A smooth structure on a manifold Mn is a collection of atlases with smooth transition
functions, where an atlas is a collection of charts that cover all of Mn, such that the union of any two
of these atlases is also an atlas with smooth transition functions.

1 Vector bundles

1.1 k-vector bundles

Definition 1.1.1. Let r > 0 be an integer. A smooth K-vector bundle of rank r over a smooth manifold
Mn, termed the base space, is given by (E,M, π), where
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· E is a smooth manifold, termed the total space
· π : E →M is a smooth surjective submersion (i.e. (π∗)e : TeE → Tπ(e)M is surjective for all e ∈ E)
· for all p ∈M , we call Ep = π−1(p) the fiber of E over p. Each Ep has the structure of an r-dimensional

vector space over K. Notice that E =
⊔
p∈M Ep, so E is a disjoint union of k-vector spaces.

· for all p ∈M , there exists a (not unique) open neighborhood U 3 p and a diffeomorphism ϕ : π−1(U)→
U ×Kr such that

U

π−1(U) U ×Kr

π

ϕ

π1

commutes, i.e. π1◦ϕ = π, so ϕ(e) = (π(e), f(e)) for f : π−1(U)→ Kr smooth and such that ϕ|Ep → {p}×Kr

is a linear isomorphism of K-vector spaces.

What does the above mean? It means that E is a family of r-dimensional vector spaces over K,
parametrized by M , such that, locally (near any p ∈ M), this family is a “trivial” cartesian product.
That is, we have the following action:

M

E

p

Ep

e

π(e)
(

)

{

π−1(U)

( )

e

π(e) p

U ×Kr

ϕ

The second-last coondition in the definition above says that ϕ is fiber-preserving. The last condition
says that fibers are mapped to corresponding fibers linearly isomorphically. Further, the pair (U,ϕ) is called
a local trivialization of the bundle (E,M, π). note we can always shrink U so that U is the domain of a
coordinate chart for M but we don’t need to.

It follows from the definition of the vector bundle that dim(E) = n + r, if K = R, or dim(E) = n + 2r, if
K = C.

Example 1.1.2. Consider the following examples of vector bundles:
· Let M be an n-manifold. The tangent bundle of M is (TM,M, π), which is a rank n real vector bundle

on M . The induced charts Tϕ : ϕ−1(U) → ϕ(U) ×Rn, where (U,ϕ) is a chart for M satisfying conditions
for a local trivialization.
· T ∗M is also a rank n real vector bundle over M , the cotangent bundle.
· For k, ` > 0, T k` (M) = bundle of type (k, `)-tensors on M . The fiber over p is (

⊗k
T ∗pM)⊗ (

⊗`
TpM).

This is a real vector bundle over M of rank k + `.
· For 0 6 k 6 n,

∧k
(T ∗M) = bundle of k-forms on M . This is a vector bundle of rank

(
n
k

)
.

Remark 1.1.3. The above are “intrinsic” vector bundles, which are defined given only the base M . There
exist also extrinsic bundles, the most important of which will be the spinor bundle. Another example is the
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Möbius bundle, which is a rank-1 non-trivial bundle over S1.

S1 R1

Definition 1.1.4. A rank-1 vector bundle is called a line bundle. The rank r bundle π : M ×Kr →M by
π(p, v) = v is called the trivial rank r bundle over M . This is called a trivial bundle because there exists a
“global trivialization,” i.e. a trivialization with domain all of t.

We now need to define an appropriate notion of equivalence (isomorphism) of vector bundles. Before
we define this, we will define “gluing cocycles” and “transition maps.” To construct the context, first let
(E,M, π) be a vector bundle over K and (Uα, ϕα) a cover of M by local trivializations of E, so M =

⋃
α∈A Uα.

M

E

p
q

Ep Eq
{   π−1(Uα)

π−1(Uβ)

( )
q

Uβ ×Kr

Uα ∩ Uβ

( )
p

Uα ×Kr

Uα ∩ Uβ
ϕα ϕβ

ϕβ ◦ ϕ−1
α


(Uα∩Uβ)×Kr : (Uα ∩ Uβ)×Kr → (Uα ∩ Uβ)×Kr

The map ϕβ ◦ϕ−1
α is a diffeomorphism of (Uα∩Uβ)×Kr onto itself such that (ϕβ ◦ϕ−1

α )(p, v) = (p, gβα(p)v)
for p ∈ Uα ∩ Uβ and gβα(p) an isomorphism of Kr onto itself. That is, we have gβα : Uα ∩ Uβ → GL(r,K),
which is the gluing cocyle. This allows us to formulate the following definition.

Definition 1.1.5. Given a cover (Uα, ϕα) of M by local trivializations of E, the maps gβα : Uα ∩ Uβ →
GL(r,K), for all α, β with Uα ∩ Uβ 6= ∅ are called the transition functions for this cover by trivializations.

Consider the following properties of the transition functions, for all α, β, γ such that Uα ∩ Uβ ∩ Uγ 6= ∅:
· gαα : Uα → GL(r,K) is the constant map gαα(p) = idr×r(p)
· gαβ = g−1

βα , i.e. gαβ(p) = (gβα(p))−1

· gαβgβγgγα = idr×r, i.e. gαβ(p)gβγ(p)gγα(p) = idr×r(p)

Now consider
⊔
α∈A Uα ×Kr. Put an equivalence relation on this set by

Uα ×Kr 3 (pα, vα) ∼ (pβ , vβ) ∈ Uβ ×Kr iff pα = pβ and vβ = gβα(p)vα.

Then the above properties of the transition functions define reflexivity, symmetry, and transitivity, respec-

tively, of the relation ∼. Now set E =
(⊔

α∈A Uα ×Kr
)/
∼.

z Exercise 1.1.6.
· Show that E is a smooth manifold. Note it is made up of smooth manifolds glued together by diffeo-

morphisms.
· Define π : E → M by π : ([(pα, vα)]) = pα. Show it is well-defined and show π is a smooth surjective

submersion.
· Show the natural map ψα : Uα ×Kr → π−1(Uα), given by ψα(pα, vα) = [(pα, vα)] ∈ E is a diffeomor-

phism and ϕα = ψ−1
α is a local trivialization of E (i.e. E is a rank r K-vector bundle over M).
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Definition 1.1.7. Let (E,M, πE) and (F,M, πF ) be vector bundles of rank k and `, respectively, over the
same M . A vector bundle isomorphism from (E,M, πE) to (F,M, πF ) is a smooth map T : E → F such that

M

E F

πE

T

πF

commutes (i.e. πF (T (p)) = πE(p)), and T |Ep : Ep → Fp is linear over K. That is, such that the diagram
below on the right commutes.

M

E

p

Ep

M

F

p

Fp

T

Fp {p} ×Kr

Ep {p} ×Kr
ϕα
lin.

isom.

T

ψβ

linear

This is all in trems of covers of E,F by local trivializations (Uα, ϕα) and (Vβ , ψβ), respectively.

Definition 1.1.8. Let Hom(E,F ) denote the set of all bundle morphisms from E to F .

Proposition 1.1.9. Hom(E,F ) is a K-vector space.

Proof: Let T1, T2 ∈ Hom(E,F ), λ ∈ k. Define λT1 + T2 : E → F by (λT1 + T2)(e) = λT1(e) + T2(e), for
e ∈ Eπ(e). Then (λT1 + T2)(Ep) ⊂ Fp for all p ∈ M . This map is clearly linear. It remains to check that it
is smooth. �

Definition 1.1.10. Let E,F be two K-vector bundles over M . Then E,F are termed isomorphic if there
exists T ∈ Hom(E,F ) and T ∈ Hom(F,E) such that T ◦ S = idF and S ◦ T = idE . When F = E, we
write Hom(E,E) = End(E). If T ∈ End(E), then T is called a bundle endomorphism. We also have the set
Aut(E), which is the space of bundle automorphisms of E. This set is sometimes denoted GE , called the
gauge transformations of E.

Definition 1.1.11. For (E,M, π) a Kr-vector bundle, we say that E is trivial if there exists a bundle
isomorphism T : E →M ×Kr. It is clear that E is trivial iff it admits a global trivialization.

Now we see why they are called “local trivializations.” A local trivialization ϕα : π−1(Uα)→ Uα ×Kr is
a bundle isomorphism between E|Uα = π−1(Uα) and Uα ×Kr, the trivial Kr-bundle over U − α.

Remark 1.1.12. Suppose T : E → F is a vector bundle morphism. Let (Uα, ϕα), (Uα, ψα) be open covers
of M , trivializing E,F , respectively. We can do this by intersecting the two open covers. Let gαβ , hαβ be
the transition functions of E,F , respectively, with respect to the trivializations. Then a new map is induced
by the commutative diagram below.

F |Uα Uα ×K`

E|Uα Uα ×Kr

T

ψα

ϕα

ψα ◦ T ◦ ϕ−1
α : Uα ×Kr → Uα ×K`

(pα, vα) 7→ (pα, Tα(pα)vα)
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And Tα : Uα → M`×r(K) is smooth. So locally (over an open set that trivializes both bundles), a vector
bundle morphism is a smooth varying family of `× r matrices. Suppose that Uα ∩ Uβ = W 6= ∅. Then the
diagram below commutes.

F |W W ×K`

E|W W ×Kr

W ×K`

W ×Kr

T

ψβ

ϕβ

ψα

ϕα
(p, v)

(p, Tβ(p)v)

(p, v)

(p, Tα(p)v)

Tβ = hαβTαgαβ

Tβ(p) = hβα(p)︸ ︷︷ ︸
`×`

Tα(p)︸ ︷︷ ︸
`×r

gαβ(p)︸ ︷︷ ︸
r×r︸ ︷︷ ︸

`×r

Next we consider a very important example.

Definition 1.1.13. Define KPn to be the set of all 1-dimensional subspaces of Kn+1. This is a smooth
manifold of dimension n (if K = R, and 2n if K = C). It is explicitly given by

KPn =
(
Kn+1 \ {0}

)/
(v ∼ w ⇐⇒ v = λw, λ ∈ K, λ 6= 0)

From this we are going to build a K1-vector bundle over KPn = M . There exists an open cover U0, U1, . . . , Un
of kPn given by Ui = {[(x0, . . . , xn)], xi 6= 0}, which is a well-defined open set in KPn. Define E as a subset
of the trivial Kn+1-bundle over KPn, so E ⊂ KPn ×Kn+1, by

E = {(p, v) : v ∈ p} = {([(x0, . . . , xn)], λ(x0, . . . , xn)) : λ ∈ K}.

Each p ∈ KPn is a line ` through 0 in Kn+1. We attach this line ` to p. Next define a projection map
π : E → KPn by π = π1|E where π1 : KPn ×Kn+1 → KPn and π(p, v) = p.

z Exercise 1.1.14. Show that (E,KPn, π) is a K1-bundle over KPn. The idea is to construct for α ∈
{0, 1, . . . , n} a map

ϕα : π−1(Uα) → Uα ×K1

([(x0, . . . , xn)], (v0, . . . , vn) = λ(x0, . . . , xn)) 7→ ([(x0, . . . , xn)], vα)

and show that it is a diffeomorphism with the required properties. Further find what the transition functions
gβα : Uα ∩ Uβ → GL(1,K) are. Note that this bundle is called the tautological K1-bundle over KPn.

1.2 Methods for constructing new vector bundles

What can we do to vector spaces to get new ones? Let V,W be k-vector spaces. Then

V −→ V ∗ = Homk(V, k), the dual space

V −→
∧`

(V ), `th exterior power of V

V,W −→ V ⊕W, the direct sum

V,W −→ V ⊗W, the direct product

Let V1, V2,W1,W2 be K-vector spaces with Li : Vi →Wi bilinear. Then we have maps

L1 ⊕ L2 :V1 ⊕ V2 →W1 ⊕W2

L1 ⊗ L2 :V1 ⊗ V2 →W1 ⊗W2∧`
(Li) :

∧`
(Vi)→

∧`
(Wi)
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We can also do these constructions to vector bundles. Let E → M and F → M be two K-vector bundles
over M . We would like to define E∗,

∧`
(E), E ⊕ F , E ⊗ F as vector bundles over M . We begin by letting

U = {Uα : α ∈ A} be an open cover of M such that (Uα, ϕα) is a trivialization of E and gαβ are the
transition functions, and (Uα, ψα) is a trivialization of F with transition functions hαβ .

Define E∗ to be the vector bundle over M with transition functions (U , (g−1)t), i.e. Uα ×Kr is identified
with Uβ ×Kr by the inverse transpose of the identification for E. Similarly,

E ⊕ F = (U , gαβ ⊕ hαβ)
E ⊗ F = (U , gαβ ⊗ hαβ)∧`

(E) =
(
U ,
∧`

(gαβ)
) with E ⊕ F

described by

M

E

p

Ep

M

F

p

Fp

M
E ⊕ F

p

Ep ⊕ Fp
.

Definition 1.2.1. Let π : E →M be a vector bundle of rank r and f : N →M smooth. We want to define
a bundle f∗E over N , called the pullback bundle of E by f , as follows.

M
x

Ef(x)

N
f(x)

Ef(x)

f

id

f∗E = {(x, e) ∈ N × E : f(x) = π(e)}
= {(x, e) : e ∈ Ef(x)}

Define ρ : f∗E → N by ρ(x, e) = x and ρ = π1|f∗E .

z Exercise 1.2.2. Show that this gives a rank r K-vector bundle over N . In terms of transition functions, if
(Uα, ϕα) is a trivialization of E with transition functions for f∗E with respect to an open cover {f−1(U−α) :
α ∈ A}, they are f∗gαβ = gαβ ◦ f : f−1(Uα)→ GL(r,K). The bundle makes the below diagram commute.

N M

f∗E E

ρ

f

π

Example 1.2.3. Let M = {p}, a single point. Let E = M ×Kr, a trivial kr bundle over a point. Let N be
a manifold with f : N → {p} the constant map. Then

f∗E = {(x, e) ∈ N × E : f(x) = π(e) = p},

so N × {p} ×Kr ∼= {(x, (p, v)) : v ∈ Kr, x ∈ N} ∼= N ×Kr.

Remark 1.2.4. Recall E∗ from above. If E has a trivial cover {(Uα, ϕα) : α ∈ A}, then we may construct
the transition functions and gluing cocyles from those of E as below.
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in E: in E∗:

ϕα|Ep : Ep
∼=−−→ {p} ×Kr

(
ϕα|Ep

)∗
: {p} ×Kr

∼=−−→ E∗p

gβα g̃βα = (ϕ∗β)−1 ◦ ((ϕ∗α)−1)−1 = ((ϕβ ◦ ϕ−1
α )∗)−1 = ((gβα)∗)−1

Above, (gβα)∗ denotes the transpose of gβα.

1.3 Sections of a vector bundle

Definition 1.3.1. Let π : E → M be a Kr vector bundle. A (smooth) section of E is a smooth map
s : M → E such that π ◦ s = idM , i.e. π(s(p)) = p, so s(p) ∈ Ep for all p ∈M .

M

S

E

p
q

sp
sq

Ep Eq

Define Γ(E) to be the space of sections of E, which is an infinite-dimensional K-vector space. That is, for
s1, s2 ∈ Γ(E), (s1 + s2)p = (s1)p + (s2)p, and for λ ∈ K, (λs)p = λsp. In fact, Γ(E) is a C∞-module, i.e.
if f ∈ C∞(M) and s ∈ Γ(E), then (fs)p = f(p)sp. Note that any vector bundle always has at least one
section, the zero section 0 : M → E (where 0(p) = 0p ∈ Ep).

Remark 1.3.2. Let (Uα, ϕα) be a local trivialization of E and s ∈ Γ(E), and consider the maps

Uα E|Uα Uα ×Kr
s|Uα ϕα

= π−1(Uα)

which induces a smooth map ϕα ◦ s|Uα : Uα → Uα ×Kr given by p 7→ (p, sα(p)), where sα : Uα → Kr is
smooth. Hence locally, s is an r-tuple of smooth K-valued functions. Now suppose that (Uβ , ϕβ) is another
trivialization of Uα ∩ Uβ 6= ∅. Then

sβ = π2(ϕβ ◦ s) = π2(ϕβ ◦ ϕ−1
α ◦ ϕα ◦ s) = gβα ◦ sα.

So sβ = gβαsα if Uβ ∩ Uα 6= ∅. That is, sβ(p) = gβα(p)sα(p) for all p ∈ Uα ∩ Uβ .

Example 1.3.3. Consider the following examples of sections.
· A section of TM is a vector field
· A section

∧k
(T ∗M) is a k-form, with Γ(

∧k
(T ∗M)) = Ωk(M). More specifically,

∧0
(T ∗M) = M ×R,

the trivial real line bundle over M . Further, Ω0(M) = Γ(
∧0

(T ∗M)) = Γ(M × R) ∼= c∞(M), where
s : M →M ×R will be given by s(p) = (p, f(p)), f ∈ C∞(M).

Proposition 1.3.4. Let E be a rank r K-vector bundle. Then E is trivial iff it admits r sections that are
everywhere linearly independent.

Proof: First suppose E = M ×Kr. Define si : M →M ×Kr = E by si(p) = (p, ei) ∈ Ep, where {e1, . . . , er}
is the standard basis of Kr. For the other direction, suppose that there exist s1, . . . , sr everywhere linearly
independent. Define ϕ : M ×Kr → E by

ϕ

(
r∑
i=1

tiei

)
=

l∑
i=1

tisi(p) ∈ Ep,
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for ti ∈ K. It remains to check that ϕ is a bundle homomorphism. �

z Exercise 1.3.5. Note that Γ(E∗ ⊗ F ) ∼= Hom(E,F ) because W ∗ ⊗W ∼= HomK(V,W ) canonically.
· Show that E∗ ⊗ E has a nowhere-zero section.
· If E is a line bundle, show that E∗ ⊗ E is trivial.

Definition 1.3.6. Let π : E → M be a vector bundle and f : N → M a smooth map. Then there exists a
canonical map f∗ : Γ(E)→ Γ(f∗E) called the pullback of sections, defined by s ∈ Γ(E).

N M

f∗E E

ρ

f

πf∗s s

f∗

s↔ sα : Uα → Kr

f∗s↔ (f∗s)α : f−1(Uα)→ Kr

Above, f∗s : N → f∗E and (f∗s)p = sf(p) ∈ Ef(p) = (f∗E)p for all p ∈ N, f(p) ∈ M . Note that sections
are always immersions.

Remark 1.3.7. Suppose that f : N → M is smooth. Then for ω ∈ Ωk(M) = Γ(
∧k

(T ∗M)), there exists
a pullback form f∗ω ∈ Ωk(N). This is not quite the same as the pullback of sections. As a section,

f∗ω ∈ Γ(f∗(
∧k

(T ∗M))), which is not the same as, but related to, Ωk(N).

Remark 1.3.8. Let E be a vector bundle over M . The space Ωk(E) = Γ(
∧k

(T ∗M)⊗E) contains E-valued
k-forms locally (in local coordinates for M) with ω = ωi1···ikdx

i1 ∧ · · · ∧ dxik . Sections of E over some open

set U ⊂ M are maps U → E|U = π−1(U). Further, Ωk(M)“ = ”Ωk(M ×R) = Γ(
∧k

(T ∗M) ⊗ (M ×R)).
Finally, if U ⊂M is open, then E|U = π−1(U) is a vector bundle over U . We write this as

Γ(E|U ) = ΓU (E) = Γ(U,E)

and call it the global sections of E.

1.4 Metrics and other structures on vector bundles

Definition 1.4.1. Let π : E →M be a Kr-bundle. Then E is termed K-orientable if
∧r

E is trivial. Note∧r
E is a rank 1 vector bundle over M , called the determinant line bundle det(E) of E.

Equivalently, E is K-orientable iff there exists a nowhere-zero section of det(E) =
∧r

(E). Now suppose that
K = R and E is K-orientable. Let µ, ν be nowhere-zero sections of det(E). Then there exists f ∈ C∞(M)
such that f is nowhere-zero with µ = fν.

An R-orientation of E is a choice of equivalence class. The # of orientations equals 2# of connected
components of M .

Example 1.4.2. A smooth manifold Mn is R-orientable iff TM is an R-orientable vector bundle. Note
that as a manifold, TM is always orientable, i.e. T (TM) is always an R-orientable vector bundle.

Definition 1.4.3. Let π : E → M be a real vector bundle. A Riemannian fiber metric on E is a section
h ∈ Γ(E∗⊗E∗) such that for all s1, s2 ∈ Γ(E), h(s1, s2) = h(s2, s1) and h(s1, s1) > 0 with equality iff s1 = 0.
This is a smoothly varying family of positive definite symmetric bilinear form on the fibers.

Note that a Riemannian metric on M is a Riemannian fiber metric on the vector bundle TM . However in
general, a Riemannian fiber metric on E (which is a metric on TE)is different from a Riemannian metric on
a smooth manifold E.
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Remark 1.4.4. Any real vector bundle admits lots of Riemannian fiber metrics. The proof is identical to
that of the claim that any Riemannian manifold admits lots of Riemannian metrics, with partitions of unity.
However, in the complex case, we first need to define conjugate bundles.

Definition 1.4.5. Let π : E →M be a Cr-vector bundle. The conjugate bundle π : E →M is a Cr-vector
bundle over M defined by changing the scalar multiplication on each fiber as follows. The total space E = E
as a set. The map π : E → M is also the same as π : E → M . For Ep the fiber of E over p (as a set,
Ep = Ep) and for λ ∈ C and v ∈ Ep, define scalar multiplication by

λv︸︷︷︸
∈Ep

= λv︸︷︷︸
∈Ep

.

Proposition 1.4.6. Let (U , g··) be a gluing cocycle for E. Then (U , g∗··) is a gluing cocycle for E, where ∗

represents complex conjugation and gαβ : Uα ∩ Uβ → GL(r,C).

Proof: Let (Uα, Uβ) be a local trivialization of E. Then ϕα(e) = (π(e), fα(e)) for fα : E|Uα → Cr. If p ∈M ,

then fα|Ep : Ep → Cr, which is smooth. Define c ◦ ϕα : π−1(Uα)→ Uα ×Cr by (c ◦ ϕα)(e) = (π(e), fα(e)).
Then

ϕα(λv) = (p, fα(λv)) = (p, λfα(v))

implies (c ◦ ϕα)(λv) = (p, fα(λv)) = (p, λfα(v)) = (p, λ fα(v)) = (p, λ, (c ◦ fα)(v)).

So the maps c ◦ ϕα are local trivializations for E. The transition functions g̃βα for E with respect to this
cover U are

(p, g̃βα(v)) = (c ◦ ϕβ) ◦ (c ◦ ϕ−1
α )(p, v)

= (p, (c ◦ fβ) ◦ (c ◦ fα)−1(v))

= (p, (c ◦ fβ ◦ f−1
α ◦ c)(v)).

Hence g̃βαv = gβαv = gβαv, so g̃βα = gβα. Although this finishes the proof, all the expressions above should
be evaluated at p. �

Definition 1.4.7. Let π : E →M be a Cr-bundle. A Hermitian fiber metric on E is a section h ∈ Γ(E∗⊗E∗)
such that for s1, s2 ∈ Γ(E), h(s1, s2) = h(s2, s1) and h(s1, s1) > 0 with equality iff s1 = 0. Note that for f a
C-valued smooth function on M ,

h(fs1, s2) = fh(s1, s2)

h(s1, fs2) = fh(s1, s2).

Remark 1.4.8. Any Cr-vector bundle admits lots of Hermitian fiber metrics. The proof is still the same
as previously mentioned. Also, complex conjugation c : E → E is a bundle isomorphism of E onto E as real
vector bundles but not as complex vector bundles.

Proposition 1.4.9. Let E be a Cr-vector bundle over M . Then E can also be regarded as an R2r-vector
bundle over M , hence E is always R-orientable.

Proof: Let E be determined by the gluing cocyle (U , g··). There exists a canonical group homomorphism

j : GL(r,C) → GL(2r,R)
A+ iB 7→

(
A −B
B A

) .

Define a cocycle g̃αβ = j ◦ gαβ : Uα ∩ Uβ → GL(2r,R) that satisfies the cocycle conditions g̃αα = g̃αβ g̃βα =
g̃αβ g̃βγ g̃γα = 1. Define wαβ = det(g̃αβ), which are the transition functions of detR(ER), which is a real line
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bundle. We also have that det(g̃αβ) = |det(gαβ)|2 > 0 for all α, β.

Next, let fαβ = log(wαβ) for wαβ = efαβ and fαβ : Uα ∩ Uβ → R we have wγα = wαβwβγ , implying that
fγα = fγβ + fβα. Let {ρα : α ∈ A} be a partition of unity subordinate to U . Define, for all α ∈ A, maps

fα : Uα → R
p 7→

∑
γ∈A

Uα∩Uγ 6=∅
ργfγα ,

which is a smooth and well-defined map. This gives us that

fγα − fγβ = fγα + fβγ = fβα

and fα − fβ =
∑
γ∈A

ργ (fγα − fγβ) =

∑
γ∈A

ργ


︸ ︷︷ ︸

= 1

fβα = fβα.

So from the cocycle conditions, we have constructed fα : Uα → R smooth such that

fα − fβ = fβα =⇒ −fβ = −fα + fβα =⇒ e−fβ = gβαe
−fα .

The above says that sβ = gβαsα. So the section s of detR(ER) is given locally by sα = e−fα , and it is well-
defined and nowhere-zero. So s is a global nowhere vanishing section of detR(ER), so ER is R-orientable,
for ER the underlying R-vector bundle. �

2 Characteristic classes

2.1 Connections

Definition 2.1.1. Let π : E → M be a Kr-vector bundle. A connection ∇ on E is a K-linear map
∇ : Γ(E) → Γ(T ∗M ⊗ E) such that ∇(fs) = df ⊗ s + f∇s for all f ∈ C∞(M) and s ∈ Γ(E) (this is the
Leibniz rule).

If X ∈ Γ(TM) (i.e. X is a vector field), define ∇Xs = (∇s)(X), which is contraction of the T ∗M factor
with X at every point. That is, for (si)p ∈ Ep and (αi)p ∈ T ∗pM ,

(∇s)p =

n∑
i=1

(αi)p ⊗ (si)p, so ((∇s)(X))p =

n∑
i=1

(αi)p(Xp)(si)p.

The Leibniz rule then becomes

∇X(fs) = (df ⊗ s)(X) = f∇Xs = (Xf)s+ f∇Xs.

We then call ∇Xs the covariant derivative of the section s in the direction of the vector field X. Notice since
∇s : Γ(TM)→ Γ(E), it follows that ∇s ∈ Hom(TM,E).

Remark 2.1.2. How do we get new connections from existing ones?

First, consider T : E → F a vector bundle isomorphism for E,F over M . If ∇ in a connection on E, then
T∇T−1 is a connection on F (it remains to check that the Leibniz rule still holds).

Next, consider ∇, ∇̃ two connections on E, with A = ∇̃−∇ : Γ(E)→ Γ(T ∗M ⊗E), which is K-linear. Then

A(fs) = ∇̃(fs)−∇(fs) = df ⊗ s+ f∇̃s− (df ⊗ s+ f∇s) = fA(s).

Hence A ∈ Γ(E∗ ⊗ T ∗M ⊗ E) ∼= Γ(T ∗M ⊗ E∗ ⊗ E) ∼= Γ(T ∗M ⊗ End(E)) = Ω1(End(E)). So the difference
between any two connections on E is an End(E)-valued 1-form. Conversely, if ∇ is a connection on E and

A ∈ Ω1(End(E)), then ∇̃ = ∇ + A is a connection on E. This shows that the space of cennections AE on
E is an affine space modeled on the vector space Ω1(End(E)).
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Example 2.1.3. Consider connections on the following spaces.
· E = M ×R. Then Γ(E) ∼= C∞(M), with

d : C∞(M) −−→ Ω1(M),

∼ = ∼ =

Γ(E) Γ(T ∗M ⊗ (M ⊗R))

with d(f) = df and d(fs) = (df)s + fds for f, s ∈ C∞(M). Hence d is a connection on M ×R, and is a
trivial connection.

· E = M ×Kr, the trivial Kr-bundle. A section of E in s =

[
s1
...
sr

]
for s : M → Kr an r-tuple of K-valued

smooth functions. Define ∇0

[
s1
...
sr

]
=

[
ds1
...
dsr

]
to be a connection on M ×Kr. This is the general form of the

trivial connection. Note that in general, on a non-trivial bundle there does not exist any analog of the trivial
connection. Now let ∇ be any other connection on M×Kr. Then ∇ = ∇0 +A for some A ∈ Ω1(End(E)). In
local coordinates (x1, . . . , xn) for M and {e1, . . . , er} the standard basis of Kr, we have that A = Aije

j ⊗ ei,
where Aij is a 1-form on M , so Aij = Aijkdx

k with 1 6 i, j 6 r and 1 6 k 6 n. These are locally defined
smooth functions. It follows that ds

1

...
dsr

+

A
1
js
j

...
Arjs

j

 =

(1-form on M)
...

(1-form on M)

 ,
for ∇s = (∇0 + A)s. Above we begin the use of the Einstein notation, where a repeated index in the
superscript and subscript of a term indicates a sum over that index.

Remark 2.1.4. The above may be generalized. Let π : E →M be a Kr-bundle. Let U ⊂M be open such
that E|U is trivial (i.e. bundle-isomorphic to V ×Kr), so there exists {e1, . . . , er} a global frame for E|U .
That is, e1, . . . , er ∈ Γ(E|U ) that are linearly independent at every point. Note that ∇ may be restricted to
a connection ∇ on E|U . We will do so, and denote both by the same symbol.

So∇ei is a section of (T ∗M⊗E)|U . Hence there exists Aij ∈ (T ∗M)|U and Aij ∈ Ω1(U) such that∇ei = Ajiej .

Let s ∈ Γ(E|U ) = Γ(U,E), so s = siei for unique si ∈ C∞(U), which are K-valued. Then

∇s = ∇(siei) = (dsi)⊗ ei + s1∇ei = dsj ⊗ ej + siAji ⊗ ej = (dsj + ajis
i)⊗ ej .

Hence locally, every connection is completely determined by these Aji s, which are the connection matrices
with respect to the local frame.

Remark 2.1.5. How does the above compare to Christoffel symbols for a connection on E = TM? For ∇
a connection on TM , we have Aji = Ajike

k, and from above ∇ei = Ajiej . The Christoffel symbols originally

are ∇ekei = Ajikej , which follows by switching the indices.

We return to the previous remark. Let {ẽ1, . . . , ẽr} be another local frame for E over U . Then∇ẽi = Ãji ẽj ,

where ẽi = ejg
j
i , for gji the change of basis matrix, i.e. gji : U → GL(r,K) is smooth. We now see that

∇ẽi = ∇(ejg
j
i ) and ∇(ejg

j
i ) = ∇(gji ej)

= Ãjiekg
k
j = dgji ⊗ ej + gji∇ej

= dgki ⊗ ek + gjiA
k
j ⊗ ek

= Ãjig
k
j ⊗ ek.
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Hence Ãjig
k
j = dgki + gjiA

k
j . Now multiply both sides by (g−1)`k and sum over k to get that

Ã`i = (g−1)`kA
k
j g
j
i + (g−1)`kdg

k
i implying Ã = g−1Ag + g−1dg

is the relation between connection matrices A, Ã for a connection ∇ with respect to two local frames
{e1, . . . , er} and {ẽ1, . . . , ẽr}, related by g. So if (U , g··) is a gluing cocyle for E and Aα are the connection
matrices of ∇ with respect to the local trivializations (ϕα, Uα), we have the map given by

Aα : Uα → GL(r,K)
Aα = g−1

βαAβgβα + g−1
βαdgβα

.

Proposition 2.1.6. Let π : E →M be a Kr-bundle. Then there exist lots of connections on E.

Proof: Let (U , g··) be a gluing cocyle. The map ψα = ϕ−1
α : Uα × Kr → E|Uα is a bundle isomorphism.

Let ∇α be the trivial connection on Uα ×Kr. Define ∇̂α = ψα ◦ ∇α ◦ ψ−1
α , which is a connection on E|Uα .

Let {ρα : α ∈ A} be a partition of unity subordinate to U . If s ∈ Γ(E), then ρα(s) ∈ Γ(E|Uα). Hence

∇̂α(ρα(s)) ∈ Γ((T ∗M ⊗ E)|Uα). Define the map

∇ : Γ(E) → Γ(T ∗M ⊗ E)

s 7→
∑
α,β∈A ρβ

(
∇̂α(ρα(s))

)
.

This map is K-linear. We need to show that the Leibniz rule holds for f ∈ C∞(M). This follows as

∇(fs) =
∑
α,β∈A

ρβ

(
∇̂α(ρα(fs))

)
=
∑
α,β∈A

ρβ

(
∇̂αf |Uα(ρα(s))

)
=
∑
α,β∈A

ρβ

(
(df)|Uα ⊗ (ρα(s)) + f∇̂α(ρα(s))

)

=

(∑
α∈A

ρα

)∑
β∈A

ρβ

 (df ⊗ s+ f∇s)

= df ⊗ s+ f∇s.

So ∇ is indeed a connection, and we are done. �

Given vector bundles with connections, we get naturally induced connections on new vector bundles
constructed from them.

Proposition 2.1.7. Let (E1,∇1) and (E2,∇2) be vector bundles over M with connections. Then:

i. There exists a connection ∇ on E1 ⊕ E2 defined by ∇(s1 ⊕ s2) = ∇(s1)⊕∇(s2), i.e. ∇X(s1 ⊕ s2) =
(∇Xs1)⊕ (∇Xs2).

ii. There exists a connection ∇ on E1 ⊗ E2 defined by ∇(s1 ⊗ s2) = (∇s1) ⊗ s2 + s1 ⊗ (∇s2), i.e.
∇X(s1 ⊗ s2) = (∇Xs1)⊗ s2 + s1 ⊗ (∇Xs2). Extend this to all sections of E1 ⊗ E2 by K-linearity.

Let (E,∇) be a vector bundle with a connection and let f : N →M be smooth. Then:

ii. There exists a connection ∇ on E∗ defined, for all α ∈ Γ(E∗) and s ∈ Γ(E), by d(α(s)) = (∇α)s +
α(∇s), i.e. X(α(s)) = (∇Xα)(s) = α(∇Xs).

iv. There exists a connection ∇ an
∧k

(E) given by ∇X(s1 ∧ · · · ∧ sk) =
∑k
j=1 s1 ∧ · · · ∧ ∇sj ∧ · · · ∧ sk.

v. There exists a connection f∗∇ on the pullback bundle f∗E over N such that f∗∇ : Γ(f∗E) →
Γ(T ∗M ⊗ f∗E) is K-linear.
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Proof: We will only prove v. here. We construct f∗∇ by describing it in terms of a gluing cocycle for
f∗E. Let (U , g··) be a gluing cocycle for π : E → M . The connection ∇ on E is described locally by
Aα : Uα → GL(Kr) ⊗ Ω1(Uα) such that Aβ = gβαAαg

−1
βα − (dgβα)g−1

βα . Recall that {f−1(Uα) : α ∈ A} is

an open cover of N and f∗gβα = gβα ◦ f : f−1(Uα) ∩ f−1(Uβ)→ GL(Kr) are transition functions for f∗E.
Next let

(f∗A)α = f∗Aα = Aα ◦ f : f−1(Uα)→ GL(Kr)⊗ Ω1(f−1(Uα)),

and pull it back by f to get

Aβ ◦ f = (gβ ◦ f)(Aα ◦ f)(g−1
βα ◦ f)− (dgβα ◦ f)(g−1

βα ◦ f)

and (f∗A)β = (f∗g)βα(f∗A)α(f∗g)−1
βα − d(f∗g)βα(f∗g)−1

βα.

Hence the maps (f∗A)α define a connection on E. �

Remark 2.1.8. Recall that if ∇ is a connection on E and {e1, . . . , er} is a local frame for E (over U ⊂M),
then over U with s ∈ Γ(U |U ) given by s = siei for si ∈ C∞(M), we have that

∇s =
(
dsi +Aijsi

)︸ ︷︷ ︸
∈ Ω1(E)

ei for Aij ∈ Ω1(U) and A ∈ GL(Kr)⊗ Ω1(U).

Let {e1, . . . , er} be the dual coframe for E∗, so ei ∈ Γ(E∗|U ) with eie
j = δji . What does the matrix A∗ look

like in terms of A? That is , if α ∈ Γ(E∗|U ), α = αie
i for αi ∈ C∞(M), then ∇α = (dαi + (A∗)jiαj)e

i.

Proposition 2.1.9. In the context of the above remark, (A∗)ij = −Aji .

Proof: Start with eaeb = δab and take d of both sides. This gives

0 = (∇ea)ab + ea(∇eb) ⇐⇒ 0 = (A∗)ake
k(eb) + ea(Akaek) ⇐⇒ 0 = (A∗)ba +Aab .

�

Example 2.1.10. This example is very important. Let (E,∇) be a vector bundle with a connection. We
get an induced connection ∇ on End(E) → M . Define it as follows. For B ∈ Γ(End(E)) and s ∈ Γ(E),
define ∇XB ∈ Γ(End(E)) by

(∇XB)(s) = ∇X(Bs)−B(∇Xs).
This is K-linear because B and∇X on E are K-linear. So we need to checek the Leibniz rule. Let f ∈ C∞(M)
and compute

(∇X(fB))(s) = ∇X((fB)(s))− (fB)(∇Xs)
= ∇x(f(B(s)))− f(B(∇Xs))
= (Xf)B(s) + f∇x(B(s))− fB(∇Xs)
= ((Xf)B)(s) + (f(∇XB))(s)

= ((Xf)B + f(∇XB))(s).

Let’s now look at what this looks like in a local trivialization (Uα, ϕα) for E with s = siei and E|Uα ∼= Uα×Kr

trivial. Then ∇s = (dsi +Aijs
j)ei, with B(s) = (Bk` s

`)ek for some Bk` ∈ C∞(Uα). This gives

∇(B(s)) = (d(Bk` s
`) +Ak` (B`js

j))ek

and B(∇(s)) = (Bk` (ds` +A`js
j))ek,

implying (∇B)(s) = ∇(B(s))−B(∇s)
= ((dBk` )s` +Bk` ds

` +A`kB
`
js
j −Bk` ds` −Bk`A`jsj)ek

= (dBk` + [A,B]k` )s`.
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Hence ∇B = dB + [A,B] is a local trivialization. We present another proof of this fact. Recall that
End(E) ∼= E∗ ⊗ E. Let {e1, . . . , er} be a local trivialization for E and {e1, . . . , er} a local trivialization for
E∗. Then B ∈ Γ(End(E)) is locally given by B = Bije

j ⊗ ei ∈ Γ((E∗ ⊗ E)|U ). Explicitly. if s = skek, then

B(s) = (Bije
j ⊗ ei)(skek) = Bijs

kej(ek)ei = Bijs
jei = B(s),

giving that

∇B = (dBij)e
j ⊗ ei +Bij∇(ej ⊗ ei)

= (dBij)e
j ⊗ ei +Bj((∇ej)⊗ ei + ej ⊗ (∇ei))

= (dBij)e
j ⊗ ei +Bij(−A

j
`e
` ⊗ ei) + (Bij ⊗A`ie`)

=

We have again shown that∇B = dB+[A,B]. Note that by the second line we had three different connections,
but for ease of notation all were given the same symbol.

Definition 2.1.11. Let h be a fiber metric on E. We say that a connection ∇ on E is compatible with h if
for all s1, s2 ∈ Γ(E),

d(h(s1, s2)) = h(∇s1, s2) + h(s1,∇s2) i.e. X(h(s1, s2)) = h(∇Xs1, s2) + h(s1,∇Xs2).

Equivalently, ∇ is h-compatible iff ∇h = 0.

There is quite a lot more to say about connections, in terms of parallel sections, parallel transport,
holonomy, etc. We move on to more pertinent matters.

2.2 Curvature

Definition 2.2.1. Let ∇ be a connection on E. Let X,Y ∈ Γ(TM) be vector fields. Then we can take
∇X ,∇Y ,∇[X,Y ] : Γ(E) → Γ(E), which are K-linear, but not C∞(M)-linear, because of the Leibniz rule.
Define the curvature F∇(X,Y ) : Γ(E)→ Γ(E) on ∇ by

F∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] = [∇X ,∇Y ]−∇[X,Y ].

z Exercise 2.2.2. Show that for all f ∈ C∞(M) and s ∈ Γ(E),

F∇(X,Y )(fs) = F∇(fX, Y )s = F∇(X, fY )s = f(F∇(X,Y )s).

Remark 2.2.3. Consider a special case of the curvature, when E = TM and ∇ is the Levi-Civita connection
of a Riemann fiber metric on M . Then F∇(X, fY )Z = R(X,Y )Z, the Riemann curvature tensor. It is clear
that F∇(Y,X) = −F∇(X,Y ) and F∇(X,Y )p = F∇(Xp, Yp). Further, the map

Γ(TM)× Γ(TM) → End(E) = Γ(End(E))
(X,Y ) 7→ F∇(X,Y )

is skew-symmetric and bilienar over C∞(M). So F∇(·, ·) ∈ Ω2(End(E)), i.e. the curvature is an End(E)-
valued 2-form.

Remark 2.2.4. In local coordinates (x1, . . . , xn) on M with domain U , F∇ = 1
2Fijdx

idxj . What are the
Fij? Start by supposing that {e1, . . . , er} is a local frame over U . Define

∇is = ∇ ∂

∂xi
s = ∂is+Ais = (∂is

a +Aabis
b)ea,
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where Aab = Aabidx
i. Then

Fijs = F∇
(

∂

∂xi
,
∂

∂xj

)
s

= ∇i(∇js)−∇j(∇is)−∇[ ∂

∂xi
, ∂

∂xj
]s

= ∇i(∂jsAjs)−∇j(∂is+Ais)− ∂j(∂is+Ais)−Aj(∂is+Ais)

=
∂2

∂xi∂xj
s+ (∂iAj)s+Aj∂is+Ai∂js+AiAjs−

∂2

∂xj∂xi
s− (∂jAi)s−Ai∂js−Aj∂is−AjAis

= (∂iAj − ∂jAi +AiAj −AjAi)s,

where we used the short form Ajs = (Aabjs
b)ea. This gives us the expression

Fij =
∂Ai
∂xj
− ∂Aj
∂xi

+ [Ai, Aj ].

The commutator represents the non-linear part of the curvature. This is the local coordinate formula for
curvature (a matrix-valued 2-form), in terms of the locally defined matrix A representing the connection ∇.

Example 2.2.5. A special case occurs with the line bundle, i.e. when r = 1. Since 1×1 matrices commute,
and End(E) ∼= E∗ ⊗E ∼= M ×K1 is trival, the curvature F∇ ∈ Ω2(M ×K1) = Γ(

∧2
(T ∗M)⊗ (M ×K1)) =

Ω2
K(M) is an ordinary K-valued 2-form. Further, F∇ = dA locally, i.e. Fij = ∂Ai

∂xj −
∂Aj
∂xi , so F = d(Aidx

i).
Hence F is closed because it is locally exact (it is usually not globally exact).

Remark 2.2.6. Let’s find a shorthand for the above expression of Fij . We start with

F∇ =
1

2
(∂iAj − ∂jAi)dxi ∧ dxj +

1

2
(AiAj −AjAi)dxi ∧ dxj = dA+A ∧A,

as dA = dAi ∧ dxi = ∂Ai
∂xj ∧ dx

j ∧ dxi. This is the “local short form” for curvature. We must be careful,
because A does not make sense globally, only locally. This is a matrix-valued 2-form on U .

In a local trivialization (Uα, ϕα) of E, End(E) is also trivial. So the curvature is F∇α = F ab e
b ⊗ ea, where

{e1, . . . , er} is a local frame with an appropriate coframe.So above we showed that Fα = dAα + Aα ∧ Aα,
noting that from now on we drop the ∇ and say F∇ = F without confusion. Further, we know if (Uβ , ϕβ)
is another local trivialization on E, then

Aβ = gβαAαg
−1
βα − (dgβα)−1gβα

so Fβ = dAα +Aβ ∧Aβ
= d(gAαg

−1)− (dg)g−1 + (gAαg
−1 − (dg)g−1) ∧ (gAαg

−1 − (dg)g−1)

= (dg)Aαg
−1 + g(dAα)g−1 − gAα(dg−1)− (d2g)g−1 + (dg) ∧ (dg−1) + (gAαg

−1) ∧ (gAαg
−1)

− (dg)g−1 ∧ gAαg−1 − gAαg−1 ∧ (dg)g−1 + (dg)g−1 ∧ (dg)g−1

= g(dAα +Aα ∧Aα)g−1,

where we employed the shorthand g = gβα and (dg)g−1 +g(dg−1) = 0 since gg−1 = id. Hence Fβ = gFαg
−1.

This is what we expected, since for all p ∈M , Fp ∈
∧2

(T ∗pM)⊗ End(Ep). In particular, (Fp)ij ∈ End(Ep).

Now let us look at another interpretation of the curvature, which we need to formalize the Chern–Weil
construction of characteristic classes.

Definition 2.2.7. Let ∇ be a connection on E. Define a k-linear operator d∇ by

d∇ : Ωk(E) → Ωk+1(E)
ω ⊗ s 7→ dω ⊗ s+ (−1)kω ∧∇s for

ω ∈ Ωk(M) dω ∈ Ωk+1(M)
s ∈ Γ(E) ∇s ∈ Γ(T ∗M ⊗ E)

.
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To see that this is well-defined, observe that (fω)⊗ s = ω ⊗ (fs) and so

d∇((fω)⊗ s) = d(fω)⊗ s+ (−1)kfω ∧∇s
= (df) ∧ ω ⊗ s+ fdω ⊗ s+ (−1)kfω ∧∇s

and d∇(ω ⊗ (fs)) = dω ⊗ (fs) + (−1)kω ∧∇(fs)

= f(dω)⊗ s+ (−1)kω ∧ (df ⊗ s+ f∇s),

which are the same thing. Hence d∇ is well-defined.

Example 2.2.8. Consider the special case when E = M × K1, the trivial line bundle. Then Ωk(E) =

Γ(
∧k

(T ∗M)⊗K1) = ΩkK(M), then set of K-valued k-forms on M . Let ∇− d, the trivial connection on E.
Then

d∇(ω ⊗ f︸ ︷︷ ︸
= fω

) = dω ⊗ f + (−1)kω ∧ df = fdω + df ∧ ω = d(ωf),

so d∇ = d in this case. So really d∇ is a generalization of d to non-trivial bundles E and non-trivial
connections ∇.

Remark 2.2.9. The space Ω·(E) is not an algebra. However, Ωk(End(E)) is an algebra. So define, for
T, S ∈ End(E),

(ω ⊗ T ) ∧ (η ⊗ S) = (ω ∧ η)⊗ TS.

in Ωk(M)

in Ω`(M)

in Γ(End(E))

in Γ(End(E))

in Ωk+`(M)

Further, if ω ⊗ T ∈ Ωk(End(E)) and η ⊗ s ∈ Ω`(E), define (ω ⊗ T ) ∧ (η ⊗ s) = (ω ∧ η) ⊗ T (s) ∈ Ωk+`(E).
Now we have maps

Ωk(End(E))× Ω`(End(E)) → Ωk+`(E)
Ωk(End(E))× Ω`(E) → Ωk + `(E)

,

where the first one is not super-commutative. We claim that for both of these products the Leibniz rule
holds. To check this, let ω ∈ Ωk(M), η ∈ Ω`(M), S, T ∈ Γ(End(E)) and d∇ be defined on End(E)-valued
forms induced by a connection ∇ on End(E). We then have

d∇((ω ⊗ T ) ∧ (η ⊗ s))− d∇((ω ∧ η)⊗ TS) = d(ω ∧ η)⊗ TS + (−1)kω ∧ η ∧∇(TS)

= (dω ∧ η + (−1)kω ∧ dη)⊗ TS
+ (−1)k+`ω ∧ η ∧ ((∇T )S + T (∇S)).

Next observe that

d∇(ω ⊗ T ) = dω ⊗ T + (−1)kω ∧ dT
and d∇(η ⊗ S) = dη ⊗ S + (−1)`η ∧ dS,

implying

(d∇(ω ⊗ T )) ∧ (η ⊗ S) = (dω ∧ η)⊗ TS + (−1)k+`ω ∧ η ∧ (∇T )S

and (−1)k(ω ⊗ T ) ∧ d∇(η ⊗ S) = (−1)k(ω ∧ dη)TS + (−1)`+kω ∧ η ∧ T (∇S).

Hence we get that

d∇((ω ⊗ T ) ∧ (η ⊗ S)) = (d∇(ω ⊗ T )) ∧ (η ⊗ S) + (−1)k(ω ⊗ T ) ∧ (d∇(η ⊗ S))

and d∇((ω ⊗ T ) ∧ (η ⊗ s)) = d∇(ω ⊗ T ) ∧ (η ⊗ s) + (−1)k(ω ⊗ T ) ∧ d∇(η ⊗ s),
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where the second statement comes from an analogous proof. Note that above the d∇ used were different,
but it causes no confusion because of the arguments of each. Now let’s see what d∇ looks like in a local
trivialization {e1, . . . , er}. An E-valued k-form is a finite sum of ω⊗ s, for ω ∈ Ωk(M), s = siei ∈ Γ(E) and
si smooth K-valued functions. Then ω ⊗ s = ω ⊗ (siei) = (siω)⊗ ei, i.e.

ω ⊗ s =

ωs
1

...
ωsr

 for s =

s
1

...
sr

 ,
and

d∇(ω ⊗ s) = d∇(siω ⊗ ei)
= d(siω)⊗ ei + (−1)k(siω) ∧∇ei
= d(siω)⊗ ej + (−1)ksiω ∧ aAjiej
= (d(sjω) + (Ajis

i) ∧ ω)ej

= (d+A ∧ ·)(ω ⊗ s),

that is,

d∇(ω ⊗ s) = d

ωs
1

...
ωsr

+A

ωs
1

...
ωsr

 .
In words, in a fixed local trivialization, d∇ = d+ A ∧ ·. Similarly, if in a local trivialization {e1, . . . , er} on
E, we get a local trivialization of End(E),

ω ⊗ S = ω

s
11 · · · s1r

...
. . .

...
sr1 · · · srr

 =

ωs
11 · · · ωs1r

...
. . .

...
ωsr1 · · · ωsrr

 .
z Exercise 2.2.10. Check that d∇(ω ⊗ s) = (d+ [A, ·])(ω ⊗ s). This shows that d∇ = d+ [A, ·].
Lemma 2.2.11. The map (d∇)2 : Ωk(E) → Ωk+2(E) is linear over Ωk(M). That is, (d∇)2(ω ⊗ s) =
ω ∧ (d∇)2s for all ω ∈ Ωk(M) and s ∈ Γ(E).

Proof: This follows from the calculation below:

(d∇)2(ω ∧ s) = d∇(dω ⊗ s+ (−1)kω ∧∇s)
= d2ω ⊗ s+ (−1)kdω ∧∇s+ (−1)kdω ∧∇s+ (−1)k+kω(d∇)2s

= ω ∧ (d∇)2s.

�

A special case occurs when k = 0, for which (d∇)2(fs) = f(d∇)2s.

Proposition 2.2.12. The equation (d∇)2(ω⊗s) = ω∧(d∇)2s = ω∧F∇∧s holds. That is, (d∇)2s = F∇∧s,
for F∇ ∈ Ω2(End(E)) and s ∈ Ω0(E).

Proof: Let {e1, . . . , er} be a local frame for E. Let {θ1, . . . , θr} be a local frame for E. Let {θ1, . . . , θn} be a

local frame for TM . Then {θ1, . . . , θn} is the dual coframe of T ∗M . Then

(d∇)2(s) = d∇(d∇s)

= d∇(δs)

= d∇(θk ⊗∇θks)
= dθk ⊗∇θks+ (−1)1θk ∧∇(∇θks)
= dθk ⊗∇θks− θk ∧ θj ⊗∇θj (∇θks).
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The above followed as ∇Xs = ∇Xiθis = Xi∇θis = θi(X)⊗∇θis = (θi ⊗∇θis)(X). We now let X = Xaθa
and Y = Y bθb. Then

((d∇)2s)(X,Y ) = (dθk)(X,Y )∇θks− (θk ∧ θj)(X,Y )∇θj∇θks
= (X(θk(Y ))− Y (θk(X))− θk([X,Y ]))∇θks− (θk(X)θj(Y )− θk(Y )θj(X))∇θj∇θks
= (X(Y k)− Y (Xk)− [X,Y ]k)∇θks− (XkY j −XjY k)∇θj (∇θks)
= X(Y k)∇θks− Y (Xk)∇θks−∇[X,Y ]s−Xk∇Y (∇θks) + Y k∇X(∇θks)
= ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s

= F∇(X,Y )s.

�

Hence the non-vanishing of the curvature F∇ of ∇ measures the failure of d∇ : Ω•(E)→ Ω•+1(E) to be
a complex. As an aside, note that (dα)(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]).

Proposition 2.2.13. Let ∇ be a connection on E. Let B ∈ Ω1(End(E)). Then ∇̃ = ∇+B is a connection
on E. Moreover, F∇+B = F∇ + d∇(B) +B ∧B.

Proof: This can be proven true by showing it is true locally (since no choice is involved). So in a local

trivialization, ∇ = d+A for A ∈ Ω1(End(E)). Then

F∇ = dA+A ∧A,

∇̃ = d+A+B,

F ∇̃ = d(A+B) + (A+B) ∧ (A+B)

= dA+A ∧A+ dB +A ∧B +B ∧A+B ∧B.

Now note that

d∇(B) = d∇(dxi ⊗Bi)
= −dxi ∧∇Bi
= −dxi ∧ (dBi + [A,Bi])

= dBi ∧ dxi − dxi ∧ (dxj ⊗AjBi −Bidxj ⊗Aj)
= dB +A ∧B +B ∧A
= d∇(B).

�

The Bianchi identity introduced below corresponds to the 2nd Bianchi identity from Riemannian geom-
etry.

Proposition 2.2.14. [Bianchi identity]
Let ∇ be a connection on E. Then d∇(F∇) = 0.

Proof: (First proof) In a fixed local trivialization, d∇ = d + [A, ·] on Ω•(End(E)), and F∇ = dA + A ∧ A.
Now comupte

d∇(F∇) = d(dA+A ∧A) + [A, dA+A ∧A]

= d2A+ dA ∧A−A ∧ dA+A ∧ dA+A ∧A ∧A−A ∧A ∧A− dA ∧A
= 0.
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Proof: (Second proof) Note that d∇(F∇) ∈ Ω3(End(E)). By Leibniz, for s ∈ Ω•(E),

d∇(F∇) ∧ s = d∇(F∇ ∧ s)− F∇ ∧ d∇s
= d∇((d∇)2s)− (d∇)2(d∇s)

= (d∇)3s− (d∇)3s

= 0.

So d∇(F∇) ∧ s = 0 for all s ∈ Γ(E), so d∇(F∇) = 0. �

Proposition 2.2.15. Let (E1,∇1), (E2,∇2) be vector bundles with connections. Recall that E1 ⊕E2 has
an induced connection ∇ = ∇1 ⊕∇2 and E1 ⊗ E2 also has an induced connection ∇ = ∇1 ⊗∇2. Then

F∇ = F∇
1

⊕ F∇
2

and F∇ = F∇
1

⊗ idE2 + idE1 ⊗ F∇
2

,

for the appropriate ∇ in each expression.

Proof: Since ∇X(s1 ⊕ s2) = (∇1
Xs1) ⊕ (∇2

Xs2), we have that (d∇)2(s1 ⊕ s2) = (d∇
1

)2s1 ⊕ (d∇
2

)2s2 (this

remains to be checked). Hence F∇ ∈ Ω2(End(E1 ⊕ E2)), so

F∇ =

(
F∇

1

0
0 0

)
+

(
0 0

0 F∇
2

)
=

(
F∇

1

0

0 F∇
2

)
.

For the second identity, proceed as above, with ∇X(s1 ⊗ s2) = (∇1
Xs1) ⊗ s2 + s1 ⊗ (∇2

Xs2). This is left as
an exercise. �

We would like to compute the curvature of the dual connection with respect to the curvature of the
original connection.

Proposition 2.2.16. Let (E,∇) be a vector bundle with a connection. Let (E∗,∇∗) be the dual bundle
with the dual connection, so F∇

∗ ∈ Ω2(End(E∗)) = Ω2((End(E))2). Then F∇
∗

= −(F∇)∗.

Proof: Let s ∈ Ω0(E) and ω ∈ Ω0(E∗), so ω(s) ∈ Ω0(M) = C∞(M). Then

X(ω(s)) = (∇∗Xω)(s) + ω(∇Xs)
and Y (X(ω(s))) = (∇∗Y∇∗Xω)(s) + (∇∗Xω)(∇Y s) + (∇∗Y ω)(∇Xs) + ω(∇Y∇Xs),

implying

0 = X(Y (ω(s)))− Y (X(ω(s)))− [X,Y ](ω(s))

= (F∇
∗
ω)(s) + ω(F∇s)

= (F∇
∗
ω)(s) + ((F∇)∗)(s).

That is, F∇
∗

= −(F∇)∗. �

Remark 2.2.17. Let (E,∇) be a bundle with connection, and f : N → M smooth. Then (f∗E, f∗∇) is
also a bundle with a connection. It is left as an exercise to show that

F f
∗∇ = f∗(F∇).

If F∇ = 0, then ∇ is called a flat connection. Not all bundles admit flat connections (trivial ones always
do). Further, F∇ = 0 iff for all p ∈M , there exists U 3 p such that E|U admits a global parallel frame.
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2.3 Chern–Weil theory of characteristic classes

Characteristic classes of E with π : E → M are cohomology classes of M , so c(E) ∈ H•(M,K), in the de
Rham cohomology. They “measure” the non-triviality of E. We begin with some algebra.

Definition 2.3.1. Let V be a finite-dimensional vector space over K. Let P : V ×k → K be a k-linear
symmetric map. Define P̃ : V → K by P̃ (v) = P (v, . . . , v). Notice that P̃ (λv) = λkP̃ (v), so we say that P̃
is homogeneous of degree k. Moreover,

P (v1, . . . , vk) =
1

k!

∂k

∂t1 · · · ∂tk
P̃ (t1v1 + · · ·+ tkvk).

We say that P is obtained from P̃ by polarization. Proof of the polarization identity is left as an exercise.
In fact, if P̃ : V → K is homogeneous of degree k, then the identity above defines a k-linear symmetric map.

Definition 2.3.2. Let V = End(Kr) ∼= gl(r,K). A k-linear symmetric map P : gl(r,K)×k → K is called
invariant if for all Q ∈ GL(r,K) = Aut(r,K) and all B1, . . . , Bk ∈ gl(r,K), we have

P (QB1Q
−1, . . . , QBkQ

−1) = P (B1, . . . , Bk).

This is equivalent to P̃ (QBQ−1) = P̃ (B) for all B ∈ gl(r,K).

Example 2.3.3. Let B ∈ gl(r,K) and observe that

det(I + tB) =

r∑
k=0

tk σk(B)︸ ︷︷ ︸
∈ K

,

where σ0(B) = 1, σ1(B) = Tr(B), . . . , σr(B) = det(B), which are the elementary symmetric polynomials
of B. Note that each σk : gl(r,K) → K is homogeneous of degree k and invariant, hence determined by
polarization on invariant K-linear symmetric maps.

Lemma 2.3.4. If P is invariant, then for all B,Bi ∈ gl(r,K),

k∑
i=1

P (B1, . . . , Bi−1, [B,Bi], Bi+1, . . . , Bk) = 0.

Proof: Take Q = etB , Q−1 = e−tB ∈ GL(r,K), for which

P (QB1Q
−1, . . . , QBkQ

−1) = P (B1, . . . , Bk).

Differentiate this expression with respect to t and set t = 0, so

d

dt
(QB1Q

−1) =
d

dt
(etBBje

−tB) = BetBBje
−tB − etBBjBe−tB .

Then t = 0 evaluates the above expression as BBj −BjB = [B,Bj ]. �

Proposition 2.3.5. Let P be an invariat k-linear symmetric map on gl(r,K). Then for any vector bundle
E of rank r and any partition i1 + · · ·+ ik = m for 0 6 ij 6 m, there exists a naturally induced map

p : Ωi1(End(E))× · · · × Ωik(End(E)) → ΩmK(M)
(ω1 ⊗ T1, . . . , ωk ⊗ Tk) 7→ ω1 ∧ · · · ∧ ωkP (T1, . . . , Tk)

,

where ωj ∈ Ωij (M) and Tj ∈ Γ(End(E)).
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Proof: In a trivialization, Ep ∼= Kr, End(Ep) ∼= gl(r,K), so this is well-defined since P is invariant. �

Definition 2.3.6. There exists a bracket [ · , · ] such that for ω ∈ Ωk(M), η ∈ Ω`(M) and T, S ∈ Γ(End(E)),

[ · , · ] : Ωk(End(E))× Ω`(End(E)) → Ωk+`(End(E))
(ω ⊗ T, η ⊗ S) 7→ (ω ∧ η)⊗ [T, S]

.

Remark 2.3.7. Note that [ · , · ] is not always symmetric. That is, for B ∈ Ω1(End(E)), with B = dx1⊗Bi
locally and Bi matrices, we have that

[B,B] = [dxi ⊗Bi, dxj ⊗Bj ]
= dxi ∧ dxj [Bi, Bj ]
= dxi ∧ dxj(BiBj −BjBi)
= 2dxi ∧ dxjBiBj
= 2B ∧B.

Hence B ∧B = 1
2 [B,B] 6= 0 in general.

Lemma 2.3.8. [Generalization of infinitesimal invariants]
Let C1, . . . , Ck ∈ Ωeven(End(E)), where the even index might change for each Ci. Let B ∈ Ω1(End(E)) and
P : gl(r,K)→ K be a k-linear symmetric invariant map. Then

k∑
j=1

(−1)i1+···+ij−1P (C1, . . . , Cj−1, [B,Cj ], Cj+1, . . . , Ck) = 0.

Proof: The proof by linearity, assumes wlog that everything can be decomposable. We start with ω ∈ Ω1(M),
S ∈ Γ(End(E)) and B = ω ⊗ S. Also, ωj ∈ Ωeven(M), Tj ∈ Γ(End(E)), and Cj = ωj ⊗ Tj . Then

[B,Cj ] = ω ∧ ωj [S, Tj ]

and

P (C1, . . . , Cj−1, [B,Cj ], Cj+1, . . . , Ck) = ω1 ∧ · · · ∧ ωj−1 ∧ (ω ∧ ωj) ∧ ωj+1 ∧ · · · ∧ ωk
P (T1, . . . , Tj−1, [S, Tj ], Tj+1, . . . , Tk)

= ω ∧ (ω1 ∧ · · · ∧ ωk)P (T1, . . . , Tj−1, [S, Tj ], Tj+1, . . . , Tk).

Now sum over all j from 1 to k and apply the next lemma. The proof will be finished below.

Lemma 2.3.9. Let γj ∈ Ωij (End(E)) for j = 1, . . . , k, so P (γ1, . . . , γk) ∈ Ωi1+···+ik(M). Then, for any
connection ∇ on E,

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···+ij−1P (γ1, . . . , γj−1d
∇γj , γj+1, . . . , γk).

Proof: Fix a local trivialization on U . Then γj ∈ Ωij (Kr×r), or equivalently γj is a matrix of ij-forms on U .

In this trivalization, d∇ on Ω•(End(E)) is d + [A, ·], i.e. d∇γj = dγj + [A, γj ]. Without loss of generality,
γj = ωj ⊗ Tj for ωj ∈ Ωij (M) and Tj ∈ Γ(End(E)). First compute

P (γ1, . . . , γk) = P (ω1 ⊗ T1, . . . , ωk ⊗ Tk)

= ω1 ∧ · · · ∧ ωkP (T1, . . . , Tk)

= ω1 ∧ · · · ∧ ωkP ((T1)a1

b1
eb1 ⊗ ea1

, . . . , (Tk)akbk e
bk ⊗ eak)

= (ω1(T1)a1

b1
) ∧ · · · ∧ (ωk(Tk)akbk )P (eb1 ⊗ ea1 , . . . , e

bk ⊗ eak)︸ ︷︷ ︸
constant function

,
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for Tj = (Tj)
aj
bj
ebj ⊗ eaj . Then

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···+ij−1(γ1)a1

b1
∧ · · · ∧ d((γj)

aj
bj

) ∧ · · · ∧ (γk)akbkP (eb1 ⊗ ea1
, . . . , ebk ⊗ eak)

=

k∑
j=1

(−1)i1+···ij−1P (γ1, . . . , γj−1, dγj , γj+1, . . . , γk),

for γj = (γj)
a
be
b ⊗ ea, i.e. (γj)

a
b = ω(Tj)

a
b . �

Remark 2.3.10. Consider the bracket [·, ·] on Ω•(End(E)), acting on A = dxi ⊗ Ai for Ai ∈ Γ(End(E)),
and ω ∈ Ωk(U). Then ω ⊗ S ∈ Ωk(End(E)) was defined by

[A,ω ⊗ S] = [dxi ⊗Ai, ω ⊗ S]

= dxi ∧ ω ⊗ [Ai, S]

= dxi ∧ ω ⊗ (AiS − SAi)
= (dxi ⊗Ai) ∧ (ω ⊗ S)− (−1)k(ω ⊗ S) ∧ (dxi ⊗Ai)
= A ∧ (ω ⊗ S)− (−1)k(ω ⊗ S) ∧A.

On the next assignment, we will see that d∇ on Ω•(End(E)) is given in a trivialization by d∇(γ) = dγ+[A, γ].

We now finish the proof of Lemma 2.3.8.

Proof: In a local trivialization, d∇γj = dγj + [A, γj ] from Lemma 2.3.9. Then

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···ij−1P (γ1, . . . , γj−1, d
∇γj , γj+1, . . . , γk)

−
k∑
j=1

(−1)i1+···+ij−1P (γ1, . . . , γj−1, [A, γj ], γj+1, . . . , γk)

= 0

by Lemma 2.3.9. �

Theorem 2.3.11. [Chern, Weil]
Let ∇ be any connection on E with curvature F∇ ∈ Ω2(End(E)).

1. For any k-linear symmetric invariant map P : gl(r,K)⊗k → K, the K-valued 2k-form P̃ (cF∇) ∈
Ω2k

K (M) is closed for all c ∈ K.
2. If ∇0,∇1 are two connections on E, then

[P̃ (cF∇
0

)] = [P̃ (cF∇
1

)] ∈ H2k(M,C).

Proof: 1. Note that P̃ (cF∇) = P (cF∇, . . . , cF∇) and

d(P̃ (cF∇)) = d(P (cF∇, . . . , cF∇)) = 0

by Lemma 2.3.8 and the Bianchi identity d∇(F∇) = 0.

2. We know ∇1 = ∇0 +B for some global B ∈ Ω1(End(E)). Define ∇t = ∇0 + tB for t ∈ [0, 1], so ∇0 = ∇0

and ∇1 = ∇1. Let P (t) = P̃ (F∇
t

). We need to show that P (1)− P (0) is exact, so let

F t = F∇
t

= F∇
0+tB = F∇

0

+ td∇
0

B +
t2

2
[B,B].
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Then
d

dt
F t = d∇

0

B + t[B,B] = (d∇
0

+ [tBj , ·])B.

Further, ∇t = ∇0 + tB implies that (check this) d∇
t

= d∇
0

+ [tB, ·] on Ω•(End(E)), so d
dtF

t = d∇
t

B. Next,
define

(TP )(∇1,∇0)︸ ︷︷ ︸
∈ Ω2k−1

K (M)

= K

∫ 1

0

P (F t, . . . , F t, B)dt.

We will show that d((TP )(∇1,∇0)) = P (1)− P (0), which will complete the proof. First note that

P (1)− P (0) =

∫ 1

0

(
d

dt
P (t)

)
dt

=

∫ 1

0

(
P

(
d

dt
F t, . . . , F t

)
+ · · ·+ P

(
F t, . . . ,

d

dt
F t
))

dt,

and since P is symmetric on Ωeven(End(E)),

= K

∫ 1

0

P (F t, . . . , F t, d∇
t

B)dt.

Finally, since

d((TP )(∇1,∇0)) = K

∫ 1

0

d(P (F t, . . . , F t, B))dt = K

∫ 1

0

P (F t, . . . , F t, d∇
t

B)dt,

the result follows from Lemma 2.3.8 and the Bianchi identity. �

Remark 2.3.12. So far, we have learned that given π : E → M a Kr-bundle, P a k-linear symmetric
invariant map, and c ∈ K, we get [P̃ (cF∇)] ∈ H2k(M,C), a well-defined cohomology class.

Example 2.3.13. Let K = C and r = rank(E), Then for B ∈ Kr×r

det(I + tB) =

r∑
k=0

tkσk(B),

so σ0(B) = 1, σ1(B) = Tr(B), . . . , σr(B) = det(B). We then let P̃k = σk, which is an invariant homeomor-
phism of degree k.

2.4 Chern, Todd, and Pontryagin classes

Definition 2.4.1. Define the kth Chern form of E with respect to the connection ∇ to be

ck(E,∇) = σk

(
i

2π
F∇
)
∈ Ω2k

K (M).

Further, the kth Chern class of E is defined as

ck(E) = [ck(E,∇)] ∈ H2k(M,C).

Notice that c0(E) = 1 and ck(E) = 0 for k > rank(E). Moreover, ck(E) = 0 if 2k > dim(M). Finally, define
the total Chern class of E to be

c(E) =

∞∑
k=0

ck(E) =

[
det

(
I +

i

2π
F∇
)]
∈ Heven(M,C).
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Example 2.4.2. If E = M ×Cr is trivial, all ck(E) = 0 because we can take ∇ = d, the trivial connection,
so F d = 0. However, the converse is not true. Next consider the exponent of a matrix, for which

Tr(eB) = Tr

( ∞∑
k=0

Bk

k!

)

is invariant. Note that eQBQ
−1

= QeBQ−1, so Tr(etB) =
∑∞
k=0 t

kP̃k(B).

Definition 2.4.3. Define the kth Chern character form of E with respect to ∇ to be

chk(E,∇) =
1

k!
Tr

((
i

2π
F∇
)k)

= P̃k

(
i

2π
F∇
)
∈ Ω2k

C (M).

Further, define the kth Chern character of E to be

chk(E) = [chk(E,∇)] ∈ H2k(M,C).

Observe that

ch0(E) = r = rank(E),

ch1(E) =

[
Tr

(
i

2π
F∇
)]

= c1(E),

ch2(E) 6= c2(E) in general, and

chk(E) = 0 if 2k > dim(M), but chk(F ) may be non-zero for k > r.

Finally, define the total Chern character of E to be

ch(E) =

∞∑
k=0

chk(E) =
[
Tr
(
e
i

2πF
)]
∈ Heven(M,C).

Example 2.4.4. Take the expression

det(tB)

det(I − e−tB)︸ ︷︷ ︸
invariant map
on matrices

=

∞∑
k=0

tk P̃k(B)︸ ︷︷ ︸
homogeneous
of degree k

and define the kth Todd form of E with respect to ∇, the kth Todd class of E, and the total Todd class of
E by

tdk(E,∇) = P̃k

(
i

2π
F∇
)
∈ Ω2k

C (M),

tdk(E) = [tdk(E,∇)] ∈ H2k(M,C),

td(E) =

∞∑
k=0

tdk(E) ∈ Heven(M,C).

Lemma 2.4.5. Suppose h is a fiber metric on a Kr-bundle. Let ∇ be a connection on E compatible with
h. Then F∇ ∈ Ω2(End−(E)).

Here, End−(E)p = End−(Ep), the set of endomorphisms of Ep that are infinitesimal isometries with respect
to hp. If K = R, then End−(Ep) = O(r), the set of skew-symmetric matrices. If K = C, then End−(Ep) =
U(r), the set of skew-Hermitian matrices.
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Proof: In a local trivialization, ∇ = d+A∧ ·. Let {e1, . . . , er} be a local orthonormal frame with respect to
h. Then

d(h(ei, e
′
j)) = d(δij) = 0

= h(∇ei, e′j) + h(ei,∇e′j)
= h(A`ie`, ej) + h(ei, A

`
je`)

= A`iδ`j +A
`

jδi`

= Aji +A
i

j .

In this frame,

F = dA+A ∧A
F ji = dAji +Aki ∧A

j
k

F ij = dAij +Akj ∧A
j
k

= −dAji +A
j

k ∧A
k

i

= −
(
dAji +Aki ∧A

j
k

)
= −F ji ,

so F is skew-symmetric (in R) or skew-Hermitian (in C). �

Corollary 2.4.6. Chern classes, Chern characters, and Todd classes are real, i.e. belong to Heven(M,R).

Proof: Let h be any Hermitian metric on E. Let ∇ be any connection compatible with h. In a local

trivialization, F∇ is skew-Hermitian, so i
2πF

∇ is Hermitian. Then the expressions

det

(
I +

i

2π
F

)
, Tr

(
e
i

2πF
)

,
det
(
i

2πF
)

det
(
I − e− i

2πF
)

are all real since i
2πF is Hermitian. That is, there exists at each point an invertible Q such that

Q

(
i

2π
F

)
Q−1 =

λ1 0
. . .

0 λr


for λi ∈ R. �

Remark 2.4.7. Let E be a real vector bundle of rank r over M . Consider the expression

det

(
I +

1

2π
F∇
)

=

r∑
k=0

σk

(
1

2π
F∇
)

︸ ︷︷ ︸
∈ Ω2k

R (M)

.

Choose any Riemann fiber metric h on E and any connection ∇ composed with h. Then F is skew-symmetric
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(with respect to the frame), i.e.

F t = −F as det

(
I +

t

2π
F

)
= det

((
I +

t

2π
F

)t)

= det

(
I − t

2π
F

)
=

r∑
k=0

(−1)ktkσk

(
1

2π
F

)
.

This shows that σ( 1
2πF ) = 0 for k odd, and only for this type of connection. Hence [σk( 1

2πF )] = 0 for k odd,
independent of any choice.

Definition 2.4.8. Define the kth Pontryagin class of E to be

pk(E) =

[
σ2k

(
1

2π
F

)]
∈ H4k(M,R).

Note that pk(E) = 0 if 4k > n = dim(M). Further, define the total Pontryagin class of E to be

p(E) =

∞∑
k=0

pk(E) =

[
det

(
I +

1

2π
F∇
)]
∈ H4k(M,R).

Remark 2.4.9. Let E be a Rr-vector bundle. Consider the complexification E ⊗C. This is a Cr-bundle
over M whose fiber at p is

(E ⊗C)p = Ep ⊗R C.

A connection ∇ on E extends to a connection ∇ on E ⊗C by C-linearity. But what is ck(E ⊗C)? We take
f(t) = det(I + t

2πF ), so f(1) = P (E) and f(i) = c(E ⊗ C). It remains to check the details, but the final
result is that

pk(E) = (−1)kc2k(E ⊗C) ∈ H4k(M,R) and ck(E ⊗C) = 0 for k odd.

3 Dirac operators on Clifford bundles

The material covered in this section is more general - it applies to any elliptic operator, but we will do just
Dirac operators and generalized Laplacians (unless we have more time at the end of the term).

3.1 Clifford algebra

Definition 3.1.1. Let V be an n-dimensional vector space with a symmetric bilinear positive definite form
〈 · , · 〉 : V × V → R. A Clifford algebra in V is a real algebra A with unit 1 and a map ϕ : V → A such
that (ϕ(v))2 = −〈v, v〉 1, which is universal with respect to this property. That is, if there exists another
map ϕ̃ : V → Ã such that (ϕ̃(v))2 = −〈v, v〉 1, then there exists a unique algebraic homomorphism A → Ã
such that

V

A

Ã

ϕ

ϕ̃

commutes.
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Example 3.1.2. Let 〈 · , · 〉 = 0. Then A =
∧•

V is a Clifford algebra for (V, 〈 · , · 〉). The map ϕ : V →∧•
V is the inclusion, so (ϕ(v))2 = v ∧ v = 0 = −〈v, v〉 1. If ϕ̃ : V → Ã is another such map, define A→ Ã

by v1 ∧ · · · ∧ vk 7→ ϕ̃(v1) · · · ϕ̃(vk), which is an algebra homomorphism by construction, and the diagram
above commutes. It is left as an exercise to check that this is a unique map.

Proposition 3.1.3. For any (V, 〈 · , · 〉), a Clifford algebra exists, and is unique up to isomorphism.

Proof: Let us first check uniqueness. Suppose A, Ã are two such Clifford algebras. Then the situation may
be modeled by the commutative diagram below.

V

A

Ã

A

ϕ

ϕ̃

ϕ

f1

f2

id

Since the map A → A on the outside must be id, as it is unique, we have that f2 ◦ f1 = idA, so f1 and f2

are algebraic isomorphisms.

For existence, let {e1, . . . , en} be any basis for V . Define A = spanR{e
k1
1 · · · eknn : ki ∈ {0, 1}}, so A is a

2n-dimensional vector space. Define multiplication on A by

eiej + ejei = −2 〈ei, ej〉 1. (1)

This rule determines the product of any 2 elements of A. Then takeb ϕ : V → A, given by ei → ei. Why is
this a Clifford algebra? We want ϕ(v)ϕ(v) = −〈v, v〉 1. Let v = v1 + v2. Then for all v1, v2 ∈ V ,

ϕ(v1 + v2)ϕ(v1 + v2) = −〈v1 + v2, v1 + v2〉 ,
(ϕ(v1) + ϕ(v2))(ϕ(v1) + ϕ(v2)) = −(〈v1, v1〉+ 2 〈v1, v2〉+ 〈v2, v2〉)1,

ϕ(v1)ϕ(v2) + ϕ(v2)ϕ(v1) = −2 〈v1, v2〉 1. (2)

Hence (1) holds iff (2) holds, by linearity in e1, ej . Denote this A by C`(V, 〈 · , · 〉), or just by 〈 · , · 〉 for

shorter notation. Note that the map ϕ : V → C`(V ) is injective (as V is a subspace of C`(V )). �

Why do we care about C`(V )? We will see that Clifford algebras are intimately related to the Laplacian.
Let us first look at a special case.

Definition 3.1.4. Let (V, 〈 · , · 〉) be as before, 〈 · , · 〉 positive definite, and {e1, . . . , en} an orthonormal

basis. Then C`(V )⊗C is the complexified Clifford algebra. In this case, we have

C`(V )⊗C ∼= (C`(V ⊗C), 〈 · , · 〉),
ϕ(v)⊗ t↔ ϕ(v ⊗ t).

Suppose S is a module over C`(V )⊗C. This means S is a finite-dimensional complex vector space together

with a map (C`(V )⊗C)× S → S, where

(α+ β)− = αs+ βs , α(s1 + s2) = αs1 + αs2 , α(βs) = (αβ)s.

Let C∞(V, S) be the space of smooth S-valued functions on V . Then C∞(V, S) = Γ(V × S), where V × S
is the trivial C-vector bundle over V with fiber S. Each ei corresponds to a differential operator ∂i = ∇ei ,
where ∇ is the trivial connection on V × S.
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Definition 3.1.5. The Dirac operator D on C∞(V, S) is a C-linear map D : C∞(V, S) → C∞(V, S) given
by Ds =

∑n
i=1 ei(∂is), with the multiplication being module multiplication. In other words, (Ds)p =∑n

i=1(∂is)p, for (∂is)p ∈ (V × S)p = S.

Proposition 3.1.6. The Dirac operator is independent on the choice of basis.

Proof: Let {ẽ1, . . . , ẽn} be another orthonormal basis, so ẽi = P `i e` for P ∈ O(n). Then

Ds =

n∑
i=1

ẽi∇ẽis

=

n∑
i=1

(
P `i e`

) (
∇Pki eks

)
=

n∑
i=1

(
P `i e`

) (
P ki ∇eks

)
=

(
n∑
i=1

P `i P
k
i

)
e` (∇eks)

=

n∑
k=1

ek∇eks.

�

Definition 3.1.7. Define the Laplacian of s to be

D2s = D(Ds)

=

n∑
j=1

ej(∂j(Ds))

=

n∑
j=1

ej

(
∂j

n∑
i=1

ei∂is

)

=

n∑
i,j=1

(ej · ei) (∂j∂is)

=

n∑
i=1

(−∂i∂is) +
∑
i 6=j

(ej · ei)(∂j∂is)

= −
n∑
i=1

∂i∂is.

So the Laplacian of s is −
∑n
i=1 ∂

2/∂(xi)2s.

Remark 3.1.8. Let’s try to do this in a more general setting. Let (M, g) be an oriented Riemannian
manifold without boundary. A tangent bundle π : TM →M is a real vector bundle with rank n and a fiber
metric g. So (TpM, gp) is an n-dimensional real vector space with a positive definite inner product. Then

C`(TpM, gp)⊗C is the complexified Clifford algebra. Hence we obtain C`(TM)⊗C, which is the C-vector

bundle of rank 2n over M whose fiber over p is C`(TpM, gp) ⊗ C. Checking of local triviality is left as an
exercise.

Suppose S is a bundle of Clifferd modules over M , i.e. S is a C-vector bundle over M such that sp is a

module over C`(TpM, gp) (we will see that there are such s that always exist). We need a way to differentiate
sections of S, i.e. we need a connection on S.
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Definition 3.1.9. We say that S is a Clifford bundle if it is equipped with a Hermitian fiber metric h and

a h-compatible connection ∇ such that for all p ∈M , Sp is a module over C`(TpM, gp)⊗C, and
1. the Clifford action of a vector Xp ∈ TpM is skew-adjoint with respect to hp, i.e.

hp(Xp · sp, tp) + h(sp, Xp · tp) = 0

for all Xp ∈ TpM , sp, tp ∈ Sp, and
2. the connection ∇ on S is compatible with the Levi-Civita connection ∇ on TM in the sense that for

all X,Y ∈ Γ(TM) and s, t ∈ Γ(S),

∇X(Y s) = (∇XY )s+ Y (∇Xs).

Note that the ∇s are not all the same above.

Definition 3.1.10. The Dirac operator D : Γ(S) → Γ(S) of S is defined by, for {e1, . . . , en} a local
orthonormal frame for TM ,

Γ(S) Γ(T ∗M ⊗ S) Γ(TM ⊗ S) Γ(S)

s ∇s = ek ⊗∇eks (ek)# ⊗∇eks gk`e` ⊗∇eks

∇ mus. iso.

of ⊗
Clifford

section

.

This follows as (ek)# = gkjej ∈ Γ(TM |U ), with g`k = gk`. We employed the fact that
〈
(ek)#, ej

〉
= ek(ej) =

δkj and
〈
gk`e`, ej

〉
= δkj . Moreover, since all the maps used are C-linear, their composition is C-linear.

Remark 3.1.11. Let’s compute D2s at p ∈ M . Let {e1, . . . , en} be a local orthonormal frame centered at
p such that (∇eiej)(p) = 0 for all j (this is a geodesic frame). We know that [ei, ej ] = ∇eiej − ∇ejei = 0,
hence [ei, ej ]|p = 0 for all i, j. So then

D2s =
∑
i,j

ei∇ei(ej∇ejs)

=
∑
i,j

ei
(
(∇eiej) ·

(
∇ejs

)
+ ej∇ei∇ejs

)
.

Evaluate this at p ∈M to get

(D2s)p =
∑
i,j

ei|p
(

(∇eiej)|p
(
∇ejs

)
p

+ ej |p
(
∇ei∇ejs

)
p

)

= −
n∑
i=1

(∇ei∇eis)p +
∑
i<j

ei|p · ej |p

(∇ei∇ejs−∇ej∇eis)p − (∇[ei,ej ]s
)
p︸ ︷︷ ︸

= 0


= −

n∑
i=1

(∇ei∇eis)p︸ ︷︷ ︸
some kind of Laplacian

+
∑
i<j

ei|p · ej |p · F
∇(ei, ej)s︸ ︷︷ ︸

curvature term

.

We would like to write −
∑n
i=1∇ei∇eis in a more invariant way.

Definition 3.1.12. For the connection ∇ : Γ(S) → Γ(T ∗M ⊗ S), define the formal adjoint ∇∗ : Γ(T ∗M ⊗
S)→ Γ(S). We will see that −

∑n
i=1∇ei∇eis = ∇∗∇s. This is the rough Laplacian, or connection Laplacian

on Γ(S). This will follow as Γ(S), Γ(T ∗M ⊗ S) tave positive-definite Hermitian inner products.
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Definition 3.1.13. Let s, t ∈ Γ(S). Define a Hermitian product, with (h(s, t))p = hp(sp, tp), by

〈〈s, t〉〉 =

∫
M

h(s, t)volg.

Note that 〈〈s, s〉〉 = 0, so h(s, s)p = 0 for all p. Hence sp = 0 for all p, so s = 0. Similarly, we get a
positive-definite Hermitian inner product on Γ(T ∗M) as follows. For α, β ∈ Γ(TM), s, t ∈ Γ(S), let

〈〈α⊗ s, β ⊗ t〉〉 =

∫
M

g(α, β)h(s, t)volg,

so g(α, β) = αkβ`g
k` locally. Extend this by linearity and check this is a Hermitian metric. With these

metrics, Γ(S), Γ(T ∗M ⊗ S) are not complete as normed vector spaces.

3.2 The adjoint and the Hodge star

Definition 3.2.1. Suppose E,F are vector bundles over M with fiber metrics hE , hF . Let P : Γ(E)→ Γ(F )
be a linear map. Then P ∗ : Γ(F )→ Γ(E) is the formal adjoint of P if 〈〈Ps, t〉〉 = 〈〈s, P ∗t〉〉 for all s ∈ Γ(E)
and t ∈ Γ(F ).

Moreover, if such an adjoint exists, then it is unique. To see this, suppose that Q, Q̂ satisfy

〈〈Ps, t〉〉 = 〈〈s,Qt〉〉 =
〈〈
s, Q̂t

〉〉
for all s, t. Then

〈〈
s,Qt− Q̂t

〉〉
= 0, so take s = Qt− Q̂t. This implies that Qt = Q̂t for all t, so Q = Q̂.

Proposition 3.2.2. For any vector bundle S with a metric and compatible connection, ∇ : Γ(S)→ Γ(T ∗M⊗
S) has a formal adjoint ∇∗ : Γ(T ∗M ⊗ S)→ Γ(S).

Proof: In a local coordinate chart, ∇s = dxj ⊗ ∇js. Let B ∈ Ω1(M), t ∈ Γ(S), so B ⊗ t ∈ Γ(T ∗M ⊗ S).
Then, using 〈 〉 for the pointwise inner product, and 〈〈 〉〉 for the L2-inner product, we have that

〈∇s,B ⊗ t〉 =
〈
dxj ⊗∇js,B ⊗ t

〉
=
〈
dxj , B

〉
〈∇js, t〉Bkgjk (∇j 〈s, t〉 − 〈s,∇jt〉)

= ∇j
(
Bkg

jk 〈s, t〉
)︸ ︷︷ ︸

a vector field Y

−gjk (∇jBk) 〈s, t〉 −Bkgjk 〈s,∇jt〉

= div(Y ) +
〈
s,−gjk (∇jBk) t−Bkgjk∇jt

〉︸ ︷︷ ︸
defines a global smooth section of S

.

Now we integrate and use the divergence theorem to get that for all s, t, B,

〈〈∇s,B ⊗ t〉〉 = 0 +
〈〈
S,−gjk(∇jBk)t−Bkgjk∇jt

〉〉
.

Hence locally, ∇∗(B ⊗ t) = −gjk(∇jBk)t−Bkgjk∇jt. �

Remark 3.2.3. Above, we had t = ∇js, B = dxj , Bk = 0 and Bj = 1 for j 6= k. Then ∇∗∇s ∈ Γ(S) is
given by

∇∗∇s = ∇∗(dxj ⊗∇js)
= −Bkg`k∇`∇js
= −g`j∇`∇js

= −
n∑
k=1

∇`k∇`ks
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for {e1, . . . , en} orthonormal. Hence D2s = ∇∗∇s+Ks, where Ks =
∑
i<j ei ·ej ·F∇(ei, ej)s. This is known

as the Bochner–Weitzenböck formula.

Proposition 3.2.4. The operator ∇∗∇ is positive and self-adjoint.

Proof: For self-adjointness, check that (PQ)∗ = Q∗P ∗ and (P ∗)∗ = P , so then (∇∗∇)∗ = ∇∗(∇∗)∗ = ∇∗∇.
For positivity, note that

〈〈∇∗∇s, s〉〉 = 〈〈∇s,∇s〉〉 = ‖∇s‖2 > 0.

�

Proposition 3.2.5. The operators D,D2,K are all self-adjoint.

Proof: By Bochner–Weitzenböck, it is enough to show that D is self-adjoint. Observe that

〈〈Ds, t〉〉 =

∫
M

〈ek · ∇eks, t〉

= −
∫
M

〈∇eks, ek · t〉 (by property 1. of S)

= −
∫
M

(
∇ek 〈s, ek · t〉︸ ︷︷ ︸

div. of a v.f., so 0 by Stokes

−〈s,∇ek(ek · t)〉
)

(by metric compatibility)

=

∫
M

〈s,∇ek(ek · t)〉 .

By compatibility in a geodesic frame and by property 2. of S,

∇ek(ek · t) = (∇ekek) · t︸ ︷︷ ︸
0 at p

+ek · (∇ekt).

Therefore 〈〈Ds, t〉〉 =
∫
M
〈s, ek · ∇ekt〉 = 〈〈s,Dt〉〉, so D is self-adjoint. �

Lemma 3.2.6. Ds = 0 iff D2s = 0.

Proof: The direction =⇒ is immediate. For the other direction, note that

D2s = 0 =⇒
〈〈
D2s, s

〉〉
= 0

=⇒ 〈〈Ds,Ds〉〉 = 0

⇐⇒ ‖Ds‖2 = 0

⇐⇒ Ds = 0.

�

Theorem 3.2.7. [Bochner]
Suppose that the least eigenvalue of K at each point of M is strictly positive. Then there are no non-trivial
solutions to Ds = 0.

Proof: Pointwise, we can do 〈Kpsp, sp〉 > λmin(p)|sp|2, if sp 6= 0. Then

〈Kpsp, sp〉
|sp|2

> λmin(p) > 0.
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For s nowhere-zero, there exists c > 0 such that 〈Ks,s〉|s|2 > c > 0. Then〈〈
D2s, s

〉〉
= 〈〈∇∗∇s, s〉〉+ 〈〈Ks, s〉〉

‖Ds‖2 = ‖∇s‖2︸ ︷︷ ︸
>0

+ 〈〈Ks, s〉〉︸ ︷︷ ︸
>0

,

since s 6= 0 in some open set by continuity. This implies that ‖Ds‖2 > 0, so Ds 6= 0. �

Example 3.2.8. Consider the important example of a Clifford bundle, the complexified exterior bundle∧•
(T ∗M) ⊗ C ∼= C`(TM) ⊗ C. This is a complex vector bundle that is not a complex vector bundle

as an algebra over C. Let {e1, . . . , en} be a basis for TpM and {e1, . . . , en} a basis for T ∗pM . The map

ei1 ∧ · · · ∧ eik 7→ ei1 · · · eik is a vector space isomorphism (where multiplication is Clifford multiplication).

Using this isomorphism, we will see that the natural action of C`(TM)⊗C on itself makes
∧• ∗(TM)⊗C

into a Clifford bundle. We need to put a metric h and a compatible connection ∇ on
∧•

(T ∗M) ⊗ C and
check that conditions 1. and 2. hold. To do this, we need a brief digression on the Hedge star.

Remark 3.2.9. Let (V, 〈 · , · 〉) be an n-dimensional real oriented positive definite inner product space. This
induces positive definite inner products on V ∗ and

∧•
(V ∗). Then 〈 · , · 〉 on V ∗ and

∧•
(V ∗) is defined by

declaring that ei1∧· · ·∧eik , for i1 < · · · < ik are orthonormal when e1, . . . , en are orthonormal. Alternatively
(and equivalently),

〈α, β〉V ∗ =
〈
α], β]

〉
V

and
〈
α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk

〉
Ωk(V ∗)

= det
(〈
αi, βj

〉
V ∗

)
for αi, βj ∈ V ∗. Diagramatically, we then have that

an orientation of V an orientation of V ∗ an orientation of
∧n

(V ∗)
induces induces

{e1, . . . , en} {e1, . . . , en} {e1 ∧ · · · ∧ en}
,

where the last set is a singleton, and all are ariented bases.

Definition 3.2.10. Define the Hodge star ∗ by

∗ :
∧k

(V ∗) →
∧n−k

(V ∗)
ei1 ∧ · · · ∧ eik 7→ ej1 ∧ · · · ∧ ejn−k ,

where {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} and ei1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ejn−k = e1 ∧ · · · ∧ en. Define this
on a basis and extend by linearity.

Example 3.2.11. Consider the Hodge star on R3 with the usual inner product and orientation. Then

∗(e1) = e2 ∧ e3, e1 ∧ e2 ∧ e3 = e2 ∧ (−e1 ∧ e3) = e1 ∧ e2 ∧ e3.

∗(e2) = −e1 ∧ e3 = e2 ∧ e1,

z Exercise 3.2.12. We present the following exercises as facts:
1. ∗2 = (−1)k(n−k) on

∧k
(V ∗)

2. ∗ is an isometry, i.e. 〈∗α, ∗β〉 = 〈α, β〉
3. α ∧ ∗β = 〈α, β〉 e1 ∧ · · · ∧ en = 〈α, β〉µ, for µ the volume form (so |µ| = 1)
4. ∗1 = u, ∗µ = 1

We may now proceed to the global view. Let (M, g) be an oriented Riemannian manifold. Then ∗ : Ωk(M) 7→
Ωn−k(M).
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Proposition 3.2.13. Let α ∈ Ω1(M). Let α] ∈ Γ(TM) be the metric dual vector field. Let ω ∈ Ωk(M).
Then

α] ω = (−1)nk+n ∗ (α ∧ ∗ω) .

Corollary 3.2.14. For all ω ∈ Ωk(M), η ∈ Ωk−1(M), α ∈ Ω1(M),〈
α] ω, η

〉
= 〈ω, α ∧ η〉 .

That is, the interior product is the adjoint of the exterior product.

Proof: Observe that, for µ the volume form,〈
α] ω, η

〉
µ = (−1)nk+n 〈∗(α ∧ ∗ω), η〉µ (by proposition)

= (−1)nk+nη ∧ ∗(∗(α ∧ ∗ω)) (by 3. above)

= (−1)nk+n(−1)(n−k+1)(k−1)η ∧ α ∧ ∗ω (by 1. above)

= α ∧ η ∧ ∗ω
= 〈α ∧ η, ω〉µ
= 〈ω, α ∧ η〉µ.

�

Definition 3.2.15. Define d∗ : Ωk(M) → Ωk−1(M) to be the formal adjoint of d : Ωk(M) → Ωk+1(M).
That is, 〈〈dα, β〉〉 = 〈〈α, d∗β〉〉, for all α ∈ Ωk+1(M) and β ∈ Ωk(M).

z Exercise 3.2.16. On Ωk(M), d∗ = (−1)nk+n+1 ∗ d∗.

Corollary 3.2.17. Similarly to d, (d∗)2 = 0.

Proof:

± ∗ d ∗ ∗d∗ = ∗d2∗ = 0.

�

Proposition 3.2.18. The Clifford action of a 1-form α ∈ Ω1(M) (which is the same as a vector field) on a
k-form ω ∈ Ωk(M) is given by α · ω = α ∧ ω − α] ω.

Proof: Both sides of the equation are linear in α, ω (this may be checked on an orthonormal basis of 1-forms

{e1, . . . , en} at a point). We need to show that ej · ω = ej ∧ ω − (ej)] ω, for all j. So write ω = ej ∧ σ + τ ,
where σ, τ have no ejs in them. Isomorphically, this is ej · σ + τ . Then

ej · ω = ej · (ej · σ + τ) = −σ + ej · τ isom.−−−−−→ −σ + ej ∧ τ,
ej ∧ ω = 0 + ej ∧ τ,

(ej)] ω = (ej)] (ej ∧ σ + τ)

= ((ej)] ej) ∧ σ − ej ∧ ((ej)] σ) + (ej)] τ

= σ.

This follows as

(ej)] ek = ek((ej)]) = g(ek, ej) = δkj =

{
0 if k 6= j

1 if i = j
.

Hence −σ + ej ∧ τ = −(ej)] ω + ej ∧ ω. �
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Lemma 3.2.19. We know
∧•

(T ∗M) has a natural Riemannian metric g = 〈 · , · 〉. Then
∧•

(T ∗M) ⊗C,
equipped with its natural metric and connection, is a Clifford bundle.

Proof: Define a Hermitian fiber metric h on
∧•

(T ∗M) ⊗ C by h(α, β) =
〈
α, β

〉
. Check that it is actually

Hermitian, and that the induced connection ∇ from ∇LC on TM is h-compatible. It remains to check
conditions 1. and 2. for being a Clifford bundle.

1. Let α ∈ Ω1
R(M), and ω, η ∈ Ω•(M)⊗C. Then

h(α · ω, η) = h(α ∧ ω − α] ω, η)

=
〈
α ∧ ω − α] ω, η

〉
=
〈
ω, α] ω − α ∧ η

〉
= h(ω,−(α ∧ η − α] η))

= −h(ω, α · η).

2. Check that ∇X(Y ω) = (∇XY ) ω + Y (∇Xω) and ∇Xα] = (∇Xα)], to get that

∇X(α · ω) = ∇X(α ∧ ω − α] ω)

= (∇Xα) ∧ ω + α ∧ (∇Xω)− (∇Xα]) ω − α] (∇Xω)

= (∇Xα) · ω + α · (∇Xω).

So Ω•(M)⊗C is indeed a Clifford bundle. �

Remark 3.2.20. If ω ∈ Ω•(M) ⊗C, then dω =
∑n
k=1 ek ∧ ∇ekω for any local frame {e1, . . . , en} and any

torsion-free connection ∇ on TM . Also, d∗ω = −
∑n
k=1 ek ∇ekω for any orthonormal frame {e1, . . . , en}

and the Levi-Civita connection. The Dirac operator then is

Dω =

n∑
k=1

ek · ∇ekω

=

n∑
k=1

ek ∧∇ekω −
n∑
k=1

ek ∇ekω

= dω + d∗ω

= (d+ d∗)ω.

So D is this case is d+ d∗ : Ω•C(M)→ Ω•C(M), which is called the Hodge–de Rham operator.

Then D2 = (d+ d∗)2 = d2 + dd∗ + d∗d+ (d∗)2 = dd∗ + d∗d = ∆d, the Hodge Laplacian, for ∆d : Ωk(M) .

We will find out on the next assignment that ∆d = ∇∗∇+ (other stuff).

To get more examples of Clifford bundles, we need to use representation theory.

3.3 A short digression on representation theory

Suppose V is an n = 2m-dimensional vector space with a positive definite inner product. Let C = C`(V )⊗C.
We want to understand representations on C. Let S be a complex vector space that is a module over C. Let
{e1, . . . , en} be an orthonormal basis of V , so {ei11 · · · einn : ij ∈ {0, 1}} is a basis of C. Then E, the group
of order 2n+1 consists of all elements {±ei11 · · · einn : ij ∈ {0, 1}}. This is clearly a multiplicative subgroup
of C. Denote ν = −1 ∈ E.

Proposition 3.3.1. There is a 1-1 correspondence between representations of C and representations of E,
on which ν acts as −1.
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Proof: A representation S of C gives a representation of E, and ν = e2
i acts as −1. Then ν ·s = (e1 · · · ei) ·s =

−1 · s = −s. Conversely, a representation of E for which ν acts as −1 induces a representation of C by
C-linearity (that is, a surjective homomorphism from the group algebra CE to C). �

Let’s work out some representations of E. Note ν is a central involution (i.e. ν ∈ Cen(E), the centralizer
of E) and ν1 = 1 ∈ E, hence ν must act as = 1 or −1 on any irreducible representation of E. Those
irreducible representations on which ν acts as +1 are representations of the abelian group E/(ν) of order
2n, so there are 2n of them.

Lemma 3.3.2. The center of E is {1, ν}.

Proof: Recall that the center of a representation E is the set {a ∈ E : ag = ga ∀ g ∈ E}. So let

g = ei11 · · · einn ∈ E. Suppose that ip = 1, iq = 0. Then epeqg = −gepeq = νgepeq (check this), hence
g ∈ Cen(E). So only µ = e1 · · · en might be in the center. Since n = 2m is even, e1µ = −µe1 = νµe1, so
µ 6∈ Cen(E). �

Remark 3.3.3. Next, we may count the number of irreducible representations of E by counting conjugacy
classes in E. That is, if g ∈ Cen(E), then the conjugacy class of g is {g} = {hgh−1 : h ∈ E}. If g 6∈ Cen(E),
then the conjugacy class of g is {g, gν}. Then for all h ∈ E, gh = hg or gh = −hg = hgν. So the number of
irreducible representations is the number of conjugacy classes, which is

2 +
2n+1 − 2

2︸ ︷︷ ︸ = 2n + 1.

{1, ν} in center conjugacy classes
of the rest

where ν acts as 1

where ν acts as −1

Hence there exists a unique irreducible representation of C. This representation is called the spin represen-
tation of C, and denoted by ∆. Recall that the sum of the squares of the dimensions of the irreducible
representations of E equals the order of E. Hence the order of E is

2n+1 = 2n(1)2 + 1(dim(∆))2,

=⇒ dim(∆)2 = 2n+1 − 2n = 2n(2− 1) = 2n = 22m.

Moreover, since ∆ is the only irreducible representation of C, it is isomorphic to the matrix algebra End(∆).
Note that dim(End(∆)) = (dim(∆))2 = (2m)2 = 2n = dim(C).

Remark 3.3.4. We can now construct this representation ∇ explicitly. Note that V ∼= R2m ∼= Cm, so we
may endow V with a complex structure J . Then J : V → V is linear so that J2 = −I and is compatible
with 〈 · , · 〉 in the sense that 〈Jv, Jw〉 = 〈v, w〉, so we have orthogonality. Further, we always have that

VC = V ⊗C = V 1,0︸︷︷︸
+i

⊕V 0,1︸︷︷︸
−i

,

where V 1,0 and V 0,1 are eigenspaces of J , complex vector spaces of complex dimension n. Now, consider the

exterior algebra
∧•

(V 1,0) = S = ∆. We can make this into a madule over C = C`(V ) ⊗C as follows: let

α ∈
∧•

(V 1,0). For v + w ∈ V ⊗C, so that v ∈ V 1,0), w ∈ V 0,1, define

v · α =
√

2v ∧ α and w · α =
√

2w α.

These extend to an action of C on ∆ =
∧•

(V 1,0), as v2 = w2 = 0, and

(vw + wv) · α = −2(v ∧ (w α) + w (v ∧ α)) = −2v(w)α = −2 〈v, w〉 .

Now we put this on a manifold.
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Definition 3.3.5. Let (M, g) be a compact oriented Riemannian manifold. Then there exists a Clifford
bundle S →M , and M is called a SpinC manifold

Remark 3.3.6. We have shown that any almost Hermitian manifold (a compact Riemannion manifold
(M, g) with an almost complex structure J ∈ Γ(End(TM))) is a SpinC manifold. So what is the Dirac
operator here? It is

D =
√

2(∂ + ∂
∗
) + (other stuff),

where the other stuff vanishes when (M, g) is Kähler. Moreover, in Kähler geometry, D =
√

2(∂ + ∂
∗
) is

called the Hodge–Dolbeault operator.

Remark 3.3.7. Let us return for a moment to the index theorem. If D is a Dirac operator of a Clifford
bundle S →M , then

ind(D) = dim(ker(D))− dim(coker(D)) =

∫
M

(
forms on M representing

characteristic classes of TM , S

)
.

Thi index theorem applies to elliptic operators. We will only prove the one on Dirac operators, but it is
enough to prove it in general. We have proper inclusions of operators as in the diagram below:

Dirac operators

elliptic operators Fredholm
operators

3.4 Analytic properties of Dirac operators

The analytic properties of Dirac operators and properties of solutions to the heat and wave equations and
Ds = 0 (which we need for the proof of the index theorem) are described in terms of the Hilbert space of
sections of vector bundles. That is, put some metric on E to induce a norm on Γ(E) and take the completion
to get a Hilbert space.

Start on a torus Tn = Rs/2πZn = (R/2πZ)n, which is a compact oriented Riemannian manifold. We will
define Sobolev space of functions on Tn, then use this to define Sobolev spaces of sections E →M .

Definition 3.4.1. Let f : Tn → R be Lebesgue integrable. The Fourier series for f is the formal series

1

(2π)n/2

∑
p∈Zn

ape
ip·x for ap = f̂p =

1

(2π)n/2

∫
Tn
f(x)e−ip·xdx,

and p · x =
∑n
k=1 pkxk is the usual dot product on Rn.

Now we present some results from the theory of Fourier series. All will follow from the fact that exp :
x 7→ eip·x/(2π)n/2 form an orthonormal basis of the Hilbert space L2(Tn).

Theorem 3.4.2. [Plancherel]

If f ∈ L2(Tn), then
∫
Tn
|f |2 =

∑
p

f̂(p)
2

.

Theorem 3.4.3. [Inversion theorem for L2]
If f ∈ L2(Tn), the Fourier series of f converges in the L2-norm to f .
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Theorem 3.4.4. [Inversion theorem for C∞]
If f ∈ C∞(Tn), the Fourier series of f converges in the Frechet C∞-topology (i.e. uniform convergence of

all derivatives). In particular, the Fourier series coefficients f̂(p) are rapidly decreasing. This means that,
for all N ∈ Z, there exists CN > 0 such that

|f̂(p)| 6 CN
(
1 + |p|2

)N
,

where |p| = p2
1 + · · ·+ p2

n.

Definition 3.4.5. Let k be a positive integer. Then the Sobolev k-inner product on C∞(Tn) is defined by

〈f1, f2〉k =
∑
p∈Zn

f̂1(p)f̂2(p)(1 + |p|)2,

for f1, f2 ∈ C∞(TM). This converges because f̂1(p) and f̂2(p) are rapidly decreasing. The Sobolev k-norm
in the norm induced by the Sobolev k-inner product.

Definition 3.4.6. The space L2
k(Tn) = W k(Tn) is the completion of C∞(TM) with respect to this norm.

Notice that by Plancherel, W 0 = L2
0 = L2, the usual L2. We will see that we may think of L2

k(Tn) as
the space of functions whose first k derivatives are in L2.

Proposition 3.4.7. The Sobolev k-norm on C∞(Tn) is equivalent to the norm

f 7→

∑
|α|6k

wwww ∂f

∂xα

wwww2

L2

1/2

,

where α = (α1, . . . , αn) ∈ Zn>0, |α| = α1 + · · ·+ αn and ∂f
∂xα = ∂|α|f

∂x
α1
1 ···∂x

αn
n

.

Proof: Recall that f̂(p) =
∫
Tn
f(x)e−ip·xdx/(2π)n/2 and use integration by parts. Let f̂α(p) = i|α|pαf̂(p),

where pα = pα1
1 · · · pαnn . So by Plancherel,

‖fα‖L2 =
∑
p∈Zn

|f̂α(p)|2 =
∑
p∈Zn

|pαf̂(p)|2.

Next, let
∑
|α|6k |p|2|α| = a and (1 + |p|2)k = b, both of which are polynomials of degree 2k in p1, . . . , pn. So

there exist c, C > 0 such that ca 6 b 6 Ca, hence for any f ∈ C∞(Tn),

c

∑
|α|6k

‖fα‖nL2

 6 ‖f‖2k 6 C
∑
|α|6k

‖fα‖nL2

 .

�

Proposition 3.4.8. [P1]
Using the norm

∑
|α|6k supTn{fα} = ‖f‖Ck , Ck(Tn) ⊂W k(Tn), and the inclusion map is continuous.

Proof: Take f ∈ Ck(Tn), so for all α with |α| 6 k, fα is continuous, hence fα ∈ L2(Tn), so
∑
|α|6k ‖fα‖2L2 <

∞, implying that f ∈W k(Tn). For continuity, check that there exists c > 0 such that ‖f‖Wk 6 c‖f‖Ck for
all f ∈ Ck(Tn). �

Proposition 3.4.9. [P2 - Sobolev embedding theorem]
If ` > n

2 , then W k+`(Tn) ⊂ Ck(Tn), and the inclusion is continuous.
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Proof: Using Cauchy–Schwarz, we find that(∑
p

|f̂(p)|(1 + |p|2)k/2

)2

6

(∑
p

|f̂(p)|2(1 + |p|2)k(1 + |p|2)`

)
︸ ︷︷ ︸

<∞ if f∈Wk+`

·

(∑
p

(1 + |p|2)−`

)
︸ ︷︷ ︸

<∞ if `>n
2

.

Hence if f ∈W k+`, then the term on the left is <∞. Then the Fourier series for the first k derivatives of f
converge absolutely and uniformly to f ∈ Ck (check this). �

Proposition 3.4.10. [P3 - Rellich lemma]
If k1 < k2, then the inclusion map W k2(Tn) ↪→ W k1(Tn) is a compact operator (i.e. it takes bounded sets
to precompact sets).

Proof: Let B be the unit ball of W k2 , and Z = {f ∈ W k2 : f̂(p) = 0 for |p| < N}. This is a subspace of

W k2 of finite codimension. Let ε > 0. We claim that we may choose N big enough so that for all f ∈ B ∩Z,
‖f‖k1 < ε. To see this, observe that

‖f‖2k1

(∑
p

|f̂(p)|2(1 + |p|2)k

)
=

(∑
p

|f̂(p)|2(1 + |p|2)k

)
︸ ︷︷ ︸

=‖f‖2k2
, so <1

·
(
1 + |p|2

)k1−k2︸ ︷︷ ︸
6 ε for |p| > N

for some N

.

Hence for this N , if f ∈ B ∩ Z, then f̂(p) = 0 for |p| 6 N . Hence

‖f‖2k1
=
∑
|p|>N

|f̂(p)|2(1 + |p|2)k2 (1 + |p|2)k1+k2︸ ︷︷ ︸
6ε

6 ε

 ∑
|p|>N

|f̂(p)|2(1 + |p|2)k2


︸ ︷︷ ︸

=‖f‖2k2
61

6 ε.

Now consider the unit ball in W k2/Z ∼= Z⊥. This is compact, hence Z⊥ is finite dimensional, so it can be
covered by finitely many balls of radius ε, those being B(g1, ε), . . . , B(gM , ε), for gj ∈ B. Now suppose that
f ∈ B, Then f = f1 + f2, where f1 ∈ Z and f2 ∈ Z⊥. Then

1 > ‖f‖2k1
= ‖f1‖2k1

+ ‖f2‖2k1
,

so f1, f2 ∈ B, hence f1 ∈ B∩Z and f2 ∈ B∩Z⊥. Therefore f2 ∈ B(gj , ε) for some j. Then f−gj = f1+f2−gj ,
hence

‖f − gj‖2k1
6 ‖f1‖2k1

+ ‖f2 − gj‖2k1
6 ε2 + ε2 = 2ε.

So f ∈ B(gj ,
√

2ε). Hence B can be covered by finitely many balls of radius
√

2ε in the W k-norm, so B is
precompact in the W k-norm. �

Let us now consider some corollaries to the fact that ‖fα‖ is equal to
(∑

|α|6k ‖fα‖2L2

)1/2

.

Corollary 3.4.11. Multiplication by a C∞ function on Tn is a bounded linear operator on each Sobolev
space. That is, if f ∈ C∞(Tn), then mf : W k →W k, given by mf (h) = fh, is bounded linear operator.

Corollary 3.4.12. A linear differential operator P of order ` acts bounded linearly from W k to W k−`.
That is, for hα ∈ C∞(Tn),

P =
∑
|α|6`

hα
∂|α|

∂xα
.
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Corollary 3.4.13. Let f ∈ L2(Tn) with supp(f) on a compact subset K. Let U ⊂ Tn be open with K ⊂ U .
Let ϕ : U → f(U) ⊂ Tn be a diffeomorphism. Then f ∈W k iff f ◦ ϕ ∈W k.

Proof: By the symmetry of the statement, it is enough to show that we can estimate L2 norms of derivatives

of f ◦ϕ in terms of L2 norms of the derivatives of f (up to order k). However, by the chain rule, for y = ϕ(x),

∂

∂xα
(f ◦ α) “equals”

∑(
∂f

∂yβ
◦ ϕ
)
∂yβ

∂xα
.

So to compute the L2 norm, we integrate, and the change of variables formula will give us a |det(Jac(ϕ))|.
Then ϕ is smooth and Tn is compact, implying that all the terms ∂yβ/∂xα and |det(Jac(ϕ))| are bounded.
Hence, for |α| 6 c, wwww ∂

∂xα
(f ◦ ϕ)

wwww2

L2

6 c

∑
|α|6k

wwww ∂f

∂αk

wwww2

L2

 .

�

3.5 General Sobolev spaces

Let M be a compact smooth oriented manifold. Let {Uα} be a cover of M by domains of (a finite number
of) charts. Let {pα} be a partition of unity subordinate to {Uα}. Let ϕα be a diffeomorphism of Uα into
the open set ϕα(Uα) ⊂ Tn.

Uα

M

Tn

ϕα(Uα)

ϕα

ϕ−1
α

Definition 3.5.1. The Sobolev k-norm on C∞C (M) is given by

‖f‖k =
∑
α

‖ (ραf) ◦ ϕ−1
α︸ ︷︷ ︸

∈ C∞(Tn)

‖k,

where ‖·‖k on the right is the W k(Tn) norm. Note this definition depends on the choices of charts {(Uα, ϕα)}
and {ρα}. Homever, by the three corollaries above, if we make different choices, we replace the norm by an
equivalent one. Hence we define W k(M) to be the completion of C∞C (M) with respect to this norm, which
then makes it well-defined as a topological vector space.

Definition 3.5.2. Let π : E → M be a vector bundle. Cover M by a finite number of charts (U − α,ϕα)
such that ϕα(Uα) ⊂ Tn, and WLOG E|Uα trivializes. If s ∈ Γ(E), then over Uα, s = saea for {e1, . . . , en} a
local frame over Uα corresponding to the trivializations sa ∈ C∞C (Uα). Define

‖s‖k =
∑
α

‖(ραs) ◦ ϕ−1
α ‖k where ‖saea‖2k =

n∑
a=1

‖sa‖2k.

This defines W k(E) as the k-Sobolev space of sections of E, or the completion of Γ(E) with respect to ‖ · ‖k.
Also, note that W k(M) = W k(M ×C).

Remark 3.5.3. Propositions P1, P2, and P3 still apply to W k(E). On Assignment 3 you will show that
the general section can be reduced to the special case W k(Tn).
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Corollary 3.5.4. If s ∈W k(E) for all k ∈ N, then s ∈ Γ(E), so s is smooth. That is,⋂
k∈N

Ck(E) =
⋂
k∈N

W k(E) = Γ(E).

Suppose S is a Clifford bundle over M , and D : Γ(S)→ Γ(S) is the associated Dirac operator, so

Ds =

n∑
i=1

ei∇eis =

n∑
i=1

(
fi
∂s

∂xi
+ gis

)
.

Then, since D is a 1st order linear differential operator, there exists c > 0 such that ‖Ds‖0 6 C‖s‖1. This
is also true in general for any 1st order linear differential operator. For Dirac operators (and more generally,
for elliptic operators), some kind of partial converse holds.

Theorem 3.5.5. [Gårding’s inequality]
For all k > 0, there exists ck > 0 such that for all s ∈ Γ(S),

‖s‖k+1 6 ck(‖Ds‖k + ‖s‖k).

Proof: This will be done by induction. Let k = 0. By a partition oy unity, WLOG we may setrict to the

domain U of a coordinate chart such that U is compact, so smooth things on U will be bounded (check this).
So let’s do it on a chart. Recall the Bochner–Weitzenböck formula Ds = ∇∗∇s+κs, where κs = F∇ij ·ei ·ej ·s.
Before we start, recall that for x ∈ Γ(TM |U ),

|X · s|2 = 〈X · s,X · s〉 = −〈X · (x · s), s〉 = −〈(X ·X) · s, s〉 = |X|2|s|2.

So take the L2 inner product of the Bochner–Weitzenböck formula with s to get〈〈
D2s, s

〉〉
= 〈〈∇∗∇s, s〉〉+ 〈〈κs, s〉〉

=

‖Ds‖2 = ‖∇s‖2 + 〈〈κs, s〉〉 6 ‖∇s‖2 +M‖s‖2,

for some M > 0. Then by Cauchy–Schwarz,

| 〈〈κs, s〉〉 | =
F∇ij 〈〈ei · ej · s, s〉〉 6M‖ei · ej · s‖ ‖s‖ = M‖s‖2,

so
‖∇s‖ 6 ‖Ds‖+ C‖s‖. (3)

In local coordinates, ∇is = ∂s
∂xi +Ais, where s is a vector-valued function and Ai ∈ Γ(End(S|U )). Then

‖∇s‖2 =

∫
gij 〈∇is,∇js〉 volM

=

∫
gij
〈
∂s

∂xi
+Ais,

∂s

∂xj
+Ajs

〉
volM ,

and since there exists c2 > 0 such that gij > c2δ
ij ,

> c2

∫ ∑
i

 ∂s∂xi +Ais

2

volM

= c2
∑wwww ∂s

∂xi
+Ais

wwww2

> c2
∑
i

(wwww ∂s

∂xi

wwww2

− ‖Ais‖2
)

= c2
∑
i

(wwww ∂s

∂xi

wwww2

+
‖s‖2

n
− ‖s‖

2

n
− ‖Ais‖2

)
.
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Hence ‖∇s‖20 > c2‖s‖21 + c2‖s‖20 − c2‖Ais‖20, so there exists c̃ > 0 such that ‖Ais‖0 + c̃‖s‖. Therefore, for
c3 = c2(1 + c̃),

‖∇s‖2 > c2‖s‖21 − c3‖s‖0. (4)

Now combine (3) and (4) to get that

‖s‖21 6M‖∇s‖20 + M̃‖s‖20

6
˜̃
M
(
‖s‖20 + ‖Ds‖20 + 2‖s‖0‖Ds‖0

)
+ M̃‖s‖20

6
˜̃̃
M (‖s‖0 + ‖Ds‖0)

2
.

Therefore ‖s‖1 6 c(‖s‖0 + ‖Ds‖0). This cempletes the base case. For the inductive case, assume we have
the case for k − 1. As before, we are on U with U compact. For the equivalence of norms, ‖s‖k+1 6
A1(

∑n
i=1 ‖

∂s
∂xi ‖k) for some A1 > 0. By the inductive hypothesis,

‖∂is‖k 6 ck−1 (‖∂in‖k−1 + ‖D∂is‖k−1) , (5)

where ∂is = ∂s
∂xi . But ∂i is a 1st order linear differential operator, so by Corollary 2, there exists A2 > 0

such that
‖∂is‖k−1 6 A2‖s‖k. (6)

Also, [D, ∂i] is a 1st order linear differential operator, with

[D, ∂i]s = D(∂is)− ∂i(D−) =
∑
j

ej · (∂j · ∂is)− ∂i ·

∑
j

ej · ∂js

 = −
∑
j

(∂i · ej) · ∂js.

Further, there exists A3 > 0 such that

‖[D, ∂i]s‖k−1 6 A3‖s‖k, (7)

so by the triangle inequality and (6) and (7),

‖D∂is‖k−1 6 ‖∂iDs‖k−1 + ‖[D, ∂i]s‖k−1 6 A2‖Ds‖k +A3‖s‖k. (8)

This implies that

‖s‖k+1 6 A1

(∑
i

‖∂is‖k

)
6 A1ck−1

∑
i

(‖∂is‖k−1 + ‖D∂is‖k−1‖k−1) by (5)

6 A1ck−1 (nA2‖s‖k + nA2‖Ds‖k + nA3‖s‖k) by (6) and (8)

= nA1ck−1((A2 +A3)‖s‖k +A2‖Ds‖k).

Hence ‖s‖k+1 6 c(‖s‖k + ‖Ds‖k). �

To study the Dirac operator, we think of H as an unbounded (“not necessarily bounded”) operator on
L2(S) = W 0(S).

Definition 3.5.6. Let H be a Hilbert space. An unbounded operator on H is a linear map P defined on
some dense subspace dom(P ) of H to H (the map need not be continuous). The graph of an unbounded
operator P is

ΓP = {(s, Ps) : s ∈ dom(P )} ⊂ H ⊕H,

where the inclusion is as a subspace. In this class, we will take P to be the Dirac operator D, H to be
L2(S) = W 0(S) and dom(P ) = Γ(S), the space of smooth sections.
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Lemma 3.5.7. The closure ΓD of ΓD is also a graph, i.e. there exists Y ⊃ dom(D) a subspace of L2(S),
and a linear map D : Y → L2(S) such that ΓD = {(s,Ds) : s ∈ Y } = ΓD, where Y = dom(D).

Proof: If not, there exists (0, t) ∈ ΓD with t 6= 0 (because if not, then there exists (s, t1), (s, t2) ∈ ΓD with
t1 6= t2 and the closure of a subspace is a subspace). So there exists a sequence sk ∈ Γ(S) with sj → 0 in
L2(S) and Dsj → t 6= 0 in L2(S). But for all u ∈ Γ(S),

〈〈Dsj , u〉〉 → 〈〈t, u〉〉

=

〈〈sj , Du〉〉 → 〈〈0, Du〉〉 = 0,

hence 〈〈t, u〉〉 = 0 for all u ∈ Γ(S), so t = 0. �

Hence we have an unbounded operator D : dom(D) → L2(S), where dom(D) is the set of all s ∈ L2(S)
such that there exists a sequence sj ∈ Γ(S) for which sj → s and Dsj converges in L2. But by G̊arding
(which was ‖s‖ 6 c(‖s‖0 + ‖Ds‖0)), we see that dom(D) = W 1(S), so D : W 1(S)→W 0(S). Now, suppose
that s, t ∈ Γ(S) with Ds = t. Then for all u ∈ Γ(S), we have 〈〈Du, s〉〉 = 〈〈u,Ds〉〉 = 〈〈u, t〉〉, so this
expression makes sense for all s, t ∈W 0 = L2.

Definition 3.5.8. If s, t ∈W 0(S) are such that 〈〈Du, s〉〉 = 〈〈u, t〉〉 for all u ∈ Γ(S),we say that the equality
Ds = t is satisfied weakly.

Definition 3.5.9. A bounded linear map A : L2(S) → L2(S) is called a smoothing operator if there exists
a smooth section κ ∈ π∗1(S)⊗ π∗2(S∗), where πi : M ×M →M is projection onto the ith factor such that

(As)(x) =

∫
M

κ(x, y) s(y)︸︷︷︸
∈Sy︸ ︷︷ ︸

∈Sx

voly,

where κ(x, y) ∈ Sx ⊗ S∗y = End(Sy, Sx) and voly means integrating only with respect to the variable y. The
map κ is called the kernel of A, and it will be a main player in the proof of the index theorem. Note that
by differentiation under the integral sign (since κ is smooth), we have that Im(A) ⊂ Γ(S) ⊂W 0(S), i.e. the
image of a smoothing operator consists of smooth sections.

Definition 3.5.10. Let S be a Clifford bundle. A mollifier for S is a family Fε, ε ∈ (0, 1) of self-adjoint
smoothing operators on L2(S) such that

a. {Fε : ε ∈ (0, 1)} is a bounded family of operators on L2(S) (i.e. there exists c > 0 such that
‖Fε(s)‖0 6 c‖s‖0 for all ε ∈ (0, 1)),

b. {[D,Fε] : ε ∈ (0, 1)} extends to a bounded family of operators on L2(S) (i.e. there exists c > 0 such
that ‖[D,Fε]s‖0 6 c‖s‖0 for all s ∈ Γ(S) and ε ∈ (0, 1)), and

c. Fε → 1L2(S), the identity operator, as ε → 0 in the weak topology of operators on L2(S) (i.e. for all

s, t ∈ L2(S), 〈〈Fεs, t〉〉0
ε→0−−−−→ 〈〈s, t〉〉0).

Lemma 3.5.11. Mollifiers exist.

Proof: Self-adjointness follows by replacing Fε by (Fε + F ∗ε )/2 (check this). As usual, by partitions of unity,

we can restrict to a single chart U such that U is compact. Let ρα be a partition of unity. Notice that (check
the details)

[D,Fε] =
∑
α,β

[ραD, ρβFε] =
∑
α,β

ραρβ [D,Fε] =
∑
α,β

(ρα(Dρβ)Fε − ρβ(Fερα)D)
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is bounded on a chart U such that U is compact. Now choose a smooth function ϕ : Rn → R with ϕ > 0,
compact support, and radially symmetric with

∫
Rn ϕ = 1, as below.

Rn

R

ϕ
1

Let ϕε(x) = ε−nϕ(x/ε). Define Fε by

(Fε(s))(x) = (ϕε ∗ s)(x) =

∫
ϕε(x− y)s(y)voly =

1

εn

∫
ϕ

(
x− y
ε

)
s(y)voly,

where ∗ is the convolution operator. Then ‖ϕε ∗ s‖L2 6 ‖ϕε‖L1‖s‖L2 = ‖s‖L2 , which follows as ‖ϕε‖L1 = 1
since

∫
Rn ϕ = 1, and is called Young’s inequality. This proves a., and c. is a standard fact about mollifiers

(see any text on distribution theory).

For b., note that the Dirac operator is a sum of 1st order and 0th order operators, so if h is a smooth
function, then by the triangle inequality and a., with c independent of ε, we have that

‖[h, Fε]s‖0 = ‖hFεs− Fεhs‖0 6 c‖s‖0.

It remains to show that [h ∂
∂xj , Fε] is uniformly bounded for all j. To see this, observe that(
h
∂

∂xj
Fεs

)
(x) =

1

εn+1

∫
h(x)∂jϕ

(
x− y
ε

)
s(y)voly, (9)

by the chain rule and as ∂
∂xj ϕ(x−yε ) = 1

ε (∂jϕ)(x−yε ). Moreover,(
Fε

(
h
∂

∂xj
s

))
(x) =

1

εn

∫
ϕ

(
x− y
ε

)
h(y)(∂js)(y)voly

=
−1

εn

∫
ϕ

(
x− y
ε

)
(∂jh)(y)s(y)voly +

1

εn+1

∫
hy(∂jϕ)

(
x− y
ε

)
s(y)voly. (10)

The first term on the right side of (10) has L2-norm equal to ‖ϕε‖L1‖(∂jh)s‖L2 6 c‖s‖0, where ‖ϕε‖L1 = 1,
hence wwww[D,h ∂

∂xj

]
s

wwww
0

6 c‖s‖0 +
1

εn+1

∫ (∂jϕ)

(
x− y
ε

) |h(x)− h(y)||s(y)|voly

6 c‖s‖0 +
c̃

εn+1

∫ (∂jϕ)

(
x− y
ε

) |x− y||s(y)|voly,

by the mean value theorem and Cauchy–Schwarz. Now the second term is the convolution of |s| with
the function gε : x → c̃

εn+1 |(∂jϕ)(xε )||x|. Again, using the standard convolution estimate, the 2nd term is

‖gε‖L1‖s‖L2 . But ‖gε‖L1 is independent of ε by change of variables, hence ‖[h ∂
∂xj , Fε]s‖0 6 c‖s‖0, indepen-

dently of ε. �

We will now apply the existence of mollifiers.

Proposition 3.5.12. [Strong proposition]
Suppose that s, t ∈ L2(S) = W 0(S), and that Ds = t weakly. Then s ∈W 1(S) = dom(D) and Ds = t (this
is a strong solution).
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Proof: Let Fε be a mollifier. Let sε = Fεs ∈ Γ(S). If u ∈ Γ(S), then 〈〈Dsε, u〉〉0 = 〈sε, Du〉0 since D is
self-adjoint, and 〈sε, Du〉0 = 〈〈s, FεDu〉〉0 since Fε is self-adjoint. Hence

〈〈Dsε, u〉〉0 = 〈〈s, FεDu〉〉0
= 〈〈s,DFεu〉〉0 + 〈〈s, [Fε, D]u〉〉0
= 〈〈t, Fεu〉〉0 + 〈〈s, [FεD]u〉〉0
6 ‖t‖0‖Fεu‖0 + ‖s‖0‖[Fε, D]u‖0 (since Ds = t weakly)

6 ‖c1‖u0 + c2‖u‖0 (by a. and b.)

= c‖u‖0.

Therefore | 〈〈Dsε, u〉〉0 | 6 c‖u‖0 for all u ∈ Γ(S) for some c > 0 dependent on s, t and independent of ε.
Therefore ‖Dsε‖ 6 c uniformly in ε. Now recall G̊arding, ‖v‖1 6 c(‖v‖0 + ‖Dv‖0) for all v ∈ Γ(S), and
apply to v = sε to get

‖sε‖1 6 c(‖sε‖0 + ‖Dsε‖0) 6 c̃

independent of ε, by a.. And, ‖sε‖0 = ‖Fεs‖0 6 c‖s‖0. Hence there exists a sequence εj → 0 such that
sεj → w ∈ W 1(S) W 1-weakly, because a closed ball in the Hilbert space W 1(S) is weakly compact. Also,
by Rellich’s lemma, by possibly passing to a subsequence, sεj → w̃ in the norm topology of W 0(S) in the

L2-norm. By c., sεj
L2

−−−→ s as εj → 0. Hence s = w ∈W 1(S) = dom(D) and Ds = t. �

Now we generalize.

Proposition 3.5.13. Let k > 1 and s, t ∈W k(S). Suppose that s = t. Then s ∈W k+1(S).

Proof: Again, it is enough to reduce this to a chart U such that U is compact. By the previous strong

proposition, Ds = t iff Ds = t weakly, so the strong proposition is the k = 0 case of this base case. For
the inductive step, note that ∂j = ∂

∂xj extends to a bounded linear map from W k to W k−1. Since Ds = t
weakly,

D(∂js) = ∂j(Ds) + [D, ∂j ]s =
weakly

∂jt+ [D, ∂j ]s.

But the right side is in W k−1 since [D, ∂j ] is first order. By the inductive hypothesis, ∂js ∈ W k for all j,
implying that s ∈W k+1. �

We are now almost ready to understand the spectral theory of D.

3.6 Spectral theory

Lemma 3.6.1. Let H = L2(S) = W 0(S) and Γ = ΓD be the graph of D. Let J : H ⊕ H → H ⊕ H
be given by J(s, t) = (t,−s), so J2 = idH⊕H . Then there exists an orthogonal direct sum decomposition
H ⊕H = Γ⊕ J(Γ).

Proof: Suppose that s, t ∈ Γ⊥. Then for all u ∈ Γ(S), we have that

〈〈(s, t), (u,Du)〉〉 = 0 =⇒ 〈〈s, u〉〉+ 〈〈t,Du〉〉 = 0

=⇒ s+Dt = 0 weakly

=⇒ D(−t) = s weakly.

By the strong proposition, −t ∈W 1(S), so (−t, s) = J(s, t) ∈ Γ. Hence (s, t) ∈ J(Γ). �

Remark 3.6.2. Now define a map Q as follows. Let s ∈ H = L2(S), and let (Qs,D(Qs)) be the orthogonal
projection of (s, 0) onto Γ in H ⊕H. Here Qs ∈ dom(D) = W 1(S) (W 0(S). Then for some t ∈W 1(S),

(s, 0) = (Qs,D(Qs)) + (−Dt, t),
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where the two terms on the rigt are orthogonal. Therefore s = Qs−Dt and 0 = D(Qs) + t. So

‖s‖20 = ‖(Qs,D(Qs))‖20 + ‖(−Dt, t)‖20
= ‖Qs‖20 + ‖D(Qs)‖20 + ‖Dt‖20 + ‖t‖20,

therefore ‖Qs‖20 6 ‖s‖0 and ‖D(Qs)‖0 6 ‖s‖0. Now we have that c = Qs −D(−DQs) = (I + D
2
)Qs = s,

and (I +D
2
)(Q) = I. Hence Q is injective and self-adjoint. Next apply G̊arding, ‖u‖1 6 c(‖u‖0 + ‖Du‖0),

to u = Qs. So ‖Qs‖1 6 c(‖Qs‖0 + ‖D(Qs)‖0) 6 c‖s‖0, so Q : W 0(S) → W 1(S) is bounded. By Rellich,
W 1(S) ↪→W 0(S) is compact, so Q : W 0(S)→W 0(S) is compact.

Theorem 3.6.3. [Spectral theorem for compact self-adjoint operators on a Hilbert space]
Let Q : H → H be a compact, injective, self-adjoint positive operator. Then H =

⊕∞
n=1Eµn , which is an

orthogonal decomposition, and Eµn is an eigenspace of Q with eigenvalue µn, each Eµn is finite-dimensional,
and the eigenvelaues are discrete, strictly positive and tend to 0, i.e. µ1 > µ2 > · · · with limn→∞[µn] = 0.
That is, any v ∈ H is

v =

∞∑
n=1

vn where Qvn = µnvn,

and the sum converges in the H-norm.

Theorem 3.6.4. There is a direct sum decomposition ofH = L2(S) into a sum of countably many orthogonal
subspaces Hλ. Each Hλ is a finite-dimensional space of smooth sections, and is an eigenspace for D with
eigenvalue λ. The λs form a discrete subset of R.

Proof: Let s be an eigenvector for Q, so Qs = µs for some µ > 0. Then s = 1
µQs ∈W

1(S), so there exists t
such that

(s, 0) = (Qs,D(Qs)) + (−Dt, t) = µ(s,Ds) + (−Dt, t),
so µs −Dt = s and µDs + t = 0. Now note that the eigenvalues of Q are in (0, 1], because ‖Qs‖ 6 ‖s‖ in
the previous calculation. Next, rearrange to get (µ − 1)s = Dt and t = −µDs. Let λ2 = (1 − µ)/µ and
u = −t/(µλ), so that

Ds = − 1

µ
t = λu and Du = − 1

µλ
Dt =

1− µ
µλ

s = λs.

Now, since Ds = λu and Du = λs, u+s and u−s are eigenvectors of D with eigenvalues λ,−λ, respectively.
Check also that this works for λ = 0.

So H can be written as a direct sum of countably many (necessarily orthogonal) eigenspaces of D, each
eigenspace a finite-dimensional subspace of W 1(S). We need to show the eigenvectors of D are in Γ(S). So
for Ds = λs = u, by G̊arding

‖s‖k+1 6 ck(‖s‖k + ‖Ds‖k) = ck(‖s‖k + |λ|‖s‖k) 6 µk‖s‖k,

for all k. This is called bootstrapping, and gives us that s ∈W k(S) for all k > 1, so s ∈ Γ(S). �

Let σ(D) = {λn : n ∈ Z} be the spectrum of D. Let f : σ(D)→ C be bounded. Then we can define a
bounded operator on L2(S) = W 0(S) by letting f(D) be multiplication by f(λ) on Eλ the λ-eigenspace of
D. That is, if s =

∑
n cnsn, then f(D)s =

∑
n cnf(λn)sn. This f(D) is clearly a bounded linear map, i.e.

|f(λ)| 6M for all λ ∈ σ(D), so ‖f(D)s‖0 6M‖s‖0.

Proposition 3.6.5.
1. The map f 7→ f(D) is a unital ∗-ring homomorphism from bounded forms on σ(D) to bounded linear

maps on W 0(S). On functions it is f∗ = f an involution, and on bounded linear maps of W 0(S) it is f∗ the
formal adjoint involution. The map acts by

(f, g) 7→ f(D)g(D)
f + g 7→ f(D) + g(D)

1 7→ id
f∗ 7→ (f(D))∗

.
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2. If A : W 0(S)→W 0(S) is linear and commutes with D, then A commutes with f(D) for any such f .
3. f(D) : Γ(S)→ Γ(S).

Proof: 1. If s =
∑
n cnsn, then

g(D)f(D) = g(D)

(∑
n

cnf(λn)sn

)
=
∑
n

cng(λn)f(λn)sn = (gf)(D)(s).

Similarly, f∗(D)s =
∑
n cnf(λn)sn and

〈〈f(D)s, t〉〉0 =

〈〈∑
n

cnf(λn)sn,
∑
m

bmsm

〉〉
0

=
∑
n

cnf(λn)bn =
∑
n

cnf(λn)bn = 〈〈s, f∗(D)t〉〉 .

Hence f∗(D) = (f(D))∗.

2. This is clear. Check that f(D)As = Af(D)s, where AD = DA (i.e. A preserves eigenspaces of D).

3. Let s ∈ Γ(S), so Dks ∈ W 0(S) for all k > 0. Hence D
k
f(D)− = f(D)Dks ∈ W 0(S). By the strong

solution proposition, f(D) ∈W k(S) for all k > 0. Hence f(D)s ∈ Γ(S). �

3.7 Hodge theorem

Consider a special case. Let V 0, V 1, . . . , V n be finite-dimensional C-vector spaces with Hermitian inner
products. Suppose we are given linear maps Pi : V i → V i+1 such that Pi ◦ Pi+1 = 0 for all i > 1:

0 V 0 V 1 · · · V N−1 V N 0
0 P0 P1 PN−1 PN 0

This is a complex of vector spaces, with Im(Pi−1) ⊂ ker(Pi). Define the ith cohomology of this complex to
be the complex vector space Hi(V •, P•) = ker(Pi)/Im(Pi−1). Note that Hi = 0 iff ker(Pi) = Im(Pi−1). In
this case, we say that the complex is exact at V i.

Definition 3.7.1. The Euler characteristic of the complex above is

χ(V •, P•) =

n∑
i=0

(−1)i dim(Hi).

Definition 3.7.2. Take the complex above and consider the dual maps:

0 V 0 V 1 · · · V N−1 V N 0
0 P0 P1 PN−1 PN 0

0 P ∗0 P ∗1 P ∗N−1 P ∗N 0

The map P ∗i : V i+1 → V i is the formal adjoint, defined by the Hermitian inner product as 〈v, P ∗i w〉 = 〈Piv, w〉
for all v ∈ V i and w ∈ V i+1. Define Hi(V •, P•) = ker(Pi) ∩ ker(P ∗i−1) ⊂ V i. This is called the subspace of
P -harmonic elements of V i. Note that Im(Pi−1) ⊥ Im(P ∗i ) in V i. This follows as Pi ◦ Pi−1 = 0 and

〈Pi−1v, P
∗
i w〉 = 〈PiPi−1v, w〉 = 〈0, w〉 = 0.

Theorem 3.7.3. [Finite-dimensional Hodge theorem]
1. The induced map πj : Hj → Hj is an isomorphism.
2. Given the objects

V =

N⊕
i=0

V i , P =

N⊕
i=0

Pi , P ∗ =

N⊕
i=0

P ∗i−1 , ∆P = (P + P ∗)2,

where ∆P : V → V is the Laplacian associated to P , the space H•(V ) =
⊕N

i=0Hi = ker(∆P ).
3. The cohomology of V (V •, P•) vanishes iff ∆P is an isomorphism.
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Proof: 1. We need to show that πj is injective and surjective. So suppose that v ∈ ker(πj). Then Pjv = 0

and P ∗j−1v = 0 and [v] = 0 in Hj . So v = Pj−1w for some w ∈ V j−1. Hence P ∗j−1Pj−1w = 0, implying that〈
P ∗j−1Pj−1w,w

〉
= 0 =⇒ |Pj−1w|2 = 0.

Hence v = 0 so the map is injective. For surjectivity, we use finite-dimensionality. We need to show
every v ∈ ker(Pj) is cohomologous to some u ∈ ker(Pj) ∩ ker(P ∗j−1). That is, if v ∈ ker(Pj), there exists

u ∈ ker(Pj) ∩ ker(P ∗j−1) such that [v] = [u], so Hj 3 [v] = πj(u). The cohomology class [v] is given by

[v] = {v + Pj−1w : w ∈ V j+1}.

ker(Pj)

[v], affine subspace of ker(Pj)

By finite dimensionality, there exists a point v ∈ [v] closest to the origin (we also need completeness).
Consider the function

fw : R → [0,∞)
t 7→ dist(u+ tPj−1w, 0)2 = |u+ tPj−1w|2

for w ∈ V j−1. By construction of u, fw(t) > fw(0) for all t. Hence f ′w(0) = 0 and

|u+ tPj−1w|2 = 〈u+ tpj−1w, u+ tPj−1w〉
= |u|2 + t 〈pj−1w, u〉+ t 〈u, Pj−1w〉+ t2|Pj−1w|2

= |u|2 + 2tRe(〈Pj−1w, u〉) + t2|Pj−1w|2.

So f ′w(0) = 0 = 2Re(〈Pj−1w, 0〉) = 0 for all w ∈ V j−1, so 2Re(
〈
w,P ∗j−1u

〉
) = 0 for all such w. Let

w = P ∗j−1u ∈ V i−1, so that |P ∗j−1u|2 = 0, meaning that P ∗j−1u = 0.

2. Let v =
⊕N

i=0 vi ∈ V . Then v ∈ H iff vi ∈ Hi for all i, iff Pivi = 0 and P ∗i−1vi = 0 for all i.

3. Note that (P + P ∗)(v) =
⊕N

i=0(Pi−1vi−1 + P ∗i vi+1), where every element in the direct sum is in V i.
Now note that (P + P ∗)(v) = 0 iff Pi−1vi−1 + P ∗i vi+1 = 0 for all i, where the two terms are orthogonal, as
Im(Pi−1) ⊥ Im(P ∗i ). Hence v ∈ ker(P + P ∗) iff Pi−1vi = 0 and P ∗i vi+1 = 0 for all i, iff vi ∈ Hi. So then
∆P = (P + P ∗)2, so ker(P + P ∗) ⊂ ker(∆P ). Notice (P + P ∗)2 = P 2 + PP ∗ + P ∗P + (P ∗)2 = PP ∗ + P ∗P .
Let v ∈ ker(∆P ). Then

∆P v = 0 =⇒ 〈∆P v, v〉 = 0

=⇒ 〈PP ∗v + P ∗Pv, v〉 = 0

=⇒ |P ∗v|2 + |Pv|2 = 0,

so v ∈ ker(P + P ∗). �

We now move to the more general version of the Hodge theorem. Let (M, g) be a compact oriented
Riemannian manifold. Let S0, S1, . . . , SN be Hermitian vector bundles over M . Suppose for all i, Pi :
Γ(Si)→ Γ(Si+1) is a 1st order linear differential operator with Pi ◦ Pi−1 = 0 (and P0 = PN = 0).

Definition 3.7.4. We say that the complex 0 −−→ Γ(S0)
P0−−−→ Γ(S1)

P1−−−→ · · · PN−1−−−−−→ Γ(SN ) −−→ 0 is a

Dirac complex if S =
⊕N

i=0 S
i is a Clifford bundle and D = P +P ∗ =

∑N
i=0(Pi+P ∗i−1) is the Dirac operator

for S, so D : Γ(S)→ Γ(S).
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Example 3.7.5. Consider Si =
∧i

(T ∗M) ⊗ C and Γ(Si) = ΩiC(M). Take Pi = d : ΩiC(M) → Ωi+1
C (M).

We have already seen that
∧•

(T ∗M) =
⊕N

i=0

∧i
(T ∗M) is a Clifford bundle with Dirac operator D = d+d∗.

Also, ∆d = (d+ d∗)2 = dd∗ + d∗d.

Theorem 3.7.6. [(More) general Hodge theorem]
1. The map πj : Hj → Hj is an isomorphism.
2. The space Hi is finite-dimensional.
3. ker(D) = ker(∆P ).

Proof: The injectivity of πj is exactly as in the previous Hodge theorem. For surjectivity, consider the
extended complex:

0 H0 H1 · · · Hn 0

0 Γ(S0) Γ(S1) · · · Γ(SN ) 0

0 0 0

P0 P1 PN−1

ρ0 ρ1 ρNi0 i1 iN

For all j = 1, . . . , N , we have defined maps ρj : Γ(Sj)→ Hj by orthogonal projection onto Hj , as W 0(Sj) =

Hj ⊕ (Hj)⊥. Note that ρj ◦ ij = 1 and ij ◦ ρj = 1− f(D), where f(λ) =
{

1 λ6=0
0 λ=0

. Let g(λ) =
{
λ−2 λ6=0

0 λ=0
and

define G = g(D2) (this is called Green’s operator for D), a bounded linear map W 0(S) → W 0(S). Notice
that D2G =

{
1 λ6=0
0 λ=0

, so D2G = f(D) = 1− ij ◦ pj . Also notice that

D2P = (PP ∗ + P ∗P )P = PP ∗P = P (PP ∗ + P ∗P ) = PD2,

so P commutes with D2. Hence P commutes with G = g(D2), and

D2G = PP ∗G+ P ∗PG = PP ∗G+ P ∗GP = PK +KP

for K = P ∗G. Let w ∈ Hj(S•, P•), so w = [u] with u ∈ Γ(Sj) and Pu = 0. Then u = 1 · u = ij(ρj(u)) +
PKu + KPu, where the first term is in Hj , the second is in Im(P ), and the third vanishes. So [u] =
[ij(ρj(u))] = w and w = πj(ij(ρj(u)) ∈ Hj .
2. Let vi ∈ Hi, so Pivi = 0 and P ∗i−1vi = 0, meaning that (P + P ∗)vi = 0. So Hi = ker(D) ∩ Γ(Si) (we
already know that ker(D) ⊂ Γ(S)), and ker(D) is finite-dimensional because E0 is the eigenspace of λ = 0.
So Hi is finite-dimensional.

3. This is done exactly as in the previous version of the theorem. �

Corollary 3.7.7. The cohomology of a Dirac complex over a compact oriented manifold is finite-dimensional.

Remark 3.7.8. Define Seven =
⊕

k even S
k and Sodd =

⊕
k odd S

k. We know that P, P ∗, D : Seven → Sodd

and Sodd → Seven. Let D+ : Seven → Sodd and D− : Sodd → Seven. We claim that D∗+ = D−. To see
this, note that 〈〈D+s, t〉〉 = 〈〈s,D−t〉〉. Next define Heven, Hodd, Heven, Hodd analogously. From the Hodge
theorem, ker(D+) = Heven and ker(D−) = Hodd. Hence the Euler characteristic is given by

χ =

N∑
i=0

(−1)i dim(Hi)

= dim(Heven)− dim(Hodd)

= dim(Heven)− dim(Hodd)
= dim(ker(D+))− dim(ker(D−)).

This is the first example of an index theorem. It is the difference in dimensions of finite-dimensional kernels
of Dirac-type operators.
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4 The index theorem

4.1 Fredholm operators

Definition 4.1.1. Let B1, B2 be Banach spaces. A bounded linear map P : B1 → B2 is called Fredholm if
the following conditions are satisfied:

a. ker(P ) is finite-dimensional,
b. Im(P ) is closed in B2, and
c. coker(P ) = B2/Im(P ) is finite-dimensional.

If P is Fredholm, define the index of P to be

ind(P ) = dim(ker(P ))− dim(coker(p)) ∈ Z.

Remark 4.1.2. Knowing something about the index of an operator tells you how much it fails to be a
bijection. Indeed,

if ind(P ) > 0, P is not injective,

if ind(P ) < 0, P is not surjective,

if ind(P ) = 0, P is an isomorphism iff ker(P ) = 0

iff coker(P ) = 0.

In practice, an index theorem is combined with vanishing-type theorems, which is a Bochner-Weitzenböck
argument to find both dimensions.

Example 4.1.3. It is useful to know when an operator P : B1 → B2 is surjective to apply the Banach space
implicit function theorem, to conclude that some subsets defined by P have smooth structure.

Now we will show that our Dirac operator is Fredholm. Note that P → ind(P ) is constant on connected
components of the space of Fredholm operators. It is stable under compact perturbations, i.e. ind(P +T ) =
ind(P ) for T : B1 → B2 compact.

Lemma 4.1.4. Let (M, g) be a compact oriented Riemannian manifold and S a Clifford bundle with a Dirac
operator D. The bounded (shown before) map D : W 1(S)→W 0(S) is Fredholm.

Proof: We already saw that ker(D) is finite-dimensional. We claim that Im(D) = (ker(D))⊥ in W 0(S). If so,

we are done, because W 0(S) = Im(D) ⊕ ker(D). Any orthogonal complement is closed, and the just given
statement says that coker(D) ∼= ker(D) is finite-dimensional.

So suppose that s ∈ ker(D). Let t ∈ W 1(S), so there exists a sequence {tj} ∈ Γ(S) such that tj → t in the
W 1(S)-norm, so Dtj → Dt in the W 0(S)-norm. But then 〈〈Dtj , s〉〉0 = 〈〈tj , Ds〉〉0 = 0, since s ∈ ker(D).
Hence 〈〈Dt, s〉〉0 = 0, so Im(D) ⊂ (ker(D))⊥.

Conversely, let t ∈ ker(D)⊥. Define f on σ(D) by f(0) = 0 and f(λ) = 1/λ, so Df(D)t = t, as t 6∈ ker(D).
But t ∈W 0(S), so the strong solution theorem says that f(D)t ∈W 1(S). Therefore t = D(f(D)t) ∈ Im(D),
so ker(D)⊥ = Im(D). �

Remark 4.1.5. Let D : W 1(S)→W 0(S) be the Dirac operator of a Clifford bundle. Then

ind(D) = dim(ker(D))− dim(coker(D)) = dim(ker(D))− dim(ker(D)) = 0.

So ind : W 1(S) → W 0(S) is always zero. To get an interesting (non-zero) index, we need to introduce
additional structure, a Z/2Z-grading, a.k.a. a superstructure.

Definition 4.1.6. A Dirac operator D is graded (or supersymmetric) if it comes from a Dirac complex of
length 2, i.e.

0 Γ(S0) Γ(S1) 0
P

P ∗ ,
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so S = S0⊕S1 and D = P+P ∗ =
[

0 P∗

P 0

]
with respect to the grading S = S0⊕S1. The operator E =

[
I 0
0 −I

]
is called the grading operator, so we see that S0 is the +1-eigenspace of E and S1 is the −1-eigenspace of E .

Remark 4.1.7. Observe that D : Γ(S)→ Γ(S) is graded iff DE + ED = 0. Indeed,[
A B
C D

] [
I 0
0 −I

]
+

[
I 0
0 −I

] [
A B
C D

]
=

[
2A 0
0 −2A

]
.

Since D is Fredholm, P : Γ(S1)→ Γ(S1) is also Fredholm. We leave it as an exercise to show that ind(P ) =
dim(ker(P )) − dim(coker(P )) and coker(P ) = ker(P ∗) as before. To show this, use P ∗ : Γ(S1) → Γ(S0),
where Γ(S1) = Im(P )⊕ ker(P ∗). From before, we will still have

d : Ωeven(M)→ Ωodd and d∗ : Ωodd(M)→ Ωeven.

Moreover, as D = d+d∗, the Euler characteristic of M is given by χ = ind(d) = dim(ker(P ))−dim(ker(P ∗)).
Hence the Euler characteristic is the index of a Fredholm operator.

Theorem 4.1.8. [Atiyah–Singer theorem for Dirac operators]
Let (M, g) be a compact, oriented Rimenannian manifold such that D is graded and D = P + P ∗. Then

ind(P ) =

∫
M

Â(TM) =
〈
Â(TM), [M ]

〉
,

is probably true, where

Â =

√√√√√det

 sinh
(
iF∇

2π

)
iF∇

2π


is the A-hat genus and [ · ] is the fundamental class.

Proof: The idea behind the proof is a finite-dimensional linear algebra result, which we will extend to
our setting. Let U+, U− be finite-dimensinoal complex vector spaces with Hermitian metrics 〈 · , · 〉, with
n = dim(U+), m = dim(U−). Let P : U+ → U− be a linear operator.

First we claim that Im(P ) = ker(P ∗)⊥ and Im(P ∗) = ker(P )⊥. This follows as 〈Pv,w〉 = 〈v, P ∗w〉, so
w ∈ ker(P ∗) iff w ∈ Im(P )⊥. So U+ = ker(P )⊕ Im(P ∗) and U− = ker(P ∗)⊕ Im(P ), meaning P induces an

isomorphism P : Im(P ∗)
∼=−−→ Im(P ). Then

ind(P ) = dim(ker(P ))− dim(coker(P ))

= dim(ker(P ))− dim(ker(P ∗))

= n− dim(Im(P ))− (m− dim(Im(P ∗)))

= n−m
= dim(U+)− dim(U−).

�

Let’s now give another more complicated proof, which generalizes to infinite dimensions.

Proof: Let U = U+ ⊕ U− and D =
[

0 P∗

P 0

]
: U → U . Notice that D∗ = D and

〈D(u, v), (s, t)〉 = 〈(P ∗v, Pu), (s, t)〉 = 〈P ∗v, s〉+ 〈Pu, t〉 = 〈(u, v), P (s, t)〉 .

We can compute the self-adjoint operator D2 =
[
P∗P 0

0 PP∗
]

is non-negative, so
〈
D2x, x

〉
> 0, meaning that

σ(D2) ∈ [0,∞). Let µ > 0, so then ker(D2 − µI) = ker(D − √µI) ⊕ ker(D +
√
µI). Let E =

[
IU+

0

0 IU−

]
be a grading. Then D2 commutes with E , so they are simultaneously diagonalizable for any eigenvalue µ of
D2, i.e. Eµ = E+

µ ⊕E−µ , the sum of the +1-eigenspace and −1-eigenspace. To finish the proof, we need the
following lemma. �
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Lemma 4.1.9. For all non-zero µ ∈ σ(D2), dim(E+
µ ) = dim(E−µ ). More precisely, P |E+

µ
: E+

µ

∼=−−→ E−µ .

Proof: First note that [D,D2] = 0, so Eµ is D-invariant, i.e. D(Eµ) ⊂ Eµ. Suppose µ 6= 0 and v ∈ ker(D|Eµ).
Then

Dv = 0 =⇒ D2v = µv = 0,

and for µ 6= 0, it must be that v = 0. So D|Eµ : Eµ
∼=−−→ Eµ, and D =

[
0 P∗

P 0

]
, meaning that

P : E+
µ

∼=−−→ E−µ and P ∗ : E−µ
∼=−−→ E+

µ ,

proving the claim. Now we have that U+ =
⊕⊥

µ∈σ(D2)E
+
µ and U− =

⊕⊥
µ∈σ(D2)E

−
µ , and by the claim,

dim(U+)− dim(U−) = dim(E+
0 )− dim(E−0 ) = dim(ker(P ))− dim(ker(P ∗)) = ind(P ).

�

Definition 4.1.10. Let T : U → U be an operator. The supertrace of T , denoted str(T ), is defined to be

str(T ) = Tr(A)−Tr(D) = Tr(T |U+)−Tr(T |U−) where T =

[
A B
C D

]
=

[
A 0
0 D

]
+

[
0 B
C 0

]
= Teven +Todd.

So str(T ) = str(Teven), as well as str(T ) = Tr(ET ) = Tr(
[

1 0
0 −1

]
[A B
C D ]).

Remark 4.1.11. With the above definition, for any t > 0,

str
(
e−tD

2
)

=
∑

µ∈σ(D2)

e−tµ(dim(E+
µ )− dim(E−µ )).

By the previous lemma, these cancel in pairs except when µ = 0 (also called supersymmetry). So we see that

str(e−tD
2

) = dim(E+
0 )− dim(E−0 )

= dim(ker(P ∗P ))− dim(ker(PP ∗))

= dim(ker(P ))− dim(ker(P ∗))

= ind(P ).

The last expression is smooth in t and independent of t, so

ind(P ) = lim
t→0+

[
str(e−tD

2

)
]

= str

(
lim
t→0+

[
e−tD

2
])

= str(1U ) = dim(U+)− dim(U−).

The above illustrates the main idea that we will follow: D is a Dirac operator for a Clifford bundle S =
S+⊕S−. Write ind(D+ : W 1(S+)→W 0(S−)) = str(e−tD

2

) (which still needs to be defined). We will show
that the right side is independent of t. The index theorem will then be obtained by equating t → ∞ and
t→ 0 on the right hand side.

Now, recall that if D is a Dirac operator, for all s ∈ Γ(S) we have that ‖s‖k+1 6 ck(‖Ds‖k + ‖s‖k),
where ck depends on k,M, S but not s ∈ Γ(S). Also, since D is first order linear, there exists c > 0 such
that ‖Ds‖ 6 ck‖s‖k+1 for all s ∈ W k+1(S) and s ∈ Γ(S). Since D is mth order linear, ‖Dms‖k 6 c‖s‖k+m

for some c > 0.

Proposition 4.1.12. There exists a constant c = c(m, k,M, S) such that ‖s‖k+m 6 c(‖Dms‖k + ‖s‖k) for
all s ∈ Γ(S).

Corollary 4.1.13. Define a norm ‖s‖∼ = ‖s‖0 + ‖Dms‖0. Then the previous statements imply that ‖ · ‖∼
is equivalent to ‖ · ‖m.

Proof: Observe that
1

c
‖s‖m 6 ‖s‖0 + ‖Dms‖0 6 c‖s‖m.

�
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4.2 The heat kernel

Definition 4.2.1. Given vector bundles as on the left, define the box tensor operator � as on the right.

M ×M

M M

π1(p, q) = p π2(p, q) = q

π1 π2 S � S∗ = π∗1(S)⊗ π∗2(S∗)

(S � S∗) = Sp � S∗q = End(Sq, Sp)

Recall that a smoothing operator Ak for S is determined by a smooth section k of S � S∗ by

(Aks)(p) =

∫
M

∈ Sp︷ ︸︸ ︷
k(p, q)︸ ︷︷ ︸

∈ End(Sq,Sp)

s(q)︸︷︷︸
∈ Sq

volq.

The integrand is a smooth function on M taking vectors in Sp. Note that Aks ∈ Γ(S) even if s ∈ W 0(S).
The map k is also called an integral kernel for s.

Example 4.2.2. Consider the following examples of integral kernels.

· Let s ∈ Γ(S), α ∈ Γ(S∗). Then s� α ∈ Γ(S � S∗) is defined by (s� α)(p,q) = sq ⊗ αq ∈ Sp ⊗ S∗q , which
is a decomposable integral kernel.

· There exists a conjugate linear map Γ(S) → Γ(S∗), given by s 7→ s∗, such that s∗(t) = 〈t, s〉 for all
t ∈ S (this is a pointwise fiber metric). Also, (λs)∗ = λs∗ for all λ ∈ C∞C (M). Hence if s, t ∈ Γ(S),
then s � t∗ ∈ Γ(S � S∗). Next, let k ∈ Γ(S � S∗) be an integral kernel for S. For all s ∈ W 0(S),
(Aks)(p) =

∫
M
k(p, q)sqvolq and Ak : W 0(S)→ Γ(S) is linear.

· Let λ ∈ σ(D) and let mλ = dim(Eλ) = dim(ker(D − λI)), the multiplicity of λ. The space Eλ is the
λ-eigenspace of D, which is finite-dimensional and consists of smooth sections. Let Pλ be the orthogonal
projection onto Eλ, with Pλ : W 0(S)→ Eλ. Fix an orthonormal (with respect to thet W 0(S)-norm) basis
s1, . . . , smλ of Eλ and define kλ =

∑mλ
j=1 sj � s

∗
j . Now let t ∈ Γ(S), for which

(Akλt)(p) =

∫
M

kλ(p, q)t(q)volq =

mλ∑
j=1

sj(p)

∫
〈t(q), sj(q)〉 volq = (Pλt)(p).

So Akλ = Pλ and Pλt =
∑mλ
j=1 ajsj , where a` = 〈〈Pλt, s`〉〉 = 〈〈t, s`〉〉.

Let’s generalize the last example further. Let I ⊂ [0,∞) be a compact interval. Define kI =
∑
λ∈σ(D) kλ ∈

Γ(S � S∗). The smoothing operator AkI corresponding to kI is AkI = PI , the orthogonal projection onto

EI =
⊕
λ∈σ(D)
|λ|∈I

Eλ =
⊕

λ∈σ(D)

Hλ2 ,

where Eλ are the eigenspaces of D and Hλ2 are the eigenspaces of D2. If I = {λ}, then EI = Eλ = Hλ2 .
Define also

PI =
⊕
λ∈σ(D)
|λ|∈I

Pλ and dI = dim(EI) =
∑

λ∈σ(D)
|λ|∈I

mλ.

Let s1, . . . , sdI be an orthonormal basis of EI . Then kI =
∑dI
j=1 sj � s

∗
j .
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Theorem 4.2.3. Let r = rank(S). Then there exists c > 0 such that
a. dI 6 c2rvol(Mn)(1 + b2`), for all I ⊂ [a, b] ⊂ [0,∞), where ` = bn2 c+ 1. This is a bound on dim(EI)

in terms of 1 + b2`.
b. For any j > 0, there exists a constant Bj > 0 such that for any [a, b] ⊂ [0,∞), we have that

‖kI‖Cj 6 Bj(1 + b2`+2j). This is a bound on the Cj-norm of kI in terms of 1 + b2`+2j .

Proof: For all j > 0, there exists Mj > 0 such that ‖s‖j 6Mj(‖s‖0 +‖Djs‖0). From the Sobolev embedding
theorem, if ` > j + n

2 , there exists A = A(`, j) such that

‖s‖Cj 6 A‖s‖W ` 6 AM`(‖s‖0 + ‖D`s‖0). (11)

Let I = [a, b]. For any s ∈ W 0(S), set sI = PIs ∈ Γ(S). Let u ∈ Γ(S), so then for uI =
∑
|λ|∈I cλsλ, we

have that D`uI =
∑
|λ|∈I cλλ

`sλ and

‖D`uI‖20 =
∑
|λ|∈I

|λ|2`|cλ|2 6 |b|2`
∑
|λ|∈I

|cλ|2 = b2`‖uI‖20.

Now we see that
‖uI‖20 + ‖D`uI‖20 6 (1 + b2`)‖uI‖20 6 (1 + b2`)‖u‖20. (12)

Let `j = bn2 c+ j + 1. Then (11) and (12) for j = 0 and s = uI give

‖uI‖C0 6 B0(1 + b2`0)1/2‖u‖0, (13)

for all u ∈ W 0(S), passing to the limit. Next, fix a point p0 ∈ M and wp0 ∈ Sp0 of unit length. Define

Vp0,wp0
(q) =

∑dI
i=1 〈wp0

, si(p0)〉 si(q). This means that vp0,wp0
∈ Γ(S). Also, uI(p0) =

∑dI
i=1 〈〈u, si〉〉 si(pi)

for all u ∈W . Further, notice that

〈uI(p0), wp0〉 =

dI∑
i=1

〈〈u, si〉〉 〈si(p0), wp0〉 =
〈〈
u, vp0,wp0

〉〉
. (14)

Hence for all u ∈W 0(S),〈〈
u, vp0,wp0

〉〉
= 〈uI(p0), wp0〉 6 |uI(p0)| 6 ‖uI‖C0 6 B0(1 + b2`0)1/2‖u‖0,

where the first equality follows from (14) and the first inequality from Cauchy–Schwarz. Since this holds for
all u, take u = Vp0,wp0

. Then ‖vp0,wp0
‖20 6 B0(1 + b2`0)1/2‖vp0,wp0

‖0, hence

‖vp0,wp0
‖0 6 B0(1 + b2`0)1/2. (15)

Since s1, . . . , sdI is an orthonormal basis of EI , ‖vp0,wp0
‖20 =

∑dI
i=1 | 〈wp0 , si(p0)〉 |2. Let e1, . . . , er be an

orthonormal basis of sp0 , with respect to 〈 · , · 〉p0
. Then

r∑
k=1

‖vp0,ek‖2 =

r∑
k=1

dI∑
i=1

|〈ek, si(p0)〉|2

=

dI∑
i=1

r∑
k=1

|〈ek, si(p0)〉|2

=

dI∑
i=1

|si(p0)|2 ,
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hence
∑dI
i=1 |s(p0)|2 6 rB2

0(a+ b2`), by (15), for any p0 ∈M . Now integrate over M for∫
M

dI∑
i=1

|si|2vol =

dI∑
i=1

‖si‖2 = dim(EI) = dI 6 rB
2
0vol(µ)(a+ b2`0),

which proves a.. For b., use (11) for ‖s‖Cj 6 M̃j(1 + b2`j )1/2‖s‖0, where `j = bn2 c + j + 1. Then kI =∑dI
i=1 si � s

∗
i , and

‖kI‖Cj 6
dI∑
i=1

‖si‖2Cj

6 M̃2
j (1 + b2`j )dI

6 M̃2
j (1 + b2`j )B2

0r(1 + b2`0)vol(M)

6 Nj(1 + b2`0+`j ),

and `0 + `j = 2(bn2 c+ 1 + j), which is what we wanted. �

Recall that if f : σ(D) → C is bounded, we can define f(D) : W 0(S) → W 0(S) bounded linear with
f(D) =

∑
λ∈σ(D) f(λ)Pλs.

Proposition 4.2.4. Suppose f : R → R is continuous with rapid decay at infinity. That is, suppose that
lim|λ|→0[|λ|kf(λ)] = 0 for all k > 0. Then f(D) is a smoothing operator Akf associated to the integral kernel
kf =

∑
λ∈σ(D) f(λ)kλ, where Akλ = Pλ.

Proof: For all n > 1, set

kf,n =
∑

λ∈σ(D)
|λ|∈[n−1,n]

f(λ)kλ =
∑

|λ|∈[n−1,n]

f(λ)kλ,

where kλ = 0 if λ 6∈ σ(D). This is an integral kernel, i.e. kf,n ∈ Γ(S � S∗). Now, we claim that∑
n>1 kf,n = kf converges in Cj(S � S∗) for any j > 0. This shows that kf is smooth. To prove this claim,

we first let
dn = dim(E[n−1,n]) and fn = sup

|t|∈[n−1,n]

{|f(t)|}

for all n. Note that fn <∞ because f is continuous. Then

‖kf,n‖Cj 6

(
sup

|t|∈[n−1,n]

{|f(t)|}

) ∑
|λ|∈[n−1,n]

‖kλ‖Cj


6 fmdmBj

(
1 +m2`+2j

)
6 fmM

(
1 +m4`+2j

)
.

Since f is rapidly decaying,
∑∞
m=1 fm(1 +m4`+2j) <∞, so kf,m

m→∞−−−−−→ kf in the Cj norm, for all j. This
proves the claim and proves the proposition. �

Definition 4.2.5. Let ft(λ) = e−tλ
2

. This is rapidly decreasing for any t > 0, so by the previous proposition,

ft(D) = e−tD
2

is a smoothing operator with integral kernel ht =
∑
λ∈σ(D) e

−tλ2

kλ. The collection {ht : t >

0} is called the heat kernel of D.

Definition 4.2.6. Define a bundle π : R>0 ×M ×M → M ×M by π(t, p, q) = (p, q), projection onto the
second factor. Define

Ŝ � S∗ = π∗(S � S∗),

which is a bundle over R>0 ×M ×M , whose fibers are Ŝ � S∗(t,p,q) = (S � S∗)(p,q) = End(Sq, Sp).
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Proposition 4.2.7. With respect to the definitions above,

a. the heat kernel {ht : t > 0} defines a smooth section of Ŝ � S∗ by (t, p, q) 7→ ht(p, q) ∈ End(Sq, Sp),
b. for any fixed q ∈M , ∂

∂tht(p, q) +D2
pht(p, q) = 0, i.e. h satisfies the heat equation on S, and

c. if s ∈ Γ(S), then limt→0+ [‖st − s‖C0 ] = 0 for st = e−tD
2

s = Ahts.

Proof: For any N > 0, set ht,N (p, q) =
∑
|λ|6N e

−tλ2

kλ(p, q), recalling that kλ(p, q) =
∑mλ
j=1 sj(p) � s

∗
j (q).

Then ht,N is a smooth function of p, q for any N . The previous proposition showed that ht,N
N→∞−−−−−→ ht in

the Ck norm, for any k, and is uniformly integrable on compact subsets of R>0. Also note that

D2
pkλ = λ2kλ implying

(
∂

∂t
+D2

p

)
ht,N = 0

for all N . Now, the integral kernel D2
pht,N converges in any Ck to the smooth integral kernel associated to

the rapidly decaying function λ→ λ2e−tλ
2

(and this too is uniformly convergent in t on compact subsets of
R>0). Hence ht = limN→∞[ht,N ] is Ck in p, q, t for all k (i.e. a Ck function of t, p, q by uniform convergence

on compact subsets). Hence h : R>0 ×M ×M → Ŝ � S∗ is a smooth section and(
∂

∂t
+D2

p

)
ht = 0.

This proves a. and b.. For c., let s ∈ Γ(S) and st = e−tD
2

. Write s = Ahts =
∑
λ∈σ(D) sλ, for sλ = Pλs.

Let m > 0, for which

‖Dms‖20 6
∑

λ∈σ(D)

|λ|m‖sλ‖20 <∞,

since Dms ∈ Γ(S). Therefore

‖Dm(st − s)‖20 =
∑

λ∈σ(D)

(
e−tλ

2

− 1
)2

|λ|2m‖sλ‖20.

Consider the functions ϕt : σ(D) → R given by ϕt(λ) = (e−tλ
2 − 1)2|λ|2m‖sλ‖20. Equip σ(D) with the

canonical discrete topology. Apply the dominated convergence theorem to interchange the sum and the
limit. Then

lim
t→0+

[
‖Dm(st − s)‖20

]
=

∑
λ∈σ(D)

lim
t→0+

[(
e−tλ

2

− 1
)2

|λ|2m0 ‖sλ‖20
]

= 0

for all m > 0. Hence
lim
t→0+

[
‖Dm(st − s)‖20 + ‖st − s‖20

]
= 0.

Last time, we showed that the norm ‖Dms‖20 + ‖s‖20 is equivalent to the Wm(S) norm. Hence limt→0+ [‖st−
s‖Wm(S)] = 0 for any m > 0. So by the Sobolev embedding theorem, limt→0+ [‖st − s‖Ck ] = 0 for all k,
proving c.. �

Lemma 4.2.8. [Uniqueness of solutions to heat kernel]

Let Ŝ denote tha pullback of S →M to [0,∞)×M = R>0×M . For any s0 ∈ Γ(S), the initial value problem(
∂

∂t
+D2

)
(s(t, p)) = 0 (16)

where s(0, p) = s0(p) for all p ∈M , admits a unique solution, which is a continuous section of Ŝ on [0,∞)×M
and smooth on (0,∞)×M .
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Proof: Assume that s(t, p) is a solution of (16). Let st = s(t, · ) be the restriction of s to {t} ×M . For
uniqueness, we need to show that if s0 = 0,then st = 0 for all t > 0. Then

∂

∂t
‖st‖20 =

〈〈
∂

∂t
st, st

〉〉
0

+

〈〈
st,

∂

∂t
st

〉〉
0

=
〈〈
−D2st, st

〉〉
0

+
〈〈
st,−D2st

〉〉
0

= −2‖Dst‖20
6 0.

So ‖st‖20 6 ‖s0‖20 = 0, meaning that st = 0 for all t > 0. �

Above we showed that st = e−tD
2

s0 is a solution, so st =
∫
M
ht(p, q)s0(q)volq and

D2
pst =

∫
M

(D2
pht(p, q))s0(q)volq

= −
∫
M

∂

∂t
ht(p, q)s0(q)volq

= − ∂

∂t
st.

The fact that the solution is smooth on (0,∞)×M and continuous on [0,∞)×M follows from similar facts
about ht, which we will fix next time.

Theorem 4.2.9. [Main theorem]

The heat kernel (ht)t>0 is the unique smooth section (kt)t>0 of Ŝ � S∗ satisfying:
a. kt(p, q) satisfies ( ∂∂t +D2

p)kt(p, q) = 0 for all q ∈M , and
b. if s ∈ Γ(S), then limt→0+ [‖Akts− s‖C0 ] = 0.

Proof: We already know that ht satisfies a. and b., so we only need to show it is unique. Firstly, we know

that st = e−tD
2

s0 satisfies ( ∂∂t +D2)st = 0, where st|t=0 = s0, and that this solution is unique. So suppose
we have a family of integral kernels (kt)t>0 satisfying a. and b., for which we would like to show kt = ht. Let
s0 ∈ Γ(S), t > 0, and set wt = Akts0. Let vt = wt+ε = Akt+εs0. By hypothesis, vt satisfies ( ∂∂t +D2)Vt = 0,
where v0 = wε = Akεs0. By uniqueness of solutions to the heat equation,

Akt+εs0 = vt = e−tD
2

wε.

Let ε→ 0, so then wε → s0 in C0 by hypothesis b.. Then finally Akts0 = e−tD
2

s0 for any s0, so Akt = Aht ,
implying that kt = ht. �

Recall that we want to prove the index theorem by mimicking the baby case - for P : U+ → U− linear,

ind(P ) = str(e−tD
2

) = dim(U+)− dim(U−), where D =
[

0 P∗

P 0

]
and U = U+ ⊕ U−.

Theorem 4.2.10. [Atiyah–Singer index theorem]
Let D : Γ(S)→ Γ(S) be a graded Dirac operator. Let (ht)t>0 be the heat kernel of D. Then

ind(P ) = [Â(TM)]([M ]) =

∫
M

Â(TM).

Theorem 4.2.11. [McKean–Singer formula]
Let M be a compact oriented Riemannian manifold, S a Clifford bundle, D a Dirac operator of S, assumed
to be graded as D =

[
0 P∗

P 0

]
, with S = S+ ⊕ S− and P : Γ(S+) → Γ(S−). Let ht be the integral kernel of

e−tD
2

for t > 0 (i.e. the heat kernel of D). Then

ind(D+) = ind(P ) =

∫
M

str(ht(p, p))volp

for all t > 0, where D+ = D|Γ(S). Note that this is independent of t.
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Proof: Write D2 =
[
P∗P 0

0 PP∗
]

=
[

∆+ 0
0 ∆−

]
, so

∆+ = P ∗P : Γ(S+)→ Γ(S+)
∆− = PP ∗ : Γ(S−)→ Γ(S−)

.

Let µ > 0 be an eigenvalue of D2. Let

N+
µ = dim(ker(∆+ − µI)︸ ︷︷ ︸

= H+
µ

) and N−µ = dim(ker(∆− − µI)︸ ︷︷ ︸
= H−µ

),

where H±µ is the µ-eigenspace of D2, restricted to Γ(S±). Let s±µ,1, . . . , s
±
µ,N±µ

be an orthonormal basis of H±µ ,

orthonormal with respect to the W 0(S)-norm. Then {s±µ,j : j = 1, . . . , N±µ , µ ∈ σ(D2)} is an orthonormal

basis of W 0(S). Express

e−tD
2

=
∑

µ∈σ(D2)

e−tµ
(
PH+

µ
− PH−µ

)
,

where PH±µ is the orthogonal projection onto H±µ . We already saw that PH±µ = Ak
P
±
µ

, so the smoothing

operator associatos to the integral kernel by

kP±∓
(p, q) =

N±µ∑
j=1

s±µ,j(p)� (s±µ,j)
∗(q).

Also, H+
µ ⊕H−µ = Hµ = E√µ⊕E−√µ, where E represents an eigenspace ofD. Hence kP+

µ
+kP−µ = k−√µ+k√µ,

and so further
ht(p, q) =

∑
µ∈σ(D2)

e−tµ
(
kP+

µ
(p, q) + kP−µ (p, q)

)
,

and

str
(
kPµ(p, p)

)
= Tr

(
kP+

µ
(p, p)

)
− Tr

(
kP−µ (p, p)

)
= Tr

N+
µ∑

j=1

s+
µ,j(p)�

(
s+
µ,j

)∗
(p)−

N−µ∑
j=1

s−µ,j(p)�
(
s−µ,j

)∗
(p)

 .

When p = q, then (S � S∗)(p,p) = Sp � S∗p = (S ⊗ S∗)p. We need to know how to compute Tr(v ⊗ v∗) for
v ∈ (V, 〈·, ·〉) a hermitian vector space. So let e1, . . . , er be an orthonormal basis of V , with respect to 〈·, ·〉,
with P : V → V and Tr(P ) =

∑r
j=1 〈P (ej), ej〉. Then

Tr(v ⊗ v∗) =

r∑
j=1

〈(v ⊗ v∗)(ej), ej〉

=

r∑
j=1

〈v∗(ej)v, ej〉

=

r∑
j=1

vj 〈v, ej〉

=

r∑
j=1

vjvj

= |v|2

= 〈v, v〉 ,
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so Tr(s+
µ,j(p) � (s+

µ,j)
∗(p)) = |s+

µ,j(p)|2, where the norm is the pointwise norm on S+
p from the fiber metric.

Hence

str(kPµ(p, p)) =

N+
µ∑

j=1

s+
µ,j(p)

2 −
N−µ∑
j=1

s−µ,j(p)2
,

str(ht(p, p)) =
∑

µ∈σ(D2)

e−tµ

N+
µ∑

j=1

s+
µ,j(p)

2 −
N−µ∑
j=1

s−µ,j(p)2

 .

So ∫
M

str(ht(p, p))volp =
∑

µ∈σ(D2)

e−tµ

N+
µ∑

j=1

∫
M

s+
µ,j(p)

2
volp −

N−µ∑
j=1

∫
M

s−µ,j(p)2
volp


=

∑
µ∈σ(D2)

e−tµ
(
N+
µ −N−µ

)
,

where the reduction occurs since the integrals are all 1 on an orthonormal basis. Now, just like in the baby
index theorem, D|H+

µ
: H+

µ → H−µ . If s ∈ Hµ, then Ds = 0, so D2s = µs = 0. Hence if µ 6= 0, s = 0.

Therefore D|H+
µ

: H+
µ → H−µ is an isomorphism if µ > 0. This means that∫

M

str(ht(p, p))volp = N+
0 −N

−
0

= dim(ker(∆+))− dim(ker(∆−))

= dim(ker(P ))− dim(ker(P ∗))

= ind(P ).

�

Remark 4.2.12. The strategy we will use to prove the index theorem is to find a way to calculate∫
M

str(ht(p, p))volp, which is independent of t for t > 0. We will see that even though ht(p, q) can’t be
computed exactly, by finding an approximate expression for ht(p, p), the expression

∫
M

str(ht(p, q))volp can
be computed exactly.

4.3 Approximating the heat kernel

Definition 4.3.1. Let B be a Banach space and f : (0,∞) → B a function. We say that a formal
series

∑∞
k=0 ak(t), with ak(0,∞) → B, is an asymptotic expansion for f near t = 0, and denote this by

f(t) ∼
∑∞
k=0 ak(t), if for every positive integer N , there exists `N ∈ Z>0 such that if ` > `N , then there

exists c = c(`,N) > 0 and τ = τ(`,N) > 0 such thatwwwwwf(t)−
∑̀
k=0

ak(t)

wwwww
B

6 c(`,N)tN

for all t ∈ (0, τ(`,N)]. In words, given N , f minus a sufficiently large partial sum is O(tN ) for t sufficiently
small.

Example 4.3.2. Note that an asymptotic expansion for f need not converge to f at t = 0 in any sense.
Indeed, Consider B = R or C and f : (−ε, ε) → B smooth. Take the Taylor series of f at t = 0, given by∑∞
k=0 t

kf (k)(0)/k!. We know from Taylor’s theorem this is an easy asymptotic expansion for f near t = 0.
But the Taylor series does not converge to f unless f is analytic at t = 0.
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Theorem 4.3.3. [Main theorem - Asymptotic expansion of heat kernel]
Let (ht)t>0 be the heat kernel for a graded Dirac operator D. Let dist: M ×M → [0,∞) be the geodesic
distance function on M ×M determined by G. Let n = dim(M). For any t > 0, define

ρt(p, q) =
1

(4πt)n/2
exp

(
−dist(p, q)2

4t

)
.

Then:
a. There exists an asymptotic expansion for ht of the form ht(p, q) ∼ ρt(p, q)(Θ0(p, q) + tΘ1(p, q) +

t2Θ2(p, q) + · · · ), where

ρt(p, q)

( ∞∑
k=0

tkΘk(p, q)

)
=

∞∑
k=0

ak(t),

for Θk ∈ Γ(S � S∗) for all k ∈ Z>0.

b. The expansion is valid in the Banach space Cj(S � S∗) for any j > 0. It may be differentiated
formally with respect to t, p, q to obtain asymptotic expansions for the corresponding derivatives of ht(p, q).

c. The sections Θk(p, q) (along the diagonal) and their derivatives with respect to p are described by
universal algebraic expressions involving the metric g on M , the fiber metric h on S, and the connections
and their derivatives. Also, Θ0(p, p) = idSp .

To prove the main theorem, we need a criterion for recognizing an asymptotic expansion of h0.

Definition 4.3.4. Let m ∈ Z>0. An approximate heat kernel of order m for a Dirac operator D is a t-
independent section h̃t(p, q) of S � S∗ that is C1 in t, C2 in p, q, and satisfies

a. for all s ∈ Γ(S), limt→0+ [‖Ah̃ts− s‖Cm ] = 0, i.e. h̃t converges to a δ-function in Cm, and
b. for all p, q ∈ U , all t > 0, and rt(p, q) a section of S � S∗ that descends continuously on t,(

∂

∂t
+D2

p

)(
h̃t(p, q)

)
= tmrt(p, q).

Proposition 4.3.5. Suppose we have a sequence Θk ∈ Γ(S � S∗), for k ∈ Z>0 such that for any m ∈ Z>0,
there exists Jm ∈ Z>0 such that for any J > Jm, the integral kernel

h̃t(p, q) = ρt(p, q)

(
J∑
k=0

tkΘk(p, q)

)

is an approximate heat kernel of order m. Then the formal power series ρt(p, q)(
∑J
k=0 t

kΘk(p, q)) is an
asymptotic expansion for the heat kernel, in the sense of parts a. and b. in the main theorem.

You will complete the proof to this in Assignment 5. This proposition says that to prove a. and b. of
the main theorem, it is enough to find an approximate heat kernel of order m > 0 for any m of the form
h̃Jt (p, q).

Lemma 4.3.6. Let ft be a section of S that is C2 in p ∈ M , continuous in t > 0. Then there exists a
smooth section st of S, differentiable at t > 0, with s0 = 0, such that ( ∂∂t + D2)st = ft, i.e. it solves the

inhomogeneous heat equation. In fact, then st =
∫ t

0
e−(t−u)D2

fudu, i.e.

st(p) =

∫ t

0

(∫
M

ht−u(p, q)fu(q)volq

)
du. (17)

Proof: Uniqueness is exactly as in the homogeneous case. If st, s̃t are two such solutions, then st − s̃t solves

( ∂∂t +D2)( · ) = 0 with initial value 0, meaning that st− s̃t = 0. For existence, note that (17) is smooth in p
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and differentiable in t. We need to check that (17) satisfies the inhomogeneous heat equation. We find that

∂

∂t
st(p) =

∫ t

0

(∫
M

∂

∂t
(ht−u(p, q)) fu(q)volq

)
du+ lim

u→t

[∫
m

ht−u(p, q)fu(q)volq

]
=

∫ t

0

(∫
M

(
−D2

p

)
(ht−u(p, q)) fu(q)volq

)
+ lim
ε→0

[∫
M

hε(p, q)ft+ε(q)volq

]
= −D2

pst(p) + ft(p)

by the δ-function properties of the heat kernel and continuity of ft in t. �

Corollary 4.3.7. For any j > 0, there exists cj > 0 such that ‖st‖j 6 tcj(sup06u6t{‖fu‖j}).

Proof: Recall that st =
∫ t

0
e−(t−u)D2

fudu, so

‖st‖j 6 t
wwwe−(t−u)D2

fu

www
j
6 tcj‖fu‖j 6 tcj sup

06u6t
{‖fu‖} ,

because e−εD
2

: W j(S)→W j(S) is uniformly bounded for all ε > 0. �

Proposition 4.3.8.
a. Let ht be the heat kernel for D. For every m > 0, there exists m′ > m such that if h̃t is an approximate

heat kernel of order m′, then ht(p, q)− h̃t(p, q) = tmet(p, q), where et is a Cm section of S � S∗, depending
continuously on t > 0.

b. ( ∂∂t +D2
p)h̃t(p, q) = tmrt(p, q), where rt is Cm in p, q and continuous in t.

Proof: Take m′ > m + dim(M)/2. By the definition above of arroximate heat kernel of order m′, h̃t(p, q)
tends to a δ-function as t→ 0+, proving part a.. For b., Let vt(p, q) be the unique solution (for fixed q) to
the inhomogeneous heat equation, i.e.(

∂

∂t
+D2

p

)
vt(p, q) = −tmrt(p, q),

with v0(p, q) = 0. Then h̃t(p, q) + vn(p, q) has δ-form properties as t → 0+. Also, ( ∂∂t + D2
p)(h̃t(p, q) +

vn(p, q)) = 0, hence by the result characterizing heat kernels, h̃t + vt = ht, and

‖st‖j 6 tcj
(

sup
06u6t

{‖fu‖j}
)
. (18)

By (18), we find that

‖vt‖ 6 cj sup
06u6t

{‖um
′
ru(p, q)‖} 6 Btm

′+1.

Define et by vt = tmet, so ‖tmet‖j = ‖vt‖j 6 Btm
′+1, but also ‖tmet‖j = tm‖et‖j , hence

‖et‖j 6 Bt(m
′−m)+1.

�

Fix q ∈ M and take normal coordinates {x1, . . . , xn} centered at q. Let ρ = ρt(p, q) as above. Let

p = (x1, . . . , xn), so then dist(p, q)2 =
∑n
j=1(xi)2 = r2. Hence in these coordinates, ρ = 1

(4πt)n/2 e
−r2/4t.

Lemma 4.3.9. In the described chart,
a. ∇ρ = − ρ

2tr
∂
∂r for ∇ as a function of p on (M, g), and

b. ∂ρ
∂t + ∆ρ = rρ

4gt
∂g
∂r , where det(gij) = g is a smooth function on the domain of the chart.
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Proof: For part a. notice that

dρ =
1

(4πt)n/2
e−r

2/4t

(
−2r

4t
dr

)
and ∇ρ = (dρ)] = −ρr

2t
(dr)] = −ρr

2t
∇r,

by Riemannian geometry that gives us ∇r = ∂
∂r . For part b., note that ∆f = −div(∇f) = ∇∗∇f , where

∇∗ = −div, a vector field. Recall that div(fX) = fdiv(X) + 〈∇f,X〉, so

∆ρ = −div(∇ρ)

= div

(
ρ

2t

(
r
∂

∂r

))
=

ρ

2t
div

(
r
∂

∂r

)
+

〈
∇
( ρ

2t

)
, r
∂

∂r

〉
=

ρ

2t
div

(
r
∂

∂r

)
+
−ρ
4t2

〈
r
∂

∂r
, r
∂

∂r

〉
,

and because | ∂∂r | = 1, we have that

−ρ
4t2

〈
r
∂

∂r
, r
∂

∂r

〉
=
−ρr2

4t2

 ∂

∂r

2

=
−ρr2

4t2
.

If Y = Y i ∂
∂xi in local coordinates, then div(Y ) = 1√

g

∑
j

∂
∂xj

(Y i
√
g). Since ∂

∂r = Xi

r
∂
∂xi and r ∂∂r = Xi ∂

∂xi

and Y i = Xi, we have that

div

(
r
∂

∂r

)
=

1
√
g

∑
j

∂

∂xj
(
Xj√g

)
=

1
√
g

∑
j

(
rg +

Xj

2
√
g

∂g

∂xj

)
= n+

r

2g

∂g

∂r
.

Hence ∆ρ = ρ
2t (n+ r

2g
∂g
∂r )− ρr2

4t2 , and ∂ρ
∂t = (− n

2t + r2

4t2 )ρ, so

∇ρ+
∂ρ

∂t
=

ρr

4gt

∂g

∂r
.

�

Lemma 4.3.10. Let t ∈ C∞(M), D be the Dirac operator. Then
a. [D, f ]s = D(fs)− f(Ds) = (∇f) · s and
b. [D2, f ]s = D2(fs)− f(D2s) = (∆f)s− 2∇∇fs.

Proof: Choose an orthonormal geodesic frame {e1, . . . , en} centered at q, so the eis are orthonormal eigen-
values in the chart. This means that ∇xiei = 0 for all xi ∈ Γ(TqM). For part a. observe that

D(fs) =
∑
i

ei · ∇ei(fs)

=
∑
i

· ((∇eif)s+ f(∇eis))

=

(∑
i

(∇eif) ei

)
s+ f∇s

= (∇f) · s+ fDs.
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For part b., note first that

D2(fs)

q

=
∑
i,j

ei ·
(
∇ei

(
∇ej ·

(
∇ejfs

)))
q

=
∑
i,j

ei ·
(
∇ei

(
∇ej ·

((
∇ejf

)
s+ f

(
∇ejs

))))
q

=
∑
i,j

ei · ej ·
((
∇ei∇ejf

)
s+

(
∇ejf

)
(∇eis) + (∇eif)

(
∇ejs

)
+ f∇ei∇ejs

)
q

.

We know that ∇ejej = 0 at q, and ∇ei∇ejf −∇ej∇eif = 0 at q, as well as that

ei(ejf)− ej(eif) = [ei, ej ]f =
(
∇eiej −∇ejei

)︸ ︷︷ ︸
0 at q

f.

Therefore we find that

∑
i,j

ei · ej ·
((
∇ei∇ejf

)
s
)

q

=

(
−

n∑
i=1

∇ei∇eif

)
s


q

= (∇∗∇f) s|q = (∆f)s|q .

The last term reduces to fD2s. And finally, the two middle terms become

∑
i,j

ei · ej
(
(∇eif)

(
∇ejs

)
+
(
∇ejf

)
(∇eis)

)
= −2

n∑
i,j

(∇eif) (∇eis) = −2∇∇fs.

�

We will use the above two lemmas to derive a recursive procedure for solving ODEs in normal coordinates,
to obtain Θks. The idea is to find smooth sections Θk(p, q) of S � S∗ such that for any m > 0, the partial

sum ρt(p, q)(
∑J
k=0 t

kΘk(p, q)) is an approximate heat kernel of order m for sufficiently large J .

Proposition 4.3.11. It suffices to construct Θk(p, q) for p near q, i.e. in an open neighborhood U of the
diagonal in M ×M .

M

M
U

This will happen because ρt → 0 faster than any power of t as t → 0, so we can cut off our definition of
Θk(p, q) smoothly to 0 outside U .

Proof: Again, fix normal coordinates {x1, . . . , xn} centered at q. Let ρ = 1/(4πt)n/2 exp(−r2/4t) as before.
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Let s be a section of S � S∗q (for q fixed), i.e. s( · , q) is a section of S � S∗. By the above two lemmas,

1

ρ

(
∂

∂t
+D2

)
(ρs) =

1

ρ

(
∂

∂t
s+ ρ

∂s

∂t
+ ρD2s+ (∆ρ)s− 2∇∇ρs

)
=

1

ρ

((
∂

∂t
ρ+ ∆ρ

)
+ ρ

(
∂

∂t
+D2

)
s− 2∇− ρr2t ∂

∂r
ρ

)
=

1

ρ

((
rρ

4gt

∂g

∂r

)
s+ ρ

(
∂

∂t
+D2

)
s+

ρr

t
∇ ∂

∂r
s

)
=

(
r

4gt

∂g

∂r

)
s+

(
∂

∂t
+D2

)
s+

1

t
∇r ∂∂r s.

�

Remark 4.3.12. Define H = 1
ρ ( ∂∂t + D2)(p · ), and call it the conjugate heat operator. Above we have

shown that

H(s) =

(
∂

∂t
+D2

)
s+

1

t
∇r ∂∂r s+

(
r

4gt

∂g

∂r

)
s.

We want to find ρ(
∑
k t
kuk) = s which solves the heat equation, i.e. ( ∂∂t +D2)s = 0 iff H(

∑
k t
kuk) = 0. So

let s = tku with u independent of t. Then

H(tku) = ktk−1u+ tkD2u+ tk−1∇r ∂∂r u+ tk−1

(
r

4g

∂

∂r

)
u

= tk−1

(
∇r ∂∂r + k +

r

4g

∂g

∂r

)
u+ tkD2u.

Let’s formally try to solve ( ∂∂t +D2)(ρts) = 0 with s ∼ u0 + tu1 + t2u2 + · · · . Equating powers of t,

∇r ∂∂r uk +

(
k +

r

4g

∂g

∂r

)
uk = −D2uk−1, (19)

which is an ODE for uk along the radial geodesic emanating from q in terms of uk−1. Next, introduce an
“integrating factor” rkg1/4 for

∇ ∂
∂r

(
rkg1/4uk

)
= krk−1g1/4D2uk +

1

4
rkg−3/4 ∂g

∂r
uk + rk−1g1/4∇r ∂∂r uk −

(
k +

k

4g

∂g

∂r

)
uk −D2uk−1,

which implies that

∇ ∂
∂r

(
rkg1/4uk

)
= −rk−1g1/4D2uk−1, (20)

where u−1 = 0. For k = 0, u0 is uniquely determined by its initial value u0(0) = id|Sq . The origin 0
corresponds to the point q ∈ M , because we want Θ0(q, q) = idSq . For k > 1, (20) determines uk in terms

of uk−1 up to a constant multiple of a term of order r−k near r = 0, because (ckr
−kg−1/4)(rkg1/4 = ck is

constant. Since we want a smooth solution uk as r → 0, we must have ck → 0. So all the ks are uniquely
determined from u0(0) and the demanding of continuity at r = 0.

Proposition 4.3.13. Choose an open neighborhood U of the diagonal in M ×M such that every point in
U lies in a normal coordinate chart centered at (q, q) ∈M ×M . Define Θk(q, q) to be the section of S � S∗

over U represented in normal coordinates by Uk(x1, . . . , xn) defined above. neighborhood U of the diagonal
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in M ×M .

M

M

U
V
(q, q)

Fix a smooth neighborhood V ⊂ U and ϕ : M ×M → [0,∞) smooth such that ϕ(p, q) = 1 for all (p, q) ∈ V ,
ϕ(p, q) = 0 for all (p, q) ∈ M × M \ U , and smooth in between. Now define Θk on all of M × M by
ϕ(p, q)Θk(p, q) ∈ Γ(S � S∗). For J > 0, let

h̃Jt (p, q) = ϕ(p, q)ρt(p, q)

(
J∑
k=0

tkΘk(p, q)

)
.

Let m > 0. Then h̃Jt is an opproximate heat kernel of order m for J sufficiently large.

Proof: Since Θ0(p, p) = idSp if s ∈ Γ(S), then limt→0+ [nAh̃Jt
s− s‖C0 ] = 0 by the δ-functions property of ρt.

That is, limt→0+ [ρt] has the δ-function property. And,

Θ0(p, q) = Θ0(p, p)︸ ︷︷ ︸
= idSp

+ Θ0(p, q)−Θ0(p, p)︸ ︷︷ ︸
→0 as t→0

.

That was the first condition to be an approximate heat kernel. Also we need to show it approximately solves
the heat equation. By construction of the uks, we have that(

∂

∂t
+D2

p

)(
h̃Jt (p, q)

)
= tJρt(p, q)e

J
t (p, q)

for t > 0, where eJt is a smooth section of S �S∗, which is continuous in t > 0. This follows as the terms up
to tJ−1 in h̃Jt are killed by the heat operator on the new diagonal, and all that’s left in a neighborhood of
the diagonal is tJD2

p(ϕρtΘJ). Now let m > 0. If J > m+ n
2 , then tJρt(p, q)→ 0 in the Cm-norm as t→ 0.

So for J > m + n
2 , h̃Jt (p, q) is an approximate heat kernel of order m. Hence by Assignment 5 question 2,

ρt(
∑∞
k=0 t

kΘk(p, q)) is an asymptotic expansion of ht(p, q) as required. �

Remark 4.3.14. Finally, for the last part of the main theorem on the asymptotic expansion, for all k > 0,
Θk(p, p) can be expressed as an algebraic expression involving matrices, connections, and their derivatives.
It follows by induction on the form

∇r ∂∂r uk +

(
k +

r

4g

∂g

∂r

)
uk = −D2uk−1.

In practice, nobodoy really does this, but this shows that it exists.

Remark 4.3.15. Recall the McKean–Singer formula, which said that for D =
[

0 P∗

P 0

]
with P : Γ(S+) →

Γ(S−) and P = D+ = D|γ(S+), we have that

ind(P ) = ind(D+) =

∫
M

str(ht(p, p))volp,

which is independent of t > 0. For ρt as previously, we showed that

ht(p, p) ∼ ρt(p, p)

( ∞∑
k=0

tkΘk(p, p)

)
=

1

(4πt)n/1

( ∞∑
n=0

tkΘk(p, p)

)
,
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so then str(ht(p, p)) ∼ 1
(4πt)n/2

∑∞
k=0 t

kstr(Θk(p, p)). We also know that the integral of str(ht(p, p)) over M

is independent of t. So (check this),
∫
m

Θk(p, p)volp = 0 unless k = n/2.

Corollary 4.3.16.

ind(D+) =

0 if n is odd
1

(4π)n/2

∫
M

str(Θn/2(p, p))volp if n is even
.

Moreover, Θn/2(p, p) is an algebraic expression in metrics, connections, and their derivatives.

Now, the last step is to find a way to rewrite the expression for ind(D+) more invariantly, i.e. in terms
of characteristic classes. Before we can talk about the rescaling trick of Getzler to compute the index, we
need to gefine the Bochner–Weitzenböck formula.

Recall that if S is a Clifford bundle and D is a Dirac operator, D2s = ∇∗∇s+k ·s, where k =
∑
i<j ei ·ej ·F∇ij ,

for e1, . . . , en a local orthonormal frame of M , and F∇ the curvature 2-form of the connection on S. Let
c : TM → End(S) denote Cliford multiplication, i.e. if Zp ∈ TpM and sp ∈ Sp, then c(Zp) ∈ End(Sp) such
that c(Zp)sp = Zp · sp. We see that c : Γ(TM)→ Γ(End(S)) by (c(Z)s)p = c(Zp)sp.

4.4 Curvature

Lemma 4.4.1. Let X,Y, Z ∈ Γ(TM). Then [F∇(X,Y ), c(Z)] = c(R(X,Y ), Z), where R is the Riemann
curvature tensor of the metric g on M . That is, the curvature R of (M, g) measures the failure of F∇ to be

a 2-form-valued endomorphism of S in the category of C`(M)⊗C-modules.

Proof: This identity is pointwise on M . Let p ∈ M and {e1, . . . , er} be an orthonormal geodesic frame
centered at p. That is, (∇Xei)p = 0 for all X, as [ei, ej ]|p = 0. By linearity, it is enough to assume X = ei,
Y = ej , and Z = ek. Then

∇ei(∇ej (ek · s)) = ∇ei((∇ejek) · s+ ek · (∇ejs))
= (∇ei∇ejek) · s+ ek · (∇ei∇ejs).

Now take the difference of the last line with itself with i and j switched to get

F∇(ei, ej)(ek · s) = (R(ei, ej)ek) · s+ ek · (F∇(ei, ej)s).

�

Definition 4.4.2. Recall that R(ei, ej)ek = r`ijke` =
∑n
`=1Rijk`e` in an orthonormal frame. The Riemann

endomorphism RS of the Clifford bundle S is defined to be the End(S)-valued 2-form given by

RS(X,Y ) =
1

4

∑
k,`

c(ek)c(e`)R(X,Y, ek, e`),

in an orthonormal frame, independent of the orthonormal frame.

Lemma 4.4.3.
[RS(X,Y ), c(Z)] = c(R(X,Y )Z).

Proof: It is enough to show the result for X = ei, Y = ej , Z = em, where {e1, . . . , en} is an orthonormal
frame. Then

RS(ei, ej)c(em)− c(em)RS(ei, ej) =
1

4

∑
k,`

Rijk` (c(ek)c(e`)c(em)− c(em)c(ek)c(e`))

=
1

4

∑
k,`

c (eke`em − emeke`)

=
1

4

∑
k,`

Rijk`c ([eke`, em]) .
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If k = `, then [eke`, em] = [−1, em] = 0. If k, `,m are all distinct, then eke`em − emeke` = 0. The only
remaining case is m = k 6= ` and m = ` 6= k. Then

RS(ei, ej)c(em)− c(em)RS(ei, ej) =
1

4

n∑
`=1

Rijm`c
(
eme`em − e2

me`
)

+
1

4

n∑
k=1
k 6=m

Rijkmc
(
eke

2
m − emekem

)

=
1

4

n∑
`=1

Rijm`c(2e`) +
1

4

n∑
k=1

Rijkmc(−2ek)

=

n∑
`=1

Rijm`c(e`)

= c(R(ei, ej)em).

�

Definition 4.4.4. The twisting curvature of the Clifford bundle S is denoted by FS and is defined by
F∇ = RS + FS .

Corollary 4.4.5. For all X,Y, Z, [FS(X,Y ), c(Z)] = 0. Hence FS(X,Y ) is a C`(TM)⊗C-linear endomor-
phism of S.

This now allows us to rewrite the Bochner–Weitzenböck formula.

Lemma 4.4.6. In an orthonormal frame,∑
i,j,k

Rijk`c(eiejek) = −2
∑
j

(Ric)`jc(ej),

where Ric is the (2, 0) Ricci tensor.

Proof: If i, j, k are distinct, then eiejek − ejekei = ekeiej . But Rijk` +Rjki` +Rkij` = 0 by the 1st Bianchi
identity, so those terms vanish, as do the i = j terms. Only i = k 6= j and i 6= k = j remain. So∑

j,k
j 6=k

Rkjk`c(ekejek) +
∑
i,k
i6=k

Rikk`c(eiekek) =
∑
j,k

Rkjk`c(ej) +
∑
i,k

Rikk`c(ei)

= −2
∑
j,k

Rjkk`c(ej)

= −2
∑
j

(Ric)j`c(ej).

�

Corollary 4.4.7. For F̂S =
∑
i<j F

S(ei, ej)ei · ej and K =
∑
i<j F

∇(ei, ej)ei · ej the scalar curvature,

D2 = ∇∗∇+ 1
4K + F̂S .
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Proof: We already know that D2 = ∇∗∇+K. We just need to show that
∑
i<j ei · ejRs(eiej) = 1

4K. Well,

∑
i<j

ei · ejRS(ei, ej) =
1

4

∑
i<j

∑
k,`

R(ei, ej , ek, e`)ei · ej · ek · e`

=
1

8

∑
i,j,k,`

Rijk`ei · ej · ek · e`

=
−2

8

∑
j,`

(Ric)`jej · e`

=
−1

4

n∑
j=1

(Ric)jje
2
j

=
1

4

∑
j

(Ric)jj

=
1

4
K.

�

Recall that a Clifford bundle S has the property that each fiber Sp over p ∈ M is a representation of

C`(TM)⊗C. From now on, we will assume that
1. n = 2m is always even (otherwise ind(D+) = 0), and

2. Sp is an irreducible representation of C`(TpM)⊗C.
We assume 2. because if we don’t, then the algebra is much messier. Moreover, for the special cases of
Chern–Gauss–Bonnet, the signature theorem, Hirzebruch–Riemann–Roch, the assumption holds. Note that
for the first two, S =

∧•
(T ∗M)⊗C and D = d+d∗, but they have different splittings. For the last theorem,

S =
∧0,•

(T ∗M) and D = ∂ + ∂
∗
.

Recall that there is exactly one non-trivial irreducible representation ∆ of C`(R2m)⊗C of dimension 22m = 2n

(up to isomorphism). For us, S will be of rank 2n, as the main example will have S =
∧•

(T ∗M)⊗C, which
has rank 2n.

Example 4.4.8. Recall the definition of a Z/2Z-graded (or supersymmetric) Clifford bundle S = S+⊕S−.
For example, we have S =

∧•
(T ∗M)⊗C. If v ∈ Γ(TM) and α ∈ Γ(S), then v · α = v ∧ α− v α.

Definition 4.4.9. Let S be Z/2Z graded. given A,B ∈ End(S), define the supercommutator of A and B
with respect to S by

[A,B]S =

{
[A,B] if A or B are even

{A,B} = AB +BA if A and B are odd
.

An endomorphism A is even if A(S±) ⊂ S±, i.e. A =
[
α 0
0 β

]
. Similarly, A is odd if A(S±) ⊂ S∓, i.e.

A =
[

0 δ
γ 0

]
.

Lemma 4.4.10. If P = [A,B]S is a supercommutator, then str(P ) = 0.

Proof: There are 3 cases to check. First note that by writing A = A+ +A− and B = B+ +B−, we have that

[A,B]S = [A+, B+] + [A+, B−] + [A−, B+] + {A−, B−}.

Case 1: A and B are both even. Then [A,B]S = [A,B] and

A =

[
α 0
0 β

]
, B =

[
γ 0
0 δ

]
implies [A,B] =

[
[α, γ] 0

0 [β, γ]

]
,
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so str([A,B]S) = str([A,B]) = Tr([α, γ])− Tr([β, δ]) = 0.
Case 2: One of A,B is even, one is odd. Then [A,B]S = [A,B] = [ 0 ∗

∗ 0 ], so str([A,B]S) = 0.
Case 3: A and B are both odd. Then for A,B as above,

[A,B]S = {A,B} =

[
αγ + δβ 0

0 βδ + γδ

]
.

Hence str([A,B]S) = Tr(αγ + δβ)− Tr(βδ + γα) = 0. �

Remark 4.4.11. Consider α ∈ Γ(C`(TM) ⊗C), so αp ∈ C`(TpM) ⊗C ∼= End(Sp), with αp(sp) = αp · sp
the Clifford action. Then str(α) ∈ C∞C (M). Let e1, . . . , en be a local orthonormal frame of M . Let
I = {i1 < · · · < ik : ij ∈ {1, . . . , n} ∀ j}. Define eI = ei1 · · · eik . Then

α =
∑

all multi-
indices I

αIeI and str(α) =
∑

all multi-
indices I

αIstr(eI).

Note that at some fixed I,

[ea, ea · eI ]S = ea · ea · eI − (−1)k+1ea · eI · ea = e2
a · eI − (−1)e2

a · eI = −2eI ,

so eI = [ea,− 1
2ea · eI ]S . Hence str(eI) = 0 unless I = {1, 2, . . . , n}.

Remark 4.4.12. Let Γ = e1 · · · en. What is str(Γ)? To compute this, recall that we found an explicit

realization of ∆, the unique non-trivial irreducible representation of C`(R2m) ⊗ C. We described ∆ as
follows: Let J be a complex structure on R2m = V . Then

VC = V ⊗C = V 1,0 ⊕ V 0,1 and ∆ =
∧•

(V 1,0),

where V 1,0 and V 0,1 are the ±i-eigenspaces of J , respectively, and ∆ is given as a complex vector space of

dimension 22m = 2n. Then ∆ becomes a C`(V )⊗C-module by letting, for all α ∈
∧•

(V 1,0), v+w ∈ V ⊗C
with v ∈ V 1,0 and w =∈ V 0,1 (so w ∈ V 1,0),

v · α =
√

2v ∧ α and w · α = −
√

2w α.

This satisfies x ·y ·α+y ·x ·α = −2 〈x, y〉α for all x, y ∈ V ⊗C. Next, choose a basis e1, . . . , em, Je1, . . . , Jem
of V . Let

vj = 1√
2
(ej − iJej) ∈ V 1,0

wj = 1√
2
(ej + iJej) = vj ∈ V 1,0 and

ej = (vj + wj)/
√

2

Jej = i(vj − wj)/
√

2
.

Then ej · α = vj ∧ α − wj α = vj ∧ α − vj α. For α ∈ ∆, (Jej) · α = i(vj ∧ α + vj α), so letting
α = vi1 ∧ · · · ∧ vik ∈ ∆, we then have that

vj ∧ (vj α) =

{
α if j ∈ {i1, . . . , ik}
0 if j 6∈ {i1, . . . , ik}

and vj (vj ∧ α) =

{
0 if j ∈ {i1, . . . , ik}
α if j 6∈ {i1, . . . , ik}

.

Hence Γ · α = (e1 · Je1) · · · (em · Jem) · α, where Γ = e1 · Je1 · · · em · Jem has the standard orientation. Also,

ej · (Jej) · α = ej · (i(vj ∧ α+ vj α)) = i(vj ∧ (vj α)− vj (vj ∧ α)),

so Γ · α = im(−1)m−kα, where m− k is the number of vjs not in {i1, . . . , ik}. Hence

str(Γ) =
∑
J

(−1)|J| 〈Γ · vJ , vJ〉 =
∑
J

(−1)|J|
〈
im(−1)m−|J|vJ , vJ

〉
=
∑
J

(−1)m = (−i)m2m = (−2i)m.

This allows us to conclude that if α =
∑
I αIeI , then str(α) = α1···nstr(Γ) = α1···n(−2i)m, i.e. only the top

degree component of α contributes to the supertrace. Hence we need to find a method (it will be Getzler’s

method) of picking the top degree part α1···nΓ of α ∈ C`(V ) ⊗ C. To introduce this method, we need to
discuss graded and filtered algebras.
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4.5 Graded and filtered algebras

Definition 4.5.1. Let A be an algebra over C (a vector space with associated multiplication). We say that
A is Z-graded if A =

⊕
m∈ZA

m, for Am a subspace of A and Am · An ⊂ Am+n. If α ∈ Am, we say that α
has degree m.

Example 4.5.2. The space A = C[x] is Z-graded, with Am =
{

{0} if m<0
span{xm} if m>0

.

Similarly, A =
∧•

(V ), the exterior algebra of a vector space V , is Z-graded by Am =
∧m

(V ).

Definition 4.5.3. Let A be an algebra over C. Then A is a filtered algebra if there exists a family of
subspaces Am of A, for all m ∈ Z, with Am ⊂ Am+1, Amn ⊂ Am+n, and A =

⋃
m∈ZAm.

Example 4.5.4. The space A = C`(V )⊗C, the complexified Clifford algebra of (V, 〈 · , · 〉) is filtered, with
Am being the span of Clifford products of m or fewer elements. Note that A is not Z-graded, because for
α, β the product of m,n elements, respectively, α · β may not be the product of m + n elements. However,
A is Z/2Z-graded.

The space A = D(M), the algebra of linear differential operators on C∞C (M), is filtered. We call (D(M))m
the space of differential operators of order 6 m. This is not a graded algebra.

Our main goal now is to find a way to compute str(Θn/2(p, p)) without actually computing Θn/2(p, p).

Remark 4.5.5. Note that any graded algebra is filtered, by letting Am =
⊕

n∈Z,n6mA
n. Note also for

f : A→ B a homomorphism of algebras, A filtered implies f(A) is filtered. That is,

f(Am)f(An) = f(AmAn) ⊂ f(Am+n)

as f is a homomorphism and A is filtered. Let’s use these facts to construct a canonical filtration.

Definition 4.5.6. Let A be an algebra. A filtration of A is a collection of subspaces Am ⊂ A for all m ∈ Z,
such that

⋃
m∈ZAm = A, Am ⊂ Am+1, and AmAn ⊂ Am+n.

So suppose A is an algebra, B is a subalgebra of A, and V is a subspace of A such that A is generated
by B ∪ V . We will construct a filtration on A by assigning an order to elements of B and V : an element of
B has order 0 and an element of V has order 1. Define

∗⊗
B

V = B ⊕ (B ⊗ V ⊗B)⊕ (B ⊗ V ⊗B ⊗ V ⊗B)⊕ · · · .

There exists a surjective homomorphism f :
⊗∗

B V → A. If a ∈ A is a = b1v1b2v2 · · · bkvkbk+1, then
f(b1⊗ v1⊗ · · · ⊗ bx⊗ vk ⊗ bk+1) = a. Moreover, the space

⊗∗
B V has a natural grading (where the degree is

the number of vs). So A has a canonical filtration. An element a ∈ A is of order k if it is a linear combination
of products of elements of B, V with at most k elements of V in each term.

Example 4.5.7. Consider C`(V )⊗C), the space of complexified differentials of (V, 〈 · , · 〉). Take B = C,

V = V . Then C` is generated by B ∪ V . That canonical filtration described above is the usual filtration of

C`.

Definition 4.5.8. Let A be a filtered algebra. Define (G(A))m = Am/Am−1, and G(A) =
⊕

m∈Z(G(A))m.
It is left as an exercise to show that G(A) is graded. Next, let G be graded, both A,B complex-valued
algebras. A symbol map σ• : A→ G is a collection of linear maps σm : Am → Gm for all m ∈ Z, such that

1. σm(a) = 0 if a ∈ Am−1, and
2. if a ∈ Am and b ∈ An, then σm(a) · σn(b) = σm+n(ab).
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Example 4.5.9. The map πk : Ak → Ak/Ak−1 = (G(A))k is a symbol map. Also, if we let A = C` =

C`(V )⊗C and G = G(A), then G =
∧•

(V )⊗C. We can also compute πn : (C`)n → (G(A))n, by showing
that for all 0 6 k 6 n,

πk

 ∑
multi-indices I
|I|6k

αIeI

 =
∑
|I|6k

αIei1 ∧ · · · ∧ eik .

Here the symbol map “picks out” the top degree part. This is what we need to compute str(Θn/2(p, p)).

Remark 4.5.10. Next we are going to consider a very important example. Let A = D(M), the algebra of
linear differential operators on C∞C (M). If p ∈ A, locally

p =
∑
|α|6m

fα
(
x1, . . . , xn

) ∂|α|
∂xα

,

and p is of order m. We write xα for (x1)α1 · · · (xn)αn . Note that A is filtered, with Am the set of linear
differential operators of order 6 m. We leave it as an exercise to show that this definition is independent
of coocdinates. We will now construct a symbol map σ from A = D(M) to a particular graded algebra. So
let V be a finite-dimensional vector space and let C(V ) be the C-algebra of constant coefficient differential
operators acting on C∞(V ). If {e1, . . . , en} is a basis of V , then v ∈ V is v =

∑n
k=1 x

xek, so x1, . . . , xn are
global coordinates on V . So

T ∈ C(V ) coresponds to T =
∑
|α|6k

cα
∂|α|

∂xα
.

Then C(V ) is a graded algebra, where (C(V ))m = span{ ∂
m

∂xα : |α| = m}.
Definition 4.5.11. Let M be a smooth manifold. Define C(TM) to be the bundle of algebras over M
whose fiber over p ∈ M is C(TpM). The space of sections Γ(C(TM)) is graded, by T ∈ (Γ(C(TM)))m if
Tp ∈ (C(TpM))m.

We would next like to define σ• : D(M)→ Γ(C(TM)), map from a filtered algebra to a graded algebra. Let
p ∈ (M, g), and choose normal coordinates centered at p. Let

T =
∑
|α|6m

cα(x1, . . . , xn)
∂|α|

∂xα

in this chart, for T ∈ (D(M))m. Define σm(T ) ∈ (Γ(C(TM)))m = Γ((C(TM))m), so (σm(T ))p = σm,p(T ) ∈
(C(TpM))m, and set

σm,p(T ) =
∑
|α|=m

cα(0)
∂|α|

∂xα
,

which is an mth order constant coefficient differential operator on C∞C (TpM). This is well-defined, and
σm,p(T ) = 0 if T ∈ (D(M))m−1 (you will see this is Assginment 6). Also, if T ∈ (D(M))m and U ∈ (D(M))n,
then

σm+n,p(TU) = σm,p(T ) · σn,p(U).

Remark 4.5.12. Note that D(M) is generated as an algebra by B = C∞C (M), which is of order 0, and
by the vector space W = Γ(TM), which is a smooth vector field on M . Then D(M) is the homomorphic
image of

⊗∗
BW , hence it has a canonical filtration, which coresponds to the usual filtration. So to specify a

symbol map σ on D(M), it is enough to specify the effect of σ on generators of D(M). For this σ, we then
have σ0(f) = f , i.e. σ0,p(f) = f(p) is multiplication by the constant f(p) on C∞C (TpM). Then

σ1(X) = σ1

(
ai(x

1, . . . , xn)
∂

∂xi

)
= X and σ1,p = Xp =

n∑
i=1

ai(p)
∂

∂xi
∈ (C(TpM))1.
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Remark 4.5.13. On EndC(S), the bundle of C-linear endomorphisms of a Clifford bundle S, we want

to construct a natural filtration. Recall that if n = 2m, any finite-dimensional representation of C` =

C`(R2m) ⊗ C is a direct sum of finitely many copies of ∆, the unique irreducible representation of C`,
with dim(∆) = 2m. Also, C` ∼= EndC(∆) as we saw some time ago. Hence if S is a finite-dimensional

representation of C`, then
S = ∆⊕ · · · ⊕∆︸ ︷︷ ︸

k times

∼= ∆⊗ V

for some finite-dimensional V with dim(V ) = k, such that − ⊗ v ∈ ∆ ⊗ v, and a(s ⊗ v) = (as) ⊗ v. Note
that is S = ∆⊗C V , then

Hom C` (∆, S) ∼= ∆∗ ⊗C` S ∼=
(

∆∗ ⊗C` ∆
)
⊗C V ∼= V.

Moreover, observe that

EndC(S) ∼= S∗ ⊗C S
∼= (V ∗ ⊗C ∆∗)⊗C (∆⊗C V )
∼= (∆∗ ⊗C ∆)⊗C (V ∗ ⊗C V )
∼= EndC(∆)⊗C EndC(V )

∼= C` ⊗C EndC(V ),

and

EndC(V ) ∼= V ∗ ⊗C V

∼=
(
S∗ ⊗C` ∆

)
⊗C

(
∆∗ ⊗C` S

)
∼= S∗ ⊗C` (∆⊗C ∆∗)⊗C` S
∼= S∗ ⊗C` EndC(∆)⊗C` S
∼= S∗ ⊗C` C` ⊗C` S
∼= S∗ ⊗C` S
∼= End C` (S).

Hence EndC(S) ∼= C` ⊗C End C` (S), so any C-linear endomorphism of S may be written as T =
∑
i αi ⊗ Ti

for αi ∈ C` and Ti a C`-linear endomorphism of S.

Definition 4.5.14. Let F ∈ End C` (S), and define TrS/∆(F ) = Tr(T ) to be the relative trace of F . Hence

F ↔ T under the isomorphism End C` (S) ∼= EndC(V ). It helps to think of S/∆ as V .

We now use the isomorphism EndC(S) ∼= C`⊗C End C` (S) to make EndC(S) a bundle of filtered algebras,

by using the standard filtration on C` and assigning order 0 to the elements of End C` (S). Also note that if

A, b are filtered, then A⊗B is filtered, i.e. (C` ⊗C End C` (S))m ∼= (C`)m ⊗C End C` (S).

4.6 Getzler’s method

Let D(S) be the algebra of linear differential operators acting on Γ(S). This is generated by Clifford
multiplication, covariant derivatives, and sections of End C` (S).

72



Definition 4.6.1. The Getzler filtration on D(S) is that determined by the following assignment of orders
to generators of D(S):

1. a C`-module endomorphism T ∈ End C` (S) has order 0,

2. c(X), for X ∈ Γ(TM), has order 0, and
3. ∇X , for X ∈ Γ(TM), has order 1,

where ∇ is the connection on S that makes it a Clifford bundle. With this, we would like to get a symbol
map σ• : D(S)→ G for G some graded algebra.

Definition 4.6.2. As before, V is a finite-dimensional vector space. Let P(V ) be the algebra of polynomial
coefficient linear differential operators acting on C∞C (V ). Note that

P(V ) = span

{
xα

∂|β|

∂xβ
: α, β are multi-indices

}
.

We get that P(V ) is a graded algebra, if we define xα ∂
|β|

∂xβ
to have degree |β| − |α|. Then (xα ∂

|β|

∂xβ
)(xγ ∂

|δ|

∂xδ
)

has degree |β|+ |δ| − |γ| − |α|.

Definition 4.6.3. Let (M, g) be a manifold with a metric, with p ∈M , and (x1, . . . , xn) normal coordinates
centered at p. Then P(TM) is a bundle of algebras over M with fiber (P(TM))p = P(TpM), and Γ(P(TM))
is a graded algebra. We write

U ∈ (Γ(P(TM)))m ↔ Up ∈ (P(TpM))m = span

{
xα

∂|β|

∂xβ

}
for all p ∈M .

Recall that we want a symbol map on D(S) with respect to the filtration we defined. The map will be
σ• : D(S)→ Γ(P(TM)⊗

∧•
(T ∗M)⊗ End C` (S)).

Example 4.6.4. Let (M, g) be a compact, oriented, Riemann surface. Then the Riemann curvature

operator R ∈ Ω2(End(TM)). Let Y ∈ Γ(TM) and consider the map TpM →
∧2

(T ∗pM), given by

V 7→ (Rp( · , · )Yp, V ). Explicitly, if (x1, . . . , xn) are normal coordinates centered at p and V = V i ∂
∂xi , then

V 7→ 1

2
V kY `Rijk`e

i ∧ ej

for ei = dxi|p. Identify TpM with T ∗pM using the metric g. Then this map is a degree 1 polynomial function

on TpM with vectors in
∧2

(T ∗pM). Denote it by 〈RY, · 〉, the function

1

2
XkY `Rijk`e

i ∧ ej ∈ P(TpM)⊗
∧•

(T ∗pM)⊗ End C` (S).

Proposition 4.6.5. There exists a unique symbol map σ• : D(S) → Γ(P(TM) ⊗
∧•

(T ∗M) ⊗ End C` (S))
that has the following effect on generators:

1. if F ∈ End C` (S), then σ0(F ) = F

2. if X ∈ Γ(TM), then σ1(c(X)) = X ∈
∧1

(TM)
3. if Y ∈ Γ(TM), then σ1(∇Y ) = ∂Y + 1

4 〈RY, · 〉

The proof is postponed until we can generalize this further. Also, note that

σ1(∇ei) =
∂

∂xi
− 1

8
XmRijm`e

` ∧ ej .

Remark 4.6.6. A smybol map is uniquely determined by its effect on generators. The conditions 1., 2.,
3. above uniquely determine a symbol map on

⊗∗
B V for B = End C` (S) and V = Γ(TM)⊕ Γ(TM). So we

only need to show that σ•(T ) is independent of choice of representative of T ∈ D(S) using these generators
(i.e. that it is compatible with the relations). We will accept it as fact for now.
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Example 4.6.7. Consider the expression

∇X∇Y −∇Y∇X −∇[X,Y ] = F∇(X,Y ) = RS(X,Y ) + FS(X,Y )︸ ︷︷ ︸
∈ End C` (S)

.

Both sides are in D(S), so we take the symbol σ of both sides. We take σ2 since the order is 6 2. It is
enough to show this for X = ei, Y = ej . We would like to show that

σ1(∇ei∇ej︸ ︷︷ ︸
(∗)

−∇ej∇ei) = σ2(Rs(ei, ej)).

The left side expands as

(∗) = σ1(∇ei)σ1(∇ej )− σ1(∇ej )σ1(∇ei)

=

(
∂

∂xi
− 1

8
Risk`x

sek ∧ e`
)(

∂

∂xj
− 1

8
Rjkabx

xea ∧ eb
)
− (i↔ j)

=
∂2

∂xi∂xj
−Risk`ek ∧ e`xs

∂

∂xs
− · · ·

=
1

4
Rijabe

a ∧ ab.

Some calculations are ommitted because hey, who the fuck wants to do this shit anyways. The right side
expands to the same expression, yielding the desired result and justifying the definition of σ1(∇X).

Example 4.6.8. Let D be the Dirac operator on S, so D =
∑n
i=1 c(ei) in an orthonormal frame. This has

Getzler order 2, i.e. the order of the element in the filtered algebra is 2. So

σ2(D) =

n∑
i=1

σ1(c(ei))σ1(∇ei)

=

n∑
i=1

ei

 ∂

∂xi
− 1

8

∑
j,k,`

Rijk`x
jek ∧ e`


=

n∑
i=1

ei
∂

∂xi
− 1

8

∑
i,j,k`

Rijk`x
jei ∧ ek ∧ e`

=

n∑
i=1

ei
∂

∂xi

by the 1st Bianchi identity. Also

σ2(D) =

n∑
i=1

ei
∂

∂xi
= dTpM,

which is the exterior derivative on the smooth manifold TpM .

Corollary 4.6.9.
σ4(D2) = σ2(D) · σ2(D) = dTM · dTM = 0,

so D2 has actually Getzler order < 4. We will see that D2 has Getzler order 2.

Example 4.6.10. D2 has Getzler order 2 and

σ2(D2) = −
n∑
i=1

2 ∂

∂xi
− 1

4

n∑
j=1

Rijx
j


︸ ︷︷ ︸

σ1(∇ei )

+FS ,
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where Rij ∈
∧2

(T ∗pM).

Proof: We showed that D2 = ∇∗∇+ 1
4K + c(FS). In local coordinates,

∇∗∇ =
∑
j,k

(
−gjk∇j∇k − Γijk∇i

)
,

σ2(∇∗∇) = −
n∑
i=1

σ2(∇i∇i)

= −
n∑
i=1

σ1(∇i)σ1(∇i)

= · · · .

This apparently completes the proof. �

Remark 4.6.11. We would now like to apply Getzler symbol calculus to the asymptotic expansion of the
heat kernel. Recall that

ht(p, q) ∼
1

(4πt)n/2
exp

(
−dist(p, q)2

4t

)( ∞∑
k=0

tkΘk(p, q)

)
,

with Θ0(p, p) = idSp . This is not in D(S); it is the kernel of a smoothing operator. We have σ• : D(S) →
Γ(P(TM) ⊗

∧•
(T ∗M) ⊗ End C` (S)). The idea is to replace polynomials by formal power series. Note that

D(S) acts on kernels of smoothing operators.

Definition 4.6.12. Let V be a finite-dimensional vector space. Let C[[V ]] be the ring of formal power
series on V . That is, if (e1, . . . , en) is the basis of V , then for v ∈ V , v =

∑n
i=1 x

iei an element of C[[V ]] is
a formal series ∑

α

cαx
α =

∑
α

cα(x1)α1 · · · (xn)αn .

Note that P(V ) acts naturally on C[[V ]]:(
xγ
∂|δ|

∂xδ

)(∑
α

cαx
α

)
=
∑
α

cαx
α

(
∂|δ|

∂xδ
xα
)
.

The space C[[V ]] is graded, where deg(xα) = −|α|. The gradings are compatible with the action. That is,
if p ∈ (P(V ))m and a ∈ (C[[V ]])n, then pa ∈ (C[[V ]])m+n.

Remark 4.6.13. We will now define a filtration on Γ(S � S∗) and an induced map

σ• : Γ(S � S∗)→ Γ
(
C[[TM ]]⊗

∧•
(T ∗M)⊗ End C` (S)

)
.

Let s ∈ Γ(S � S∗). Fix q ∈ M , fix normal coordinates (x1, . . . , xn) centered at q. Let t1|q, . . . , tr|q be an
orthonormal frame on Sq. Define t1, . . . , tr in the domain U of normal coordinates by parallel transport [..]
Each ti has ∇ ∂

∂r
ti = 0 on U and ∇Xq ti = 0 for all Xq ∈ TqM . Consider the map

p 7→ S(p, q) ∈ End(Sq, Sp).

We can write this map with respect to the coordinates (x1, . . . , xn) in this frame as

(x1, . . . , xn) 7→
r∑
i=1

r∑
j=1

Sij(x
1, . . . , xn)ti(x)⊗ t∗j (0) = Sq(x

1, . . . , xn).
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Expand Sq(x
1, . . . , xn) in a Taylor series at the origin. Sq(x

1, . . . , xn) ∼
∑
α sαx

α, where sα are sections of
S ⊗ S∗q that are parallel along radial geodesics emanating from q, i.e.

sα =

r∑
i,j=1

cα

(
∂|α|Sij(0)

∂xα

)
ti(x)⊗ t∗j (0).

Note that since sα is determined by it value sα(0) at q. We may think of this as an element of C[[TqM ]]⊗
End(Sq). Hence, as q varies over M , we get a soction of the bundle C[[TM ]]⊗End(S), which is filtered. So

since C[[TqM ]] is graded and End(Sq) has the canonical filtration, End(Sq) ∼= C` ⊗ End C` (Sq).

Definition 4.6.14. Define a filtration on Γ(S � S∗ as follows: s ∈ Γ(S � S∗) has order 6 m if its Taylor
series at q has order 6 m, at each point q ∈M . We then get a symbol map

σ• : Γ(S � S∗)→ Γ
(
C[[TM ]]⊗

∧•
(T ∗M)⊗ End C` (S)

)
,

where σm(s) is a section of the image. We define σ0
m(s) to be the constant term in this power series.

Theorem 4.6.15. [Main Theorem]
Let T ∈ D(S) be one of the operators described before. Let m ∈ {0, 1} be the Getzler order of T . Let
Q ∈ Γ(S � S∗) be of Getzler order 6 k. Then TQ ∈ Γ(S � S∗) has Getzler order 6 m+ k, and

σm+k(TQ) = σm(T ) · σk(Q), (21)

where the left side and the second factor on the right are symbols on Γ(S � S∗), and the first factor on the
right is a symbol on D(S). This works for:

· T = F ∈ Γ(End C` (S)),

· T = c(X) for X ∈ Γ(TM),
· T = ∇X for X ∈ Γ(TM).

Proof: Fix q ∈M , normal coordinates (x1, . . . , xn) centered at q. Let sq(x) ∼
∑
α sαx

α be the Taylor series
of sq(x) at q. We would like to verify (21) for the three T s described above. First, if T = F ∈ End C` (S) and
∇F = 0 at q, then the Taylor coefficients of Fs are Fsα. So, when m = 0,

σk(Fs) = Fσk(s) = σ0(F )σk(s).

In general, let F0 be the parallel transport of F |q along radial geodesics emanating from q. Then ∇F0 = 0
at q and F − F0 tas vanishing constant terms in its Taylor expansion at q. Hence σ0(F − F0) = 0, since σ0

picks out the constant term. Hence

σk(Fs) = σk(F0s)σk(s) = σ0(F )σk(s),

by the above. Case 2, T = c(X), is identical to the above case. For the third case, let T = ∇X , which is
linear in X, so it is enough to prove it for X = ∂

∂xi . Let Y = r ∂∂r = xi ∂
∂xi . First we assume that s is parallel

along radial geodesics emanating from q (this is a shot special case). Then ∇ ∂
∂r
s = 0 everywhere, so ∇Y = 0

everywhere. Then for ∇Xs ∼
∑
α tαx

α,

∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s = F∇(X,Y )s.

Also note that [
∂

∂xi
, xj

∂

∂xj

]
=

∂

∂xi
= X , Y (xα) = xj

∂

∂xj
(xα) = |α|xα,

so the equation above becomes 0−∇Y (∇Xs)−∇Xs = F∇(X,Y )s. Replace by the Taylor expansion of ∇Xs
to get

−∇Y (tαx
α)− tαxα ∼ F∇(X,Y )s,

−(|α|+ 1)tαx
α ∼ F∇(X,Y )s =

∑
j

Fijx
js,

76



where the last term has order 6 k+ 1, Fij having order 2, xj having order −1, and s having order k. So the
Taylor coefficients of ∇Xs are determined by the Taylor coefficients of F∇. Next, equate powers of x and
keep terms of order 6 k + 1 on both sides to get

−
n∑
j=1

2tjx
j =

∑
j

xjRS
(

∂

∂xi
,
∂

∂xj

)
s+ (linear order)

=⇒ tj = −1

2
RS
(

∂

∂xi
,
∂

∂xj

)
s,

σ2

(
RS
(

∂

∂xi
,
∂

∂xj

))
= σ2

(
1

4
Rijk`c(e

k) ∧ c(e`)
)

=
1

4
Rijk`e

k ∧ e` =
1

2
Rij .

Now take σk+1 of both sides, so σk+1(∇Xs) = σk+1(tαx
α) = − 1

4Rijx
j ∧ σk(s). That concludes the special

case. Now for the general case, where s ∼
∑
α sαx

α. Then

∇ ∂

∂xi
∼
∑
j

(∇isα)xα +
∑
i

sα

(
∂

∂xi
sα
)
,

and

σk+1

(
∇ ∂

∂xi
s
)

= −1

4
Rijx

j ∧ σk+|α|(sα)xα +
∂

∂xi
(σk(s)) =

(
∂

∂xi
− 1

4
Rijx

j

)
∧ σk(s) = σ1(∇X)σk(s).

�

Corollary 4.6.16. The Getzler symbol on D(S) is well-defined.

Proof: Let T ∈ D(S). Let T̃ be a partial representation of T in a basis of generators T = T1, . . . , Tk of order

6 k. Then by the main theorem, σ`+k(Ts) = σ`(T )σk(s). Since this holds for all s ∈ Γ(S � S∗), σ`(T̃ ) is
uniquely determined by T . Hence σ• is well-defined on D(S). �

Recall that we wanted str(Θn/2(p, p)). Let’s now apply the Getzler formalism to the heat kernel ht.

Theorem 4.6.17. The terms Θk(p, q) have Getzler order 6 2k and the heat symbol, defined as

Wt = W = ρt

(
σ0(Θ0) + tσ2(Θ1) + t2σ4(Θ2) + · · ·+ tm/2σn(Θn/2)

)
,

satisfies the equation
∂W

∂t
+ σ2(D2)W = 0 (22)

and is the unique solution of this equation of the form ρt(v0 + tv1 + · · · + tm/2vm/2), where vj is a symbol
of Getzler order 6 2j and v0 = 1.

Proof: Recall that in normal coordinates centered at q ∈M , ht(x) ∼ ρt(x)(v0(x) + tv1(x) + · · · ) such that

∇ ∂
∂r

(
rkg1/4uk

)
= −rk−1g1/4D2uk−1 , u−1 = 0. (23)

These equations determine the uk uniquely, given v0(q) = id. We will take the Taylor series of both sides.
Our aim is to prove uk has Getzler order 6 2k, by induction. First, v0 = id ∈ End C` (S), so order(v0) = 0.

Let k > 1 and assume that uk−1 has Getzler order 6 2(k − 1). Take σ of both sides and use the fact that
D2 has Getzler order 2, to get

rk−1g1/4uk + rk
(
∇ ∂

∂r
g1/4

)
uk + rkg1/4∇ ∂

∂r
uk = −rk−1g1/4D2uk−1.
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Let a be the Getzler order of uk and b the Getzler order of rkg1/4. Then everything on the left has Getzler
order b+ 1 + a. And on the right, everything has order b+ 1 + 2 + 2(k− 1), so equating, we get that a = 2k.
So uk has Getzler order 6 2k. Then σ2k+1−k of both sides of (23) implies that

∂

∂r

(
rkσ2k(uk)

)
= −rk−1σ2(D2)σ2k−2(uk−1).

But this is exactly the recurrence relation satisfied by the heat symbol W . We don’t have to find the heat
kernel ht for all terms in the asymptotic expansion or even the first n/2 terms to get the sum of their symbols.
Let aij be a skew-symmetric real n × n matrix, for n = 2m, and b ∈ R. Consider the differential equation
on Rn given by

∂W

∂t
−

n∑
i=1

 ∂

∂xi
− 1

4

n∑
j=1

aijx
j

2

W + bW = 0. (24)

We want to show that this has a solution for small t. It is an analytic function of b and the aijs, and is
asymptotic to exp(−|X|/(4t))/(4πt)n/2 as t → 0. The first step is to let W = e−tbW0(x1, . . . , xn, t) such
that

∂W

∂t
= −bW + e−tb

∂W0

∂t
and

∂W0

∂t
−

n∑
i=1

(
∂

∂xi
− 1

4
aijx

j

)2

W0 = 0

are satisfied. Since aij is skew-symmetric, there exists an orthonormal basis e1, f1, . . . , em, fm of R2m and
corresponding coordinates u1, v1, . . . , um, vm where the bilinear form becomes

a =



0 λ1

−λ1 0
0 λ2

−λ2 0
. . .

0 λk
−λk 0


,

with zeroes in the empty spots. In this new coordinate system (check this),

∂W

∂t
−

m∑
i=1

(
∂

∂xi
− 1

4
λiv

i

)2

W −
m∑
i=1

(
∂

∂xi
+

1

4
λiu

i

)2

W = 0.

Now use the separation of variables. Assume that it is a function of several variables and check it reduces to

∂Wi

∂t
−
(

∂

∂xi
− 1

4
λiv

i

)2

Wi −
(

∂

∂xi
+

1

4
λiu

i

)2

Wi = 0,

so we are now reduced to solving

∂W

∂t
−
(
∂

∂u
− λv

4

)2

W −
(
∂

∂v
+
λu

4

)2

W = 0.

For W = W (u, v, t), we leave it as an exercise to show that

W (u, v, t) =
1√
4πt

(
itλ/2

sinh(itλ/2)

)1/2

exp

(
−iλ

8
(u2 + v2) coth(itλ/2)

)
.
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Hence

W = e−tbW1W2 · · ·Wm

=
1

(4πt)n/2

(
det

(
ta/2

sinh(ta/2)

))1/2

exp

(
−1

4t

〈
ta

2
coth(ta/2)X,X

〉)
e−tb

t→0−−−−→ exp

(
−|X|2

4t

)
.

So this solves (24). Next, recall we saw σ2(D2) = −
∑n
i=1( ∂

∂xi −
1
4Rijx

j)2 + FS , which is a differential
operator on C∞(TqM). Hence Rij = 1

2Rijk`e
k∧e` is a skew-symmetric matrix whose entries are 2-forms. So

FS is a 2-form with sections in End C` (S), so the Rij and FS terms all commute. Since 2-forms are nilpotent
elements of the exterior algebra,

W =
1

(4πt)n/2

(
det

(
tR/2

sinh(tR/2)

))1/2

exp

(
−1

4t

〈
tR

2
coth(tR/2)X,X

〉)
exp(−tFS)

is a formal power series and solves (22). �

So W is of the form W = 1
(4πt)n/2

(v0 +tv1 + · · ·+tn/2vn/2), where vk has Getzler order 6 2k and v0(0) = 1

(by explicit calculation). Hence we have shown the following:

Proposition 4.6.18. With notation as above,

n/2∑
k=0

σ0
2k(Θk) =

(
det

(
R/2

sinh(R/2)

))1/2

e−F
S

∈ Γ
(∧•

(T ∗M)⊗ End C` (S)
)
.

Theorem 4.6.19. [Atiyah, Singer (1960s-1980s)]
With notation as above,

ind(D+) =

∫
M

(
det

(
R/4πi

sinh(R/4πi)

))1/2

TrS/∆e−F
S/2πi.

Proof: We have shown, by McKean–Singer, that ind(D+) = 1
(4π)n/2

∫
M

str(Θn/2), but Θn/2 ∈ Γ(EndC(S)) =

Γ(C` ⊗C End C` (S)), and by a previous result,

str(Θn/2) = (−2i)m
(
Θn/2

)
Γ︸ ︷︷ ︸

top degree
part of Θn/2

,

so str(Θn/2) = (−2i)n/2TrS/∆σ0
n(Θn/2), so we get

ind(D+) =
1

(4π)n/2
(−2i)n/2

∫
M

(
det

(
R/2

sinh(R/2)

))1/2

TrS/∆e−F
S

.

Replace R and FS by 1
2πiR and 1

2πiF
S , respectively, to get the result. �

Remark 4.6.20. If F is the curvature of a connection E, then (det( F/4πi
sinh(F/4πi) ))1/2 is the Â-genus of E. This

is a closed mixed degree form whose cohomology class is independent of ∇. Also, TrS/∆e−F
S/2πi = ch(S/∆)

is called the relative Chern character of S. So the index theorem may be written as

ind(D+) =

∫
M

Â(TM)ch(S/∆) =
(
Â(TM) ^ ch(S/∆)

)
[M ].

79



Finally, consider some special cases of the theorem:

Theorem 4.6.21. [Chern, Gauss, Bonnet]

χ(M2m) =

∫
M

e(TM),

where e is the Euler class, S =
∧•

(T ∗M)⊗C, and D = d+ d∗.

Theorem 4.6.22. [Signature theorem]
Using the same S and D as above, but with a different splitting S = S+ ⊕ S−,

sign(M4k) =

∫
M

α(TM) , α(TM) =

(
det

(
R/2πi

tanh(R/2πi)

))1/2

,

where n = 4k.

Theorem 4.6.23. [Hirzebruch, Riemann, Roch]

χC(M2m) =

m∑
k=0

(−1)k dim(H0,k(M)) =

∫
td(T 1,0M)ch(TM),

where χC is the holomorphic genus, S =
∧•

(T 0,1M) and D = δ + δ∗.
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Index of notation

gαβ transition function 4

Hom(E,F ), End(E),Aut(E) set of bundle morphisms, endomorphisms, and automorphisms 5

KPn K-projective space 6

f∗E pullback bundle of E by f 7

sp section at p 8

Γ(E) space of sections on E 8

Ωk(M) space of sections on k-forms of M 8

det(E) determinant line bundle 9

ER underlying real vector bundle of E 10

∇,∇Xs connection, covariant derivative 11

AE space of connections on E 11

∇0 trivial connection 12

F, F∇ curvature (of a connection ∇) 15

d∇ generalization of differential d 16

[ · , · ] bracket on k-forms and `-forms of M 22

ck(E,∇), ck(E), c(E) Chern form, class, total class of E 24

chk(E,∇), chk(E), ch(E) Chern character form, character, total character of E 25

End−(E) set of endomorphisms that are infinitesimal isometries on p 25

tdk(E,∇), tdk(E), td(E) Todd form, class, total class of E 25

pk(E), p(E) Pontryagin class, total class of E 27

C`(V, 〈 · , · 〉), C`(V ) Clifford algebra associated to V and 〈 · , · 〉 28

D Dirac operator 29

∇∗ adjoint of the connection ∇ 30

〈〈 ·, · 〉〉 inner product on Γ(S) or Γ(T ∗M ⊗ S) 31

∗ Hodge star operator 33

], [ sharp and flat musical isomorphisms 34

α β interior product of α and β 34

d∗ formal adjoint of d 34

d+ d∗ Hodge–de Rham operator 35

∆d Hodge Laplacian 35

Cen(E) centralizer of the representation E 36

∆ spin representation 36

Tn n-dimensional torus 37

ap, f̂p, f̂(p) pth Fourier coefficient for f 37

W k(E) space of functions that converge in L2-norm, equivalently Lk2(E) 38

〈 · , · 〉k Sobolev kth inner product 38

ΓP graph of an operator P 42

σ(D) spectrum of an operator D 46

Hi(V •, P•) subspace of P -harmonic elements of V i P 47

ind(P ) index of an operator P 50
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E grading operator 51

str(T ) supertrace of an operator T 52

S2 � S2 box tensor of two bundles S1 and S2 53

(ht)t>0 heat kernel 55

Ŝ � S∗ hat box tensor of a bundle S 55

f(t) ∼
∑∞
k=0 ak(t)

the formal series
∑∞
k=0 ak(t) is an asymptotic expansion for f

near t = 0
59

ρt(p, q), Θk(p, q) auxiliary functions in asymptotic expansion of heat kernel 60

c Clifford multiplication 66

RS Riemann endomorphism 66

FS twisting curvature 67

[ · , · ]S supercommutator of elements of End(S) for S supersymmetric 68

D(M) algebra of linear differential operators on C∞C (M) 70

G(A) graded algebra of a filtered algebra A 70

σ• symbol map 70

C(V ) algebra of constant coeff. diff. operators acting on C∞(V ) 71

TrS/∆(F ) relative trace of F 72

P(V ) algebra of poly. coeff. lin. diff. operators 73

C[[V ]] ring of formal power series on V 75

ch(S/∆) relative Chern character of S ??

Index

A-hat genus, 51, 79
adjoint, 30, 31

formal, 34
self-, 32

algebra
filtered, 70
graded, 70
of linear diferential

operators, 70
approximate heat kernel, 60
asymptotic expansion, 59
Atiyah–Singer theorem, 51

base space, 2
Bianchi identity, 19
Bochner–Weitzenböck

formula, 32
bootstrapping, 46
box tensor, 53
bracket ([ · , · ]), 22
bundle

Clifford, 30
conjugate, 10
line, 4

pullback, 7
tautological, 6
trivial, 4

bundle isomorphism, 5

center, 36
centralizer, 36
Chern

character, 25
character, relative, 79
class, 24

Chern–Weil theorem, 23
Clifford algebra, 27

complexified, 28
Clifford bundle, 30
compatible connection, 15
complex

Dirac, 48
complexified Clifford algebra,

28
conjugacy class, 36
conjugate bundle, 10
conjugate heat operator, 64
connection, 11

flat, 20
trivial, 12

connection Laplacian, 30
convolution, 44
covariant derivative, 11
curvature, 15

scalar, 67
twisting, 67

Dirac complex, 48
Dirac operator, 29, 30

Euler characteristic, 47
exactness, 47

fiber, 2
fiber metric

Hermitian, 10
Riemannian, 9

filtered algebra, 70
filtration, 70

Getzler, 73
flat connection, 20
formal adjoint, 34
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Fourier series, 37
Frechet topology, 38
Fredholm operator, 50
fundamental class, 51

G̊arding’s inequality, 41
Getzler filtration, 73
Getzler order, 74
gluing cocycle, 4
graded algebra, 70
graded operator, 50
grading operator, 50
graph, 42
Green’s operator, 49

harmonic elements, 47
heat kernel, 55
heat symbol, 77
Hermitian fiber metric, 10
Hodge Laplacian, 35
Hodge star, 33
Hodge theorem, 47, 49
Hodge–de Rham operator, 35
homogeneous map, 21

index
of an operator, 50

integral kernel, 53
interior prouct, 34
invariant map, 21
inversion theorem, 37

kernel, 43, 53

Laplacian, 29
Hodge, 35

Leibniz rule, 11
line bundle, 4
local trivialization, 3

McKean–Singer formula, 57
metric

Hermitian fiber, 10
Riemannian fiber, 9

mollifier, 43

multiplicity, 53
musical isomorphism, 34

operator
box tensor, 53
Dirac, 29
Fredholm, 50
graded, 50
grading, 50
Green’s, 49
smoothing, 43
supersymmetric, 50
unbounded, 42

order
Getzler, 74

orientability, 9

Plancherel’s theorem, 37
polarization, 21
Pontryagin class, 27
pullback bundle, 7
pullback of sections, 9

relative Chern character, 79
relative trace, 72
Rellich lemma, 39
Ricci tensor, 67
Riemann endomorphism, 66
Riemannian fiber metric, 9
ring of formal power series, 75

scalar curvature, 67
section, 8
self-adjoint, 32
sharp, 34
signature theorem, 80
smooth structure, 2
smoothing operator, 43
Sobolev k-inner product, 38
Sobolev embedding theorem,

38
spectral theorem, 46
spectrum, 46
spin representation, 36
SpinC manifold, 37

star (operator), 33
strong proposition, 44
submersion, 3
supercommutator, 68
superstructure, 50
supersymmetric operator, 50
supersymmetry, 52
supertrace, 52
symbol map, 70

tautological bundle, 6
theorem

Atiyah–Singer, 51
Chern–Weil, 23
Hodge, 47, 49
inversion, 37
Plancherel’s, 37
signature, 80
Sobolev embedding, 38

Todd class, 25
total

Chern character, 25
Chern class, 24
Pontryagin class, 27
Todd class, 25

total space, 2
trace

relative, 72
transition function, 4
trivial bundle, 4, 5
trivial connection, 12
trivialization

global, 4
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twisting curvature, 67

unbounded operator, 42

vector bundle, 2
vector bundle isomorphism, 5
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