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0.1 Introduction

The Atiyah-Singer index theorem (1962-8) is the most important mathematical result of the 20th century.
It combines geometry, topology, algebra, and analysis. It is the generalization of several theorems, among
them the following;:

- Gauss—Bonnet: For M? compact, oriented in R?, fMQ KdA = 27x = 27(29 — 2), where K is the Gauss
curvature and x is the Euler characteristic of M?2.

- Gauss-Bonnet-Chern: For M?" a compact, oriented Riemann 2n-manifold, [ apzn €(M) = (27)x, where
e is the Euler form.

- Riemann-Roch: For X a Riemann surface and L a holomorphic vector bundle over X, h°(X,L) —
RY(X,N7! @ K) = deg(L) + 1 — g, where h° is the dimension of the space of holomorphic sections, and g is
the genus.

- Riemann—Roch—Hirzebruch: For X a compact oriented manifold, E a holomorphic vector bundle, the
holomorphic Euler characteristic of E is x(X, E) = (alternating sum of dimensions of sheaf cohomology
groups) = [y ¢(E)Td(X), where ¢ is the Chern class and Td is the Todd character.

- Hirzebruch signature theorem: Let M*™ be a compact, oriented manifold. Then there exists an in-

tersection form H?"(M,R), a symmetric bilinear form of the signature (p,q). The theorem says that
sign(M) =p—q = [y;an L(M), where L is the L-genus.

- Lefschetz fixed-point theorem.

All of these results are of the form (integral of curvature stuff) = (topological invariants). The Atiyah—Singer
theorem states that this also equals the index of an elliptic operator, which is

ind(p) = dim(ker(p)) — dim(coker(p)) = / (char. classes of E,F') - (homotopy class of symbol of p),
M

where, given two vector bundles E — M and F — M, the map p : E — F relates the two total spaces.

Remark 0.1.1. Consider a “baby” version of the Atiyah—Singer theorem. Suppose V™ W™ are finite-
dimensional real vector spaces, and p : V' — W is a linear map. Then ker(p) is a subspace of V' and measures
the failure of p to be injective. Similarly, coker(p) = W/Im(p) is a quotiont space of W that measures the
failure of p to be surjective. Then

ind(p) = dim(ker(p)) — dim(coker(p)) = dim(ker(p)) — (dim(W) — dim(Im(p))) = dim(V) — dim(W).
So, with reference to solutions for the above, ker is an obstruction to solutions existing, and coker is an
obstruction to solutions being unique.

Remark 0.1.2. In this course, we will make the following assumptions:
- All manifolds are Hausdorff and 2nd-countable (so we have partitions of unity)
- All manifolds are smooth and with a fixed smooth structure
- All maps are smooth (i.e. C'°°), unless otherwise stated

Definition 0.1.3. A smooth structure on a manifold M™ is a collection of atlases with smooth transition
functions, where an atlas is a collection of charts that cover all of M™, such that the union of any two
of these atlases is also an atlas with smooth transition functions.

1 Vector bundles

1.1 k-vector bundles

Definition 1.1.1. Let r > 0 be an integer. A smooth K-vector bundle of rank r over a smooth manifold
M™, termed the base space, is given by (FE, M, ), where



- F is a smooth manifold, termed the total space

-7 : E— M is a smooth surjective submersion (i.e. (7.)e : TeE — Tyr(eyM is surjective for all e € E)

-for all p € M, we call E, = 7 *(p) the fiber of E over p. Each E, has the structure of an r-dimensional
vector space over K. Notice that £ = |—|pe v Ep, so E is a disjoint union of k-vector spaces.

- for all p € M, there exists a (not unique) open neighborhood U 3 p and a diffeomorphism ¢ : 7= 1(U) —
U x K" such that
¥

7 1(U) Ux K"
U

commutes, i.e. T op = 7,50 p(e) = (m(e), f(e)) for f: 71 (U) — K" smooth and such that elp, = {p}xK"
is a linear isomorphism of K-vector spaces.

What does the above mean? It means that E is a family of r-dimensional vector spaces over K,
parametrized by M, such that, locally (near any p € M), this family is a “trivial” cartesian product.
That is, we have the following action:

UxK"

The second-last coondition in the definition above says that ¢ is fiber-preserving. The last condition
says that fibers are mapped to corresponding fibers linearly isomorphically. Further, the pair (U, ) is called
a local trivialization of the bundle (E, M, 7). note we can always shrink U so that U is the domain of a
coordinate chart for M but we don’t need to.

It follows from the definition of the vector bundle that dim(F) = n + r, if K = R, or dim(E) = n + 2r, if
K=C.

Example 1.1.2. Consider the following examples of vector bundles:

- Let M be an n-manifold. The tangent bundle of M is (T'M, M, ), which is a rank n real vector bundle
on M. The induced charts T, : ¢~ (U) — ¢(U) x R", where (U, ¢) is a chart for M satisfying conditions
for a local trivialization.

- T*M is also a rank n real vector bundle over M, the cotangent bundle.

- For k,£ > 0, Tf(M) = bundle of type (k, f)-tensors on M. The fiber over p is (QF TyM)® (R®° T,M).
This is a real vector bundle over M of rank k + .

- For 0 < k < n, N*(T*M) = bundle of k-forms on M. This is a vector bundle of rank ().

Remark 1.1.3. The above are “intrinsic” vector bundles, which are defined given only the base M. There
exist also extrinsic bundles, the most important of which will be the spinor bundle. Another example is the



Mébius bundle, which is a rank-1 non-trivial bundle over S?'.

St /i/ v  R!
~—| (\—/
Definition 1.1.4. A rank-1 vector bundle is called a line bundle. The rank r bundle 7 : M x K" — M by

m(p,v) = v is called the t¢rivial rank r bundle over M. This is called a trivial bundle because there exists a
“global trivialization,” i.e. a trivialization with domain all of ¢.

We now need to define an appropriate notion of equivalence (isomorphism) of vector bundles. Before
we define this, we will define “gluing cocycles” and “transition maps.” To construct the context, first let
(E, M, ) be a vector bundle over K and (U, o) a cover of M by local trivializations of £, so M = [J,¢c 4 Ua-

g o ot | (UanUs)xK" (UaNUp) xK" — (U, NUg) x K"

EP Eq
E
// \\\ﬁ\ Y
D T4 | —
i
U,nUs ¥ ©p
7T_1(Ua)

71 (Ug)

The map pgoy,! is a diffeomorphism of (U, NUg) x K" onto itself such that (¢g0¢51)(p,v) = (p, gsa(p)v)
for p € U, NUp and ggo(p) an isomorphism of K" onto itself. That is, we have ggo : Uy NUg — GL(r, K),
which is the gluing cocyle. This allows us to formulate the following definition.

Definition 1.1.5. Given a cover (U,, o) of M by local trivializations of E, the maps ggq : Uo N Uz —
GL(r,K), for all o, 8 with U, NUp # 0 are called the transition functions for this cover by trivializations.

Consider the following properties of the transition functions, for all «, 3, such that U, N Uz N U, # 0:
“ Gaa : Uy = GL(r,K) is the constant map goe(p) = idyx.(p)
* o = Gpas 1 gap(D) = (95a(p) !
* YagpvIva = idrxr, 1€ 9ap(P)9py(P)grya(p) = idrxr(p)

Now consider | |, 4 Us x K". Put an equivalence relation on this set by
Ua X K" 3 (pa, va) ~ (pg,vp) € Ug x K" iff Pa = pp and vg = gga(P)va.

Then the above properties of the transition functions define reflexivity, symmetry, and transitivity, respec-
tively, of the relation ~. Now set F = (I_laEA U, X KT) / ~.

Y« Exercise 1.1.6.

- Show that F is a smooth manifold. Note it is made up of smooth manifolds glued together by diffeo-
morphisms.

- Define 7 : E — M by 7 : ([(Pa, Va)]) = Pa- Show it is well-defined and show 7 is a smooth surjective
submersion.

- Show the natural map ¥, : Uy x K" — 77 1(U,), given by ¥4 (Pasva) = [(Pa,va)] € E is a diffeomor-
phism and ¢, = ¢! is a local trivialization of E (i.e. E is a rank r K-vector bundle over M).



Definition 1.1.7. Let (E, M,7g) and (F, M,7r) be vector bundles of rank k and ¢, respectively, over the
same M. A vector bundle isomorphism from (E, M, 7g) to (F, M, 7F) is a smooth map T : E — F such that

T

S

M

E

F

commutes (i.e. 7p(T(p)) = 7e(p)), and T|Ep : E, — F, is linear over K. That is, such that the diagram
below on the right commutes.

Pa
Ey - {p} x K"
Eyp Fy 1sl$n |
E F |
M T M T ! linear
P P v
Fy, ™ {r} x K"

This is all in trems of covers of E, F by local trivializations (U, @) and (V3,13), respectively.

Definition 1.1.8. Let Hom(E, F') denote the set of all bundle morphisms from E to F.

Proposition 1.1.9. Hom(E, F') is a K-vector space.

Proof: Let Ty, To € Hom(E,F), A € k. Define \T1 + T : E — F by (A\T1 + Tz)(e) = MT1(e) + Ta(e), for
e € Er(e). Then (NT + T5)(E,) C F, for all p € M. This map is clearly linear. It remains to check that it
is smooth. |

Definition 1.1.10. Let E, F' be two K-vector bundles over M. Then FE, F are termed isomorphic if there
exists T € Hom(E,F) and T € Hom(F, E) such that T oS = idp and SoT = idg. When F = E, we
write Hom(E, E) = End(E). If T € End(E), then T is called a bundle endomorphism. We also have the set
Aut(E), which is the space of bundle automorphisms of E. This set is sometimes denoted Gg, called the
gauge transformations of E.

Definition 1.1.11. For (E, M, n) a K"-vector bundle, we say that E is trivial if there exists a bundle
isomorphism 7" : E — M x K". It is clear that F is trivial iff it admits a global trivialization.

Now we see why they are called “local trivializations.” A local trivialization ¢, : 7 1(U,) — Uy x K" is
a bundle isomorphism between El; = 7~1(U,) and U, x K", the trivial K"-bundle over U — a.

Remark 1.1.12. Suppose T : E — F is a vector bundle morphism. Let (Uy, o), (Ua, o) be open covers
of M, trivializing I, F', respectively. We can do this by intersecting the two open covers. Let gn.g, hag be
the transition functions of E, F', respectively, with respect to the trivializations. Then a new map is induced
by the commutative diagram below.

Ely — 2" U, x K"
1 YaoTopl: Uy xK' — U,xK*

T | (Pasva) = (Par Ta(pa)va)
A

F|Ua U, x K*

(e



And T, : U, = Myy,(K) is smooth. So locally (over an open set that trivializes both bundles), a vector
bundle morphism is a smooth varying family of ¢ x r matrices. Suppose that U, NUg = W # 0. Then the
diagram below commutes.

Pa ¥B
(p,’l)) W >T K" E|W w X‘ K" (p,’l}) T,B = haBTagaB
l T | Ts(p) = hpa(p) Ta(p) gas(p)
I \ N N ——~
‘+ L Ixl xr rXr
(pa Ta(p)v) W x K¢ 1/) F|W 1/} W x K¢ (p,T,g(p)U) £xr
fe? B

Next we consider a very important example.

Definition 1.1.13. Define KP™ to be the set of all 1-dimensional subspaces of K®*!. This is a smooth
manifold of dimension n (if K = R, and 2n if K = C). It is explicitly given by

KP"Z(K”+1\{O})/(va = v=)w, \eK, A£0)

From this we are going to build a K!-vector bundle over KP™ = M. There exists an open cover Uy, U1, ..., U,
of kP™ given by U; = {[(2°,...,2™)],2° # 0}, which is a well-defined open set in KP". Define E as a subset
of the trivial K"*!-bundle over KP", so E C KP" x K"t!, by

E={(p,v) : vep}={(=°...,2M], " ...,2")) : A€ K}.

Each p € KP" is a line ¢ through 0 in K"*!. We attach this line ¢ to p. Next define a projection map
m: E — KP" by m = 7|, where 11 : KP" x K" — KP™ and 7(p,v) = p.

" Exercise 1.1.14. Show that (E,KP" 7) is a K!-bundle over KP". The idea is to construct for a €
{0,1,...,n} a map

Pa 7 YU, — U, xK!
([(2°,...,2™)], (0% ...,v") = A% ...,2") — ([(2°,...,2™)],v%)

and show that it is a diffeomorphism with the required properties. Further find what the transition functions
9pa : Ua NUz — GL(1,K) are. Note that this bundle is called the tautological K'-bundle over KP™.

1.2 Methods for constructing new vector bundles
What can we do to vector spaces to get new ones? Let V, W be k-vector spaces. Then

V — V* = Homg(V, k), the dual space

V— /\Z(V), fth exterior power of V
VW — V & W, the direct sum
V,W — V @ W, the direct product

Let Vi, Vo, Wi, W5 be K-vector spaces with L; : V; — W, bilinear. Then we have maps

Li® Ly Vi Vo — Wi bWy
Li®@Ly: Vi @V = W1 @ Wo

A(L:) : N (Vi) = N(W3)



We can also do these constructions to vector bundles. Let £ — M and F' — M be two K-vector bundles
over M. We would like to define E*, \“(E), E® F, E® F as vector bundles over M. We begin by letting
U ={U, : a € A} be an open cover of M such that (U,,ps) is a trivialization of E and g,g are the
transition functions, and (Uy, 1) is a trivialization of F' with transition functions hag.

Define E* to be the vector bundle over M with transition functions (U, (g7 1)?), i.e. U, x K" is identified
with Ug x K" by the inverse transpose of the identification for E. Similarly,

£y

EP
E F
M M
p p

EolF = (uygaﬁ@hozﬁ) .
EQF = (U, gop® hap) (;Vlthf?g /
/\E(E) _ (U,/\Z(gag)) escribed by E,®F,
EaF
M

p

Definition 1.2.1. Let 7 : E — M be a vector bundle of rank r and f : N — M smooth. We want to define
a bundle f*FE over N, called the pullback bundle of E by f, as follows.

id
/\
Epa) Epa)
f f*E = {(z,e)e NxE : f(z)=m(e)}
M N = {(z,e) : €€ By}
x f(z)

Define p : f*E — N by p(z,e) =z and p = 1. .

Y« Exercise 1.2.2. Show that this gives a rank r K-vector bundle over N. In terms of transition functions, if
(Ua, ¢o) is a trivialization of E with transition functions for f* E with respect to an open cover {f~1(U—a) :
a € A}, they are f*gas = gag o f : f~1(Us) = GL(r,K). The bundle makes the below diagram commute.

[rE E
P ™
N M

Example 1.2.3. Let M = {p}, a single point. Let F = M x K", a trivial £ bundle over a point. Let N be
a manifold with f: N — {p} the constant map. Then

[TE={(z,e) e N X E : f(x) =m(e) =p},
so N x {p} xK" =2{(z,(p,v)) : ve K,z e N} 2 N x K".

Remark 1.2.4. Recall E* from above. If F has a trivial cover {(Uy, 9o) : a € A}, then we may construct
the transition functions and gluing cocyles from those of E as below.



in E: | in B*:

Galp, : By = {p} x K’ (als,) x5 B
98a 980 = () o ((¢a) ™) = (o pal)) ™ = ((98a)*) "

Above, (gpa)* denotes the transpose of ggq.

1.3 Sections of a vector bundle

Definition 1.3.1. Let 7 : E — M be a K" vector bundle. A (smooth) section of E is a smooth map
s: M — E such that m o s =idyy, i.e. w(s(p)) =p, so s(p) € E, for all p e M.

Ep Eq
E
'\\

Sq S

] 5
/ ]
- L — M
p e |

q

Define I'(E) to be the space of sections of E, which is an infinite-dimensional K-vector space. That is, for

s1,82 € T(E), (s1+ s2)p = (s1)p + (s2)p, and for A € K, (As), = Asp. In fact, I'(E) is a C*°-module, i.e.
if f e C>®(M) and s € T'(E), then (fs), = f(p)sp. Note that any vector bundle always has at least one
section, the zero section 0 : M — E (where 0(p) =0, € E,).

Remark 1.3.2. Let (U,, ) be a local trivialization of E and s € T'(E), and consider the maps

Ua E|Ua Ua x K"

which induces a smooth map ¢, 0 5[, : Us — Uy x K" given by p = (p, s4(p)), where s, : Uy — K is
smooth. Hence locally, s is an r-tuple of smooth K-valued functions. Now suppose that (Ug, ¢g) is another
trivialization of U, NUg # 0. Then

sp = T2(pg 0 8) = ma(P © Y5 © Pa ©5) = gpa O Sa
S0 s = gpasSa if Ug NU, # 0. That is, sg(p) = gsa(p)sa(p) for all p € U, N Usg.

Example 1.3.3. Consider the following examples of sections.

- A section of T'M is a vector field

- A section \"(T*M) is a k-form, with D(A"(T*M)) = QF(M). More specifically, A\°(T*M) = M x R,
the trivial real line bundle over M. Further, QO(M) = D(A*(T*M)) = I'(M x R) = ¢=(M), where
s: M — M x R will be given by s(p) = (p, f(p)), f € C®(M).

Proposition 1.3.4. Let E be a rank r K-vector bundle. Then F is trivial iff it admits r sections that are
everywhere linearly independent.

Proof: First suppose E = M x K". Define s, : M — M x K" = E by s;(p) = (p,e;) € E,, where {eq,..., e}
is the standard basis of K". For the other direction, suppose that there exist s1,..., s, everywhere linearly
independent. Define ¢ : M x K" — E by

r l
@ <Z tiei> = Ztisi(p) € E,,
i=1 i=1




for t* € K. It remains to check that ¢ is a bundle homomorphism. ]

" Exercise 1.3.5. Note that T'(E* ® F) = Hom(E, F) because W* @ W = Homg (V, W) canonically.
- Show that E* ® F has a nowhere-zero section.
- If F is a line bundle, show that £* ® E is trivial.

Definition 1.3.6. Let 7 : E — M be a vector bundle and f : N — M a smooth map. Then there exists a
canonical map f* : T'(E) — I'(f*E) called the pullback of sections, defined by s € T'(E).

f*
. s sq Uy > K"
frs| |p T ]S s (f*s)a : f7U(UL) = K7

N

M

Above, f*s: N — f*E and (f*s), = sfp) € Epp) = (f*E), for all p € N, f(p) € M. Note that sections
are always immersions.

Remark 1.3.7. Suppose that f : N — M is smooth. Then for w € QF(M) = T(A"(T*M)), there exists
a pullback form f*w € QF(N). This is not quite the same as the pullback of sections. As a section,
f*w e T(f*(A*(T*M))), which is not the same as, but related to, Q2% ().

Remark 1.3.8. Let E be a vector bundle over M. The space Q*(E) = T(A\"(T*M) ® E) contains E-valued
k-forms locally (in local coordinates for M) with w = w;,..;, dz® A --- Ada'*. Sections of E over some open
set U C M are maps U — E|,; = 7~ }(U). Further, Q*(M)“ ="QF(M x R) = T(A"(T*M) ® (M x R)).
Finally, if U C M is open, then E|,; = 7~ *(U) is a vector bundle over U. We write this as

I'(Ely) =Tu(E) =T(U, E)

and call it the global sections of F.

1.4 Metrics and other structures on vector bundles

Definition 1.4.1. Let 7 : E — M be a K"-bundle. Then FE is termed K-orientable if \" E is trivial. Note
A" E is a rank 1 vector bundle over M, called the determinant line bundle det(F) of E.

Equivalently, F is K-orientable iff there exists a nowhere-zero section of det(E) = A" (E). Now suppose that
K = R and F is K-orientable. Let u, v be nowhere-zero sections of det(E). Then there exists f € C°(M)
such that f is nowhere-zero with p = fv.

An R-orientation of E is a choice of equivalence class. The # of orientations equals 2# of connected
components of M.

Example 1.4.2. A smooth manifold M™ is R-orientable iff T'M is an R-orientable vector bundle. Note
that as a manifold, TM is always orientable, i.e. T(T'M) is always an R-orientable vector bundle.

Definition 1.4.3. Let 7 : E — M be a real vector bundle. A Riemannian fiber metric on E is a section
h € T(E*® E*) such that for all s1,s2 € T'(E), h(s1, s2) = h(s2,s1) and h(s1, s1) > 0 with equality iff s; = 0.
This is a smoothly varying family of positive definite symmetric bilinear form on the fibers.

Note that a Riemannian metric on M is a Riemannian fiber metric on the vector bundle T'M. However in
general, a Riemannian fiber metric on £ (which is a metric on T'F)is different from a Riemannian metric on
a smooth manifold F.



Remark 1.4.4. Any real vector bundle admits lots of Riemannian fiber metrics. The proof is identical to
that of the claim that any Riemannian manifold admits lots of Riemannian metrics, with partitions of unity.
However, in the complex case, we first need to define conjugate bundles.

Definition 1.4.5. Let 7 : E — M be a C"-vector bundle. The conjugate bundle m : E — M is a C"-vector
bundle over M defined by changing the scalar multiplication on each fiber as follows. The total space E = E
as a set. The map 7 : E — M is also the same as m : E — M. For E, the fiber of E over p (as a set,
E, = E,) and for A € C and v € E,, define scalar multiplication by

A = v .
N =~
EEP EEP

Proposition 1.4.6. Let (U, g..) be a gluing cocycle for E. Then (U, g*) is a gluing cocycle for E, where *
represents complex conjugation and gng : Uy N Ug — GL(r, C).

Proof: Let (Ua, Ug) be a local trivialization of E. Then ¢, (e) = (7(e), fa(e)) for fo : El; — C". If p € M,

then f,|E, : E, — C", which is smooth. Define co ¢, : 77 1(U,) = Uy x C" by (co @, )(e) = (7(e), fale)).
Then

Pa(Av) = (p, fa(Av)) = (p; Afa(v))
implies (¢ o ¢a)(A\v) = (p, fa(W0)) = (0, M fa(v)) = (0, X fa(v)) = (B, (¢ 0 fa)(v)).

So the maps c o ¢, are local trivializations for E. The transition functions gg, for E with respect to this
cover U are

(P g8a(v)) = (copp) o (copy ) (p,v)
= (p.(co fg)o(cofa) " (v))
= (p,(co fgo fg' o 0)(v)).

Hence ggav = gga® = Jga?; 80 gpa = Gpqo- Although this finishes the proof, all the expressions above should
be evaluated at p. ]

Definition 1.4.7. Let 7 : E — M be a C"-bundle. A Hermitian fiber metric on E is a section h € I'( E* ®E*)
such that for s1, s € I'(E), h(s1,s2) = h(sa, s1) and h(s1,s1) = 0 with equality iff s; = 0. Note that for f a
C-valued smooth function on M,

h(f51, 52) = fh(Sl, 52)

h(s1, fs2) = fh(s1, $2).

Remark 1.4.8. Any C"-vector bundle admits lots of Hermitian fiber metrics. The proof is still the same
as previously mentioned. Also, complex conjugation ¢ : £ — E is a bundle isomorphism of FE onto F as real
vector bundles but not as complex vector bundles.

Proposition 1.4.9. Let E be a C"-vector bundle over M. Then E can also be regarded as an R?"-vector
bundle over M, hence E is always R-orientable.

Proof: Let E be determined by the gluing cocyle (U, g..). There exists a canonical group homomorphism

j: GL(r,C) — GL(2r,R)
A+iB — (4°8) =

Define a cocycle gag = j © gap : Ua NUg — GL(2r,R) that satisfies the cocycle conditions goa = gapgsa =
9aB9BvGva = 1. Define wap = det(gap), which are the transition functions of detr (Er), which is a real line

10



bundle. We also have that det(gns) = | det(gas)|> > 0 for all o, 8.

Next, let fop = log(wag) for wes = ef*f and fap : Uy NUs — R we have w,, = wapws,, implying that

fya = fyp + foa- Let {po : @ € A} be a partition of unity subordinate to Y. Define, for all a € A, maps
fo: U, — R

p = E ~yEA p’yf'ya’
UaNU,#0

which is a smooth and well-defined map. This gives us that

f'ya - f'yﬁ = f’ya +f6’y = fﬂa

and  fo—f5 = py(Fra—Ffrp) = | D rv | foa = foa-

yEA yEA
—_——
=1

So from the cocycle conditions, we have constructed f, : U, — R smooth such that

fao—fs="Tfoa = —fo=—fatfoa = e 7 =ggeelo

The above says that s3 = ggasa. So the section s of detg (ER) is given locally by s, = e~ /=, and it is well-
defined and nowhere-zero. So s is a global nowhere vanishing section of detr (Fr), so Er is R-orientable,
for Er the underlying R-vector bundle. |

2 Characteristic classes

2.1 Connections

Definition 2.1.1. Let 7 : £ — M be a K"-vector bundle. A connection V on E is a K-linear map
V:T'(E) - I'(T"M ® E) such that V(fs) = df ® s+ fVs for all f € C°(M) and s € I'(E) (this is the
Leibniz rule).

If X e I(TM) (i.e. X is a vector field), define Vxs = (Vs)(X), which is contraction of the T*M factor
with X at every point. That is, for (s;), € £, and (a;), € Ty M,

n n

(Vs)p = Z(ai)p ® (8i)p, S0 ((Vs)(X))p = Z(ai)p(Xp)(si)p'

i=1 i=1
The Leibniz rule then becomes
Vx(fs)=(df @ s)(X) = fVxs=(X[f)s+ fVxs.

We then call V x s the covariant derivative of the section s in the direction of the vector field X. Notice since
Vs :T(TM) — I'(E), it follows that Vs € Hom(TM, E).

Remark 2.1.2. How do we get new connections from existing ones?

First, consider T': E — F' a vector bundle isomorphism for E, F over M. If V in a connection on FE, then
TVT~! is a connection on F (it remains to check that the Leibniz rule still holds).

Next, consider V, V two connections on E, with A = V—V : T'(E) — I'(T* M ® E), which is K-linear. Then
A(fs) =V(fs) = V(fs)=df @ s+ fVs— (df @ s+ fVs) = fA(s).

Hence Ae T(E*@T*M @ E) 2XT(T*M ® E* @ E) 2 I'(T*M ® End(FE)) = Q'(End(E)). So the difference
between any two connections on F is an End(E)-valued 1-form. Conversely, if V is a connection on E and
A € QY (End(E)), then V = V + A is a connection on E. This shows that the space of cennections Ag on
E is an affine space modeled on the vector space Q' (End(E)).
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Example 2.1.3. Consider connections on the following spaces.
- E =M x R. Then I'(E) 2 C*(M), with

d:C>®(M)— Q' (M),
Al 2l
I(E) 'T*M ® (M ®R))

with d(f) = df and d(fs) = (df)s + fds for f,s € C°°(M). Hence d is a connection on M x R, and is a
trivial connection.
s1

- E = M x K", the trivial K"-bundle. A section of F in s = o | for s : M — K" an r-tuple of K-valued

S’V‘
S1 ] l dsy
o ] s" ds”
trivial connection. Note that in general, on a non-trivial bundle there does not exist any analog of the trivial
connection. Now let V be any other connection on M x K”. Then V = V" + A for some A € Q'(End(FE)). In
local coordinates (x!,...,2") for M and {ej,...,e,} the standard basis of K", we have that A = Aéej ® €4,
where A; is a 1-form on M, so A; = A;kd:vk with 1 < 4,7 < rand 1 < k < n. These are locally defined

smooth functions. It follows that

smooth functions. Define V° to be a connection on M x K”. This is the general form of the

ds? Als? (1-form on M)
AR z 7
ds” Als (1-form on M)

for Vs = (V° + A)s. Above we begin the use of the Einstein notation, where a repeated index in the
superscript and subscript of a term indicates a sum over that index.

Remark 2.1.4. The above may be generalized. Let m : E — M be a K"-bundle. Let U C M be open such
that E|;; is trivial (i.e. bundle-isomorphic to V' x K"), so there exists {e1,...,e,} a global frame for E|.
That is, e1, ..., e, € I'(E|;) that are linearly independent at every point. Note that V may be restricted to
a connection V on E|;;. We will do so, and denote both by the same symbol.

So Ve; is a section of (T* M ®E)|;;. Hence there exists A% € (T*M)|,; and A} € Q'(U) such that Ve; = Ale;.
Let s € T(E|,;) =T(U, E), so s = s'e; for unique s* € C°°(U), which are K-valued. Then
Vs =V(s'e;) = (ds') @ e; + s'Ve; = ds’ @ e; + s°Al @ e; = (ds’ + als') @ e;.

Hence locally, every connection is completely determined by these Ags, which are the connection matrices
with respect to the local frame.

Remark 2.1.5. How does the above compare to Christoffel symbols for a connection on £ = TM? For V
a connection on TM, we have A7 = Al e*, and from above Ve; = Ale;. The Christoffel symbols originally
are V,e; = Al e;, which follows by switching the indices.

We return to the previous remark. Let {é1,...,&,} be another local frame for E over U. Then Vé; = fl{ €;,
where €; = e;g], for g} the change of basis matrix, i.e. g} : U — GL(r,K) is smooth. We now see that

Véi = V(ejg!) and  V(ejgl) = V(gle;)
= figekgf = dgf ®ej;+ ngej
=dgf @er+gl Ak @ ey
= Algk @ ep.
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Hence Afg;‘”' = dggC + ggA;?. Now multiply both sides by (g_l)f; and sum over k to get that
AL = (g7 ")RASg! + (97 ")idg  implying A =g Ag+ g7 'dg

is the relation between connection matrices A,fl for a connection V with respect to two local frames
{e1,...,e.} and {€1,...,¢&,}, related by g. So if (U, g..) is a gluing cocyle for F and A, are the connection
matrices of V with respect to the local trivializations (¢, U, ), we have the map given by

Ay, ¢ Uy, — GL(r,K)
Aa = gg;ABgﬁa +g§;d96a '
Proposition 2.1.6. Let 7 : E — M be a K"-bundle. Then there exist lots of connections on E.
Proof: Let (U, g..) be a gluing cocyle. The map 1, = ¢, : Uy x K" — El|y. is a bundle isomorphism.

a )

Let {po : « € A} be a partition of unity subordinate to . If s € I'(E), then p,(s) € I'(E|;_ ). Hence

~

Va(pa(s)) e T((T*M @ E)|;;_ ). Define the map

Let V, be the trivial connection on U, x K". Define @a = 1y 0 V4 0951, which is a connection on E| U

V: I(E) —» T(IT*M®E)
s o Lasears (Valoals)

This map is K-linear. We need to show that the Leibniz rule holds for f € C°°(M). This follows as

V()= Y 05 (Valpalfs)

a,BeEA

> 05 (Vatlu, (0a(s)))

a,BEA

>~ 05 (@D, @ (pals)) + [Va(pals))

a,fEA

(Z m) > ps | (df @5+ fVs)

acA peA
=df ® s+ fVs.

So V is indeed a connection, and we are done. |

Given vector bundles with connections, we get naturally induced connections on new vector bundles
constructed from them.

Proposition 2.1.7. Let (E1, V') and (Es, V?) be vector bundles over M with connections. Then:

i. There exists a connection V on E; @ Fy defined by V(s; @ s2) = V(s1) @ V(s2), i.e. Vx(s1 @ s2) =
(szl) (o) (szg).

ii. There exists a connection V on E; ® Es defined by V(s; ® s2) = (Vs1) ® s2 + 51 ® (Vsa), ie.
Vx(s1®82) = (Vxs1) ® s2+ 51 ® (Vxs2). Extend this to all sections of E; ® Es by K-linearity.

Let (E, V) be a vector bundle with a connection and let f: N — M be smooth. Then:

ii. There exists a connection V on E* defined, for all « € T'(E*) and s € I'(E), by d(a(s)) = (Va)s +
a(Vs), ie. X(a(s)) = (Vxa)(s) =a(Vxs).

iv. There exists a connection V an A*(E) given by Vx(sg A--- A sp) = Zle SIA - AVsj A A sp.

v. There exists a connection f*V on the pullback bundle f*E over N such that f*V : I'(f*E) —
IN(T*M ® f*FE) is K-linear.

13



Proof: We will only prove v. here. We construct f*V by describing it in terms of a gluing cocycle for
f*E. Let (U,g..) be a gluing cocycle for m : E — M. The connection V on E is described locally by
Ay 1 Uy = GLK") @ QY(U,) such that Ag = gBaAagB_; (dg,ga)gﬁ_;. Recall that {f~1(U,) : «a € A} is
an open cover of N and f*gga = gga o [ : f1({Ua) N f71(Us) — GL(K") are transition functions for f*FE.
Next let

(f*A)a = frAa=Aao f: f71(Ua) = GLK") @ Q' (fH(Ua)),
and pull it back by f to get
Ago f=(gsof)(Aao f)(gza o f) = (dgsa o )(g5a © f)
and  (f*A)s = (f*9)sa(f* Aalf )50 — d(f*9)sa(f"9)5a-
Hence the maps (f*A), define a connection on E. [ |

Remark 2.1.8. Recall that if V is a connection on E and {es,...,e,} is a local frame for E (over U C M),
then over U with s € T'(U|;) given by s = se; for s* € C°°(M), we have that

Vs = (ds' + A;sz) e; for A; €cQ'(U) and A€ GLK") @ QY(U).
—_———
€ QU(E)
Let {e',...,e"} be the dual coframe for E*, so e’ € T'(E*|;;) with e;e/ = &7. What does the matrix A* look
like in terms of A? That is , if @ € D(E*|;), a = aze’ for a; € C*(M), then Va = (doy; + (A*)!aj)e’
Proposition 2.1.9. In the context of the above remark, (A*); = —Ag.
Proof: Start with e®e, = f and take d of both sides. This gives

0= (VeYay +e(Vey) = 0= (A%)%e"(ey) +e*(A¥er) = 0= (4" + A
]

Example 2.1.10. This example is very important. Let (E,V) be a vector bundle with a connection. We
get an induced connection V on End(E) — M. Define it as follows. For B € I'(End(F)) and s € I'(E),
define Vx B € I'(End(E)) by

(VXB)(S) = VX(BS) - B(VXS)

This is K-linear because B and Vx on E are K-linear. So we need to checek the Leibniz rule. Let f € C*° (M)
and compute
(Vx(fB))(s ) Vx((fB)(s)) = (fB)(Vxs)
Vo (f(B(s))) = f(B(Vxs))
= (Xf)B(S)+fV (B(s)) = fB(Vxs)
= ((X)B)(s) + (f(VxB))(s)
= ((Xf)B+ f(VxB))(s).

Let’s now look at what this looks like in a local trivialization (Uy, @) for E with s = s’e; and E|UQ ~ U, xK"
trivial. Then Vs = (ds’ + A’s?)e;, with B(s) = (BEst)ey, for some BF € C>(U,). This gives

V(B(s))
and B(V(s))
implying (VB)(s)

(d(Bfs") + A (Bjs”))ex

(BE(ds* +A£sj))ek,

V(B(s)) — B(Vs)

(ng)s + Bids' + Al Bls’ — Byds' — Bf Als?)ey,
dB; + [A, B]j)s"

(
= (
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Hence VB = dB + [A, B] is a local trivialization. We present another proof of this fact. Recall that
End(E) 2 E* ® E. Let {e1,...,e.} be a local trivialization for E and {e!,...,e"} a local trivialization for
E*. Then B € T'(End(E)) is locally given by B = Ble? @ e; € T((E* @ E)|,;). Explicitly. if s = s"ey, then
B(s) = (B;-ej ®ei)(s"er) = B;-skej(ek)ei = B;-sjei = B(s),
giving that
VB = (dBj)e’ @ e; + B;V(e! @ ¢;)
= (dBj)e’ ® e; + B;j((Ve!) @ e; + ¢! @ (Ve;))
= (dB})e? ® e; + Bi(—Aje’ ® e;) + (B ® Aley)

We have again shown that VB = dB+[A, B]. Note that by the second line we had three different connections,
but for ease of notation all were given the same symbol.

Definition 2.1.11. Let /i be a fiber metric on E. We say that a connection V on F is compatible with A if
for all 51,80 € T(E),

d(h(s1,s2)) = h(Vs1,82) + h(s1,Vsa) ie. X (h(s1,82)) = h(Vxs1,s2) + h(s1, Vxsa2).
Equivalently, V is h-compatible iff VA = 0.
There is quite a lot more to say about connections, in terms of parallel sections, parallel transport,
holonomy, etc. We move on to more pertinent matters.
2.2 Curvature

Definition 2.2.1. Let V be a connection on E. Let X,Y € T'(TM) be vector fields. Then we can take
Vx,Vy,Vixy] : I'(E) = I'(E), which are K-linear, but not C°°(M)-linear, because of the Leibniz rule.
Define the curvature FV(X,Y) : T'(E) — I'(E) on V by

FY(X,Y)=VxVy —VyVx — Vixy] = [Vx,Vy] = Vixy.
¢« Exercise 2.2.2. Show that for all f € C>°(M) and s € I'(E),
FY(X,Y)(fs) = FY(fX,Y)s = FY(X, fY)s = f(FY(X,Y)s).

Remark 2.2.3. Consider a special case of the curvature, when £ = T'M and V is the Levi-Civita connection
of a Riemann fiber metric on M. Then FY (X, fY)Z = R(X,Y)Z, the Riemann curvature tensor. It is clear
that FV(Y,X) = —FY(X,Y) and FV(X,Y), = FV(X,,Y,). Further, the map

I(TM) x T(TM) — End(E) =T (End(E))

(X,Y) — FY(X,Y)

is skew-symmetric and bilienar over C>®(M). So FV(-,-) € Q?(End(E)), i.e. the curvature is an End(E)-
valued 2-form.

Remark 2.2.4. In local coordinates (z!,...,2") on M with domain U, FV = 1F,;dx'da?. What are the
F;;? Start by supposing that {eq,...,e,} is a local frame over U. Define

Vis=V _a s=0;s+ A;s = (0;5* + A‘gisb)ea,
dx?
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where A7 = A‘gidxi. Then

FijS:Fv<a 6)3

O’ dad
= Vi(V;s) = V;(Vis) =V o o s
ozt 9z
= Vi(GJSAJS) — Vj(ﬁis -+ Als) — 53—(81-3 -+ Als) — Aj(al-s + Als)
0? 02
= ms + (8114])8 + Ajﬁls + Alﬁjs + AiAjS — Ws — (83141)8 — Alﬁjs — Ajais — AJAlS

= (6ZA] — 6]‘141' + AlA] — Ain)S,
where we used the short form A;s = (Agjsb)ea. This gives us the expression
04; 04,
Oxd  Oa?

The commutator represents the non-linear part of the curvature. This is the local coordinate formula for
curvature (a matrix-valued 2-form), in terms of the locally defined matrix A representing the connection V.

Fy; =

+ [Ai, Aj].

Example 2.2.5. A special case occurs with the line bundle, i.e. when r = 1. Since 1 X 1 matrices commute,
and End(E) & E* @ E = M x K is trival, the curvature F¥ € Q*(M x K') = T(A*(T*M) @ (M x K1) =
Q% (M) is an ordinary K-valued 2-form. Further, FV = dA locally, i.e. F;; = gf; - %ﬁf, so F = d(A;dz?).
Hence F is closed because it is locally exact (it is usually not globally exact).

Remark 2.2.6. Let’s find a shorthand for the above expression of Fj;. We start with
1 , o1 - -
FV = 5(8114] - ain)ddfl A da? + i(AZAJ — AJAZ)dIZ ANdx? = dA + AN A,

as dA = dA; A dx' = % A dx? A dz'. This is the “local short form” for curvature. We must be careful,

because A does not make sense globally, only locally. This is a matrix-valued 2-form on U.

In a local trivialization (Us,p,) of E, End(E) is also trivial. So the curvature is Fy = Ffe® ® e,, where
{e1,...,e,} is a local frame with an appropriate coframe.So above we showed that F, = dA, + A, A Aq,
noting that from now on we drop the V and say FV = F without confusion. Further, we know if (Ug, ¢5)
is another local trivialization on E, then

A = gsaAagz, — (dgsa) ' gsa
so Fg=dA,+ AgNAg
= d(gAag™") = (dg)g~" + (94ag™" — (dg)g™") A (9Aag ™" — (dg)g™")
= (dg)Aag™" + 9(dAa)g ™" — gAa(dg™") = (d*g)g™" + (dg) A (dg™") + (94ag™ ") A (94ag ™)
—(dg)g™ A gAag ™" — gAag ! A(dg)g™! + (dg)g~" A (dg)g™!
= g(dAs + Aa A Aa)gfl,

1 1

where we employed the shorthand g = g, and (dg)g~' + g(dg~"') = 0 since gg~' = id. Hence Fz = gF,g~ .
This is what we expected, since for all p € M, F), € /\Q(T;M) ® End(E,). In particular, (F,);; € End(E,).

Now let us look at another interpretation of the curvature, which we need to formalize the Chern—Weil
construction of characteristic classes.

Definition 2.2.7. Let V be a connection on E. Define a k-linear operator dV by
dV: QME) — QFLYE) for WE QF(M)  dw € QFFL(M)
w®s = do®s+ (—1)FwAVs © seI'(FE) Vse(T*"M ®E) *
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To see that this is well-defined, observe that (fw) ® s = w ® (fs) and so
d¥((fw) @ s) = d(fw) @ s+ (=1)* fw A Vs
=(df)Nw®s+ fdw® s+ (—1)F fw A Vs
and @V (w® (fs)) = dw® (fs) + (=1)Fw AV(fs)
= fldw) @ s+ (—1D)*w A (df ® s+ fVs),

which are the same thing. Hence dV is well-defined.

Example 2.2.8. Consider the special case when E = M x K!, the trivial line bundle. Then QF(E) =

DA (T*M) @ K!) = QF (M), then set of K-valued k-forms on M. Let V — d, the trivial connection on E.
Then
AW f)=do® f+ (-DFwAdf = fdw+df Aw = d(wf),
——

= fw

so d¥V = d in this case. So really dV is a generalization of d to non-trivial bundles E and non-trivial
connections V.

Remark 2.2.9. The space Q'(E) is not an algebra. However, Q*(End(E)) is an algebra. So define, for
T,S € End(E),

(wWTHYAneS)=(wAn) TS.
1anM anFEnd
mQEM 1an+[

in T'(End(FE))

Further, if w ® T € QF(End(E)) and n ® s € QY(E), define (W@ T)A (n®s) = (wAn) @ T(s) € Q*H(E).
Now we have maps
QF(End(E)) x QY(End(E)) — QFMYE)
QF(End(E)) x QYE) — Qk+(E)’

where the first one is not super-commutative. We claim that for both of these products the Leibniz rule
holds. To check this, let w € Q¥(M), n € QY(M), S,T € T(End(E)) and dV be defined on End(E)-valued
forms induced by a connection V on End(E). We then have

dV(weT)A(n®s) —dY(wAn) @TS) =dwAn) @TS + (=1)*w AnAV(TS)
= (dwAn+ (=) wAdn) 0TS
+ (=)W A A (VTS +T(VS)).
Next observe that
N(weT)=doe T+ (-1)fwAdT
and dV(n®S)=dn® S+ (—1)nAdS,
implying
(@Y (w@THAMRS)=(dwAn) TS + (—1)*wAnA(VT)S
and  (—DF(w@T)AdY(n®8) = (=1 (wAdp)TS + (-1 FwAn AT(VS).
Hence we get that
YV (weT)A(n©S) =@V (weT)ANeS)+ (1) waT)Ad (neS))
and  dV(w@T)A(n®s) =dV (W@T)AN®s)+ (D) (weT)Ad"(h@s),
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where the second statement comes from an analogous proof. Note that above the dV used were different,
but it causes no confusion because of the arguments of each. Now let’s see what dV looks like in a local
trivialization {ej,...,e,}. An E-valued k-form is a finite sum of w ® s, for w € Q¥ (M), s = s'e; € I'(E) and
st smooth K-valued functions. Then w ® s = w ® (s%e;) = (s'w) ® e, i.e.

ws? st
w®s=| . for s=|:1,
ws” s”
and
d¥(w®s)=dY (s'w®e;)
d(s'w) @ e; + (—=1)k(s'w) A Ve;
= d(s" w) ®ej + (—1)Fsiw A adle,
= (d(s'w) + (A]s") Aw)e;
— (@4 AN YD)
that is,
ws? ws?
dwes)=d| : | +A]| :
ws” ws”
In words, in a fixed local trivialization, d¥ = d + A A -. Similarly, if in a local trivialization {ey,...,e,} on
E, we get a local trivialization of End(FE),
11 .. g7 wsll . wsl”
wS=w|l: .. =
gl g ws™ . ws™T

Y4 Exercise 2.2.10. Check that d¥(w ® s) = (d + [A,])(w ® s). This shows that d¥ = d + [A, -].

Lemma 2.2.11. The map (dV)? : QF(E) — QFF2(E) is linear over QF(M). That is, (dV)}(w ® s) =
wA (dV)2s for all w € Q¥(M) and s € T'(E).

Proof: This follows from the calculation below:
(dV) (wAs)=dY(dw®s+ (—1)*w A Vs)
=d*w® s+ (—1)"dw A Vs + (—1)Fdw A Vs + (=1)*Fw(dV)2s
=wA (dV)%s
|
A special case occurs when k = 0, for which (dV)2(fs) = f(dV)?s.

Proposition 2.2.12. The equation (d¥)?}(w®s) = wA(dV)?s = wAFY As holds. That is, (dV)%s = FV As,
for FV € Q*(End(F)) and s € Q°(E).

Proof: Let {e1,...,e.} be alocal frame for E. Let {01,...,0,} be alocal frame for E. Let {01,...,0,} be a
local frame for TM. Then {6,...,6"} is the dual coframe of T*M. Then

(dV)?(s) = d¥ (dVs)
=dV (ds)
=dV (6" @ V,,s)
=do* @ Vg, s+ (—1)'6% AV (Vs,s)
=df* ® Vg, s — 0" N7 @V, (Ve,s).
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The above followed as Vxs = Vyig,s = X'Vp,s = 0(X) ® Vp,s = (0° ® Vg,5)(X). We now let X = X0,
and Y = Y?6,. Then
((dV)?s)(X,Y) = (d0%)(X,Y)Vg,s — (0" N 07)(X,Y )V, Vo,s

= (X(0%(Y)) = Y(0"(X)) — 0" ([X, Y]))Vg,s — (0°(X)07 (V) — 6* (V)07 (X)) Vi, Vo, s
(X(Y*) - Y(X*) - [X,Y]")Ve,s — (X*YT — XTY*)Vy, (Ve s)
= X(Y*)Vy,s = Y(X¥)Vo,s — Vixys — X*Vy(Vg,s) + Y*Vx(Ve,s)
=Vx(Vys) = Vy(Vxs) = Vixy)s

F

]
Hence the non-vanishing of the curvature F'V of V measures the failure of dV : Q*(E) — Q**(E) to be
a complex. As an aside, note that (da)(X,Y) = X(a(Y)) = Y(a(X)) — a([X,Y]).

Proposition 2.2.13. Let V be a connection on E. Let B € Q'(End(E)). Then V = V 4 B is a connection
on E. Moreover, FV*8 = FV 4+ dV(B) + B A B.

Proof: This can be proven true by showing it is true locally (since no choice is involved). So in a local
trivialization, V = d + A for A € Q'(End(E)). Then

FY¥ =dA+ AN A,
V=d+A+B,
FV =d(A+B)+ (A+B)A(A+ B)
=dA+ANA+dB+ANB+BANA+ BAB.
Now note that
d¥(B) = d¥ (dz* ® B;)
= —dz' NVB;
= —dz" A (dB; + [A, By])
=dB; Ndx' — da' A (da? ® A;jB; — Bida? ® Aj)
=dB+AANB+BAA
=dY(B).

The Bianchi identity introduced below corresponds to the 2nd Bianchi identity from Riemannian geom-
etry.

Proposition 2.2.14. [BIANCHI IDENTITY]
Let V be a connection on E. Then d¥ (FV) = 0.

Proof: (First proof) In a fixed local trivialization, d¥ = d + [4,-] on Q*(End(E)), and FV = dA + A A A.
Now comupte
dV(FYV)=d(dA+ANA)+[AdA+ AN A
=d’A+dANA—ANIA+ANAA+ANANA—ANANA—dANA
=0.
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Proof: (Second proof) Note that d¥ (FV) € Q3(End(E)). By Leibniz, for s € Q°(E),

dV(FVYAs=dY(F¥Y ANs)—FY AdVs
=dv((d)%s) — (dV)*(d"s)
= (dV)%s — (dV)’s
=0.
SodV(FV)As=0forall sc'(E),sod(FV)=0. [ |

Proposition 2.2.15. Let (E!, V1), (E?,V?) be vector bundles with connections. Recall that E' & E? has
an induced connection V = V! & V? and E' ® E? also has an induced connection V = V! ® V2. Then

FV=FV ¢FY and  FYV=FY ®idg +idgm @ FY,
for the appropriate V in each expression.

Proof: Since Vx(s1 @ s2) = (Vis1) @ (V%s2), we have that (dV)?(s; @ s2) = (dV")2s; @ (dV°)2sy (this
remains to be checked). Hence FV € Q?(End(E' @ E?)), so

1 1
v (F¥ 0\ (0 0\ (FY o
F(o o)*(o )"0 B
For the second identity, proceed as above, with Vx(s1 ® s2) = (Vi s1) @ sa + 81 ® (V% s2). This is left as
an exercise. |

We would like to compute the curvature of the dual connection with respect to the curvature of the
original connection.

Proposition 2.2.16. Let (E,V) be a vector bundle with a connection. Let (E*, V*) be the dual bundle
with the dual connection, so FV~ € Q*(End(E*)) = Q*((End(E))?). Then FV" = —(FV)*.

Proof: Let s € QY(E) and w € QY(E*), so w(s) € Q°(M) = C°>°(M). Then

X(w(s)) = (Vxw)(s) + w(Vxs)
and Y(X(w(s))) = (Vi Viw)(s) + (Vxw)(Vys) + (Viw)(Vxs) + w(VyVxs),

implying
0=X(Y(w(s) —Y(X(w(s))) — [X,Y](w(s))
= (FY w)(s) + w(FVs)
= (FY w)(s) + (FY)")(s)-
That is, FV = —(FV)*. [ |

Remark 2.2.17. Let (E,V) be a bundle with connection, and f : N — M smooth. Then (f*FE, f*V) is
also a bundle with a connection. It is left as an exercise to show that

FI'Y = f*(FY).

If FV = 0, then V is called a flat connection. Not all bundles admit flat connections (trivial ones always
do). Further, FY = 0 iff for all p € M, there exists U > p such that E|;, admits a global parallel frame.
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2.3 Chern—Weil theory of characteristic classes

Characteristic classes of F with 7 : E — M are cohomology classes of M, so ¢(E) € H*(M,K), in the de
Rham cohomology. They “measure” the non-triviality of E. We begin with some algebra.

Definition 2.3.1. Let V be a finite-dimensional vector space over K. Let P : ka — K be a k-linear
symmetric map. Define P : V — K by P(v) = P(v,...,v). Notice that P(\v) = A*P(v), so we say that P
is homogeneous of degree k. Moreover,

1 9k .

P(vy,...,v) = Hmp(twl + o teug).

We say that P is obtained from P by polarization. Proof of the polarization identity is left as an exercise.
In fact, if P: V — K is homogeneous of degree k, then the identity above defines a k-linear symmetric map.

Definition 2.3.2. Let V = End(K") = gl(r,K). A k-linear symmetric map P : gl(r, K)** — K is called

invariant if for all @ € GL(r,K) = Aut(r,K) and all By,..., Bx € gl(r,K), we have
P(QB1Q7',...,QByQ™") = P(B,...,By).

This is equivalent to P(QBQ~') = P(B) for all B € gl(r, K).

Example 2.3.3. Let B € gl(r,K) and observe that

T

det(I +tB) = Ztk or(B),

where o¢(B) = 1, 01(B) = Tr(B),...,0.(B) = det(B), which are the elementary symmetric polynomials
of B. Note that each o : gl(r,K) — K is homogeneous of degree k and invariant, hence determined by
polarization on invariant K-linear symmetric maps.

Lemma 2.3.4. If P is invariant, then for all B, B; € gi(r,K),

k
> P(Bi,...,Bi_1,[B,Bi],Bi1,...,By) = 0.

i=1

Proof: Take Q = !B, Q7! = e7*8 € GL(r,K), for which

P(QB1Q7',...,QByQ™ ") = P(By,...,By).

Differentiate this expression with respect to ¢t and set t = 0, so

d d
a(QBlel) —_ %(etBBjeftB) —_ BetBBjeftB o etBBjBeftB.
Then t = 0 evaluates the above expression as BB; — B;B = [B, B;]. |

Proposition 2.3.5. Let P be an invariat k-linear symmetric map on gl(r, K). Then for any vector bundle
E of rank r and any partition i; 4+ - - 4 i = m for 0 < i; < m, there exists a naturally induced map

p: Q(End(E)) x - x Q*(End(E)) — QR(M)
(w1®T1,...,wk®Tk) — wl/\-~~/\ka(T1,...,Tk)’

where w; € Q% (M) and T; € T'(End(E)).
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Proof: In a trivialization, E, 2 K", End(E,) = gl(r,K), so this is well-defined since P is invariant. |

Definition 2.3.6. There exists a bracket | - , - | such that for w € Q¥(M), n € QY(M) and T, S € T'(End(E)),

[-,-]: QFEnd(E)) x QYEnd(E)) — QFYEnd(E))
(wT,n®S8) —» (WA I[T,S] "

Remark 2.3.7. Note that [ -, -] is not always symmetric. That is, for B € Q}(End(E)), with B = d2' ® B;
locally and B; matrices, we have that
[B, B] = [dz" ® B;,dx’ @ Bj]

= da' A\ d2?[B;, By

= da' Nda? (B;Bj — B;B;)

= 2dz" A da’ B; B

=2B A B.
Hence B A B = [B, B] # 0 in general.

Lemma 2.3.8. [GENERALIZATION OF INFINITESIMAL INVARIANTS]
Let C1,...,Cy € Q" (End(E)), where the even index might change for each C;. Let B € Q!(End(FE)) and
P : gl(r,K) — K be a k-linear symmetric invariant map. Then

k
> (=)t P(Cy,. L, Cy1, [BL Gy Cga, -, Cr) = 0.

Jj=1

Proof: The proof by linearity, assumes wlog that everything can be decomposable. We start with w € Q(M),

S eTl'(End(F)) and B=w® S. Also, w; € QV*"(M), T; € I'(End(E)), and C; = w; ® T;. Then
[Bvcj] :('U/\wj[SvTj]
and
P(Ch...,Cj,l,[B7Cj]70j+1,...,ck) = w1 /\---/\wj,l/\(w/\wj)/\wjﬂ N ANwg
P(Tl, Ce ,ijl, [S, Tj],Tj+17 Ce ,Tk)
=wA (w1 AR /\wk)P(Tl, . e 77}'_1, [SvTjLTj+17 e ,Tk)
Now sum over all j from 1 to k and apply the next lemma. The proof will be finished below.

Lemma 2.3.9. Let v; € Q% (End(E)) for j = 1,...,k, so P(y1,...,v) € QT T (M). Then, for any
connection V on F,

k
d(P(y1s- - 57)) = Z(—l)iﬁ"“jflp(%a 1Y Y Y TR
=1

Proof: Fix a local trivialization on U. Then v; € Q% (K"*"), or equivalently v; is a matrix of i;-forms on U.
In this trivalization, d¥V on Q*(End(E)) is d + [4, ], i.e. dVv; = dv; + [A,7;]. Without loss of generality,
vj =w;j @ T} for w; € Q% (M) and T; € I'(End(E)). First compute

P(yi,..oomk) = Plwr @11, ... wp @ i)
=wi A AwpP(Th, ..., Tk)
=wi A AwpP(T)e” @ eqys- . (Th)ge™ @ eq,,)
= (wi(To)y" ) Ao A (wk(Tk)Z]’:)P(ebl ® €ays-- €% Deq,),

constant function
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for T; = (TJ)Z: % ® eq,;. Then

d(P(71, .- m)) =

M=

(=) F I ()t A A () ) A A () P ® eays € @ eay)

<.
Il
—

(71)i1+mijilp(717 RN} j—lad7j77j+1a e 77]@),

Il
B

<.
I
—

for v; = (7)€’ @ eq, ie. (v;)¢ = w(T}). ]

Remark 2.3.10. Consider the bracket [-,-] on Q®(End(FE)), acting on A = dx' ® A; for A; € T'(End(E)),
and w € QF(U). Then w ® S € QF(End(E)) was defined by

[A,w® 8] =[d' ® Aj,w® 8]
=dr' ANw® [A;, 5]
=dr' N\w® (A;S — SA;)
=(dr' @ A)AN(w®S) — (—1)*(w® 8) A (dz* @ A))
=AAN(Ww®S) - (-1)*(weS)AA.
On the next assignment, we will see that d¥ on Q°*(End(E)) is given in a trivialization by dV () = dy-+[4,7].
We now finish the proof of Lemma [2.3.8
Proof: In a local trivialization, dVv; = dv; + [A, ;] from Lemma Then

k
d(P(’YIu ce 77]6)) = Z(_l)i1+“‘ijf1p(,}/17 v 7’7j717dv’}’j»'7j+17 R 7’7k)
Jj=1

k
= (=D Py, 1 A ) Y )
j=1

by Lemma |2.3.9 ]

Theorem 2.3.11. [CHERN, WEIL]
Let V be any connection on E with curvature FV € Q%(End(E)).

1. For any k-linear symmetric invariant map P : gl(r, K)®* — K, the K-valued 2k-form ]5(CF V) e
Q2F (M) is closed for all ¢ € K.

2. If VO, V! are two connections on F, then

[P(cFY")] = [P(cFY')] € H* (M, C).
Proof: 1. Note that P(¢cFV) = P(cFV,...,cFV) and
d(P(cFN)) = d(P(cFY,...,cFV)) =0

by Lemma and the Bianchi identity dV (FV) = 0.

2. We know V! = V? + B for some global B € Q!(End(E)). Define V! = V? +¢B for t € [0,1], so V? = VY
and V! = V1. Let P(t) = P(FV"). We need to show that P(1) — P(0) is exact, so let

; 2
F'=FY' = FV' B — p¥° L 4qV' B + %[B, Bl.
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Then p
o= dV’B+[B,B] = (d¥' +[tB;,])B.

Further, V! = V° + ¢ B implies that (check this) d¥° = d¥V’ + [¢tB,-] on Q*(End(E)), so 4t = dV' B. Next,
define

1
(TP)(V, V%) :K/ P(F',...,F' B)dt.
N—— 0
€ QM)

We will show that d((TP)(V!,V°)) = P(1) — P(0), which will complete the proof. First note that

P(1) - P(0) = /01 (jtP(t)) dt

and since P is symmetric on 2¢V¢"(End(E)),

1
=K [ P(F',...,F',dV B)dt.
0

Finally, since
1 1 .
d(TP)(V*, V) :K/ d(P(Ft,...,Ft,B))dt:K/ P(F,...,F' dY B)dt,
0 0
the result follows from Lemma [2.3.8| and the Bianchi identity. ]

Remark 2.3.12. So far, we have learned that given 7 : £ — M a K"-bundle, P a k-linear symmetric
invariant map, and ¢ € K, we get [P(cFY)] € H**(M, C), a well-defined cohomology class.

Example 2.3.13. Let K = C and r = rank(F), Then for B € K"™*"
det(I +tB) =Y _t*ow(B),
k=0

s0 0o(B) =1, 01(B) = Tr(B),...,0,(B) = det(B). We then let P, = o}, which is an invariant homeomor-
phism of degree k.

2.4 Chern, Todd, and Pontryagin classes
Definition 2.4.1. Define the kth Chern form of E with respect to the connection V to be

P L P
Further, the kth Chern class of E is defined as
ex(E) = [(E, V)] € H?(M, C).

Notice that ¢o(E) = 1 and ¢ (E) = 0 for k > rank(E). Moreover, ¢, (E) = 0 if 2k > dim(M). Finally, define
the total Chern class of E to be

c(E) = ki:ock(E) = [det <I + ;WFVH € H®*"(M,C).
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Example 2.4.2. If E = M x C" is trivial, all ¢;(E) = 0 because we can take V = d, the trivial connection,
so F'* = 0. However, the converse is not true. Next consider the exponent of a matrix, for which

Tr(eP) = Tr Z o
k=0
is invariant. Note that e?B2" = QeBQ 1, so Tr(e'B) = 3272, tF Py(B).

Definition 2.4.3. Define the kth Chern character form of E with respect to V to be

1 i "N oL
chi(E, V) = Tr <(27TFV) ) Y <27TFV> € Q2 (M).
Further, define the kth Chern character of E to be

chi(E) = [chi(BE, V)] € H**(M, C).

Observe that

cho(E) =1 =ra
o) - { (% )]_ME)
cha(E) # c3(E) in general, and

chg(E)=0 1f 2k: > dim(M), but chy(F) may be non-zero for k > r.

Finally, define the total Chern character of E to be

o

ch(E) =Y chy(E) = [Tr (e*Fﬂ € He"(M, C).

k=0

Example 2.4.4. Take the expression

det tB k
det( — e~
'—/— homogeneous
invariant map of degree k

on matrices

and define the kth Todd form of E with respect to V, the kth Todd class of F, and the total Todd class of
E by

tdy(E,V) = (2 FV) € Q¥ (M),
tdy(E) = [td,(E,V)] € H?**(M,C),

= itdk(E) € Hev*"(M, C).

Lemma 2.4.5. Suppose h is a fiber metric on a K"-bundle. Let V be a connection on E compatible with
h. Then FV € Q%(End_(E)).

Here, End_(E), = End_(E,), the set of endomorphisms of E, that are infinitesimal isometries with respect
to hp. If K =R, then End_(E,) = O(r), the set of skew—symmetmc matrices. If K = C, then End_(E,) =
U(r), the set of skew-Hermitian matrices.
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Proof: In a local trivialization, V.=d+ A A -. Let {e1,...,e.} be a local orthonormal frame with respect to
h. Then

d(h(ei, €})) = d(di;) =0

= h(Vei, €}) + h(e;, Ve})
= h(Afe,, e;) + h(ei, Al ee)
= ALy, +Aj5ig

— Al 44

In this frame,
F=dA+ANA
F) =dA] + AF A A
Fl=dA, + AV A A,
= —dA] + A, N A
=— <dAZ+A§ /\Ai)
= —ﬁ7
so F' is skew-symmetric (in R) or skew-Hermitian (in C). [ |
Corollary 2.4.6. Chern classes, Chern characters, and Todd classes are real, i.e. belong to H¢"*" (M, R).

Proof: Let h be any Hermitian metric on E. Let V be any connection compatible with h. In a local

trivialization, FV is skew-Hermitian, so iFV is Hermitian. Then the expressions

] det (5= F
aregr) om(eEr) o (a:)
™

det (I — e*ﬁF>

are all real since %F is Hermitian. That is, there exists at each point an invertible @ such that

) _
Q1)@=

for \; € R. ]

A1 0

0 Ar

Remark 2.4.7. Let E be a real vector bundle of rank r over M. Consider the expression

T

1 1
det ( I+ —FV :§ —FV).
k=0 )
€ Q¥ (M)

Choose any Riemann fiber metric & on E and any connection V composed with h. Then F is skew-symmetric
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(with respect to the frame), i.e.

t
Ft=_-F as det<I+tF>:det<<]+tF> )
27 27

This shows that (5= F) = 0 for k odd, and only for this type of connection. Hence [0} (5= F)] = 0 for k odd,
independent of any choice.

Definition 2.4.8. Define the kth Pontryagin class of E to be
1 4k
pk(E) = |02k %F €H (M, R)

Note that pi(F) = 0 if 4k > n = dim(M). Further, define the total Pontryagin class of E to be
— 1
p(E) = ];)pk(E) = {det (1 + 27TFvﬂ € H*(M,R).

Remark 2.4.9. Let E be a R"-vector bundle. Consider the complexification £ ® C. This is a C"-bundle
over M whose fiber at p is
(E®C), = E, ®r C.

A connection V on E extends to a connection V on E ® C by C-linearity. But what is ¢, (E ® C)? We take
f(t) =det(I + £ F), so f(1) = P(E) and f(i) = ¢(E @ C). It remains to check the details, but the final
result is that

pr(E) = (—1)*con(E @ C) € H*(M,R) and cx(E®C) =0 for k odd.

3 Dirac operators on Clifford bundles

The material covered in this section is more general - it applies to any elliptic operator, but we will do just
Dirac operators and generalized Laplacians (unless we have more time at the end of the term).

3.1 Clifford algebra

Definition 3.1.1. Let V be an n-dimensional vector space with a symmetric bilinear positive definite form
(-, - ):VxV —=R. A Clifford algebra in V is a real algebra A with unit 1 and a map ¢ : V — A such

that (o(v))? = — (v,v) 1, which is universal with respect to this property. That is, if there exists another
map ¢ : V — A such that (¢(v))? = — (v,v) 1, then there exists a unique algebraic homomorphism A — A
such that

A

Vv

_—
T

A

commutes.



Example 3.1.2. Let (-, - ) =0. Then A = A"V is a Clifford algebra for (V,( -, -)). The map ¢ : V —
A°V is the inclusion, so (<p(v)) —vAv=0=—(v,0) 1. If $: V — A is another such map, define A — A
by v A+ Avg — @(v1) - - @(vg), which is an algebra homomorphism by construction, and the diagram
above commutes. It is left as an exercise to check that this is a unique map.

Proposition 3.1.3. For any (V,( -, -)), a Clifford algebra exists, and is unique up to isomorphism.

Proof: Let us first check uniqueness. Suppose A4, A are two such Clifford algebras. Then the situation may
be modeled by the commutative diagram below.

/ \f1
Ny

Since the map A — A on the outside must be id, as it is unique, we have that fo o fi = ida, so fi and f
are algebraic isomorphisms.

For existence, let {ej,...,e,} be any basis for V. Define A = spang{ef ---ef» : k; € {0,1}}, 50 A is a
2"-dimensional vector space. Define multiplication on A by

eie; +eje; = -2 <€i7 €j> 1. (1)

This rule determines the product of any 2 elements of A. Then takeb ¢ : V — A, given by e; — e¢;. Why is
this a Clifford algebra? We want ¢(v)p(v) = — (v,v) 1. Let v = v1 + vo. Then for all vy,vy € V,

(v1 +v2)p(v1 +v2) = — (V1 +v2,v1 +v2),
(p(v1) + @(v2))(p(v1) + @(v2)) = —((v1,v1) + 2 (v1,v2) + (v2,02))1,

p(v1)p(v2) + p(v2)p(v1) = =2 (v1,02) 1. (2)
Hence holds iff holds, by linearity in ey, e;. Denote this A by C/(V,( -, -)), or just by (-, -) for
shorter notation. Note that the map ¢ : V' — C£(V) is injective (as V is a subspace of C¢(V)). ]

Why do we care about C¢(V)? We will see that Clifford algebras are intimately related to the Laplacian.
Let us first look at a special case.

Definition 3.1.4. Let (V,( -, -)) be as before, { -, - ) positive definite, and {eq,...,e,} an orthonormal
basis. Then C4(V) ® C is the complezified Clifford algebra. In this case, we have

UV)eC=(U(VeC),(-, - )),
(V) @t plv®t).

Suppose S is a module over C£(V) ® C. This means S is a finite-dimensional complex vector space together
with a map (C4(V) ® C) x S — S, where

(a+B)—=as+Bs , a(sy + s2) = asy + ass , a(Bs) = (af)s.

Let C*(V, S) be the space of smooth S-valued functions on V. Then C*(V,S) = T'(V x S), where V x S
is the trivial C-vector bundle over V with fiber S. Each e; corresponds to a differential operator 9; = V.,
where V is the trivial connection on V x §.
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Definition 3.1.5. The Dirac operator D on C*°(V,S) is a C-linear map D : C>®(V,S) — C>°(V, S) given
by Ds = Y7 | e;(9;s), with the multiplication being module multiplication. In other words, (Ds), =
St 1 (0;8)p, for (9;s), € (V x S), = S.

Proposition 3.1.6. The Dirac operator is independent on the choice of basis.

Proof: Let {é1,...,é,} be another orthonormal basis, so & = Pfe, for P € O(n). Then
Ds = Z éngiS
i=1
n
= Z (Pfeg) (Vpik,ek3>
i=1
= Z (Pfec) (PFVe,s)
i=1
- (Z prik) er (Ve,s)
i=1

n
g erVe,s.
k=1

Definition 3.1.7. Define the Laplacian of s to be
D?s = D(Ds)

=2 _¢i(05(Ds)

= i ej (53 i 67;81‘8>
j=1 i=1

= Z (ej - €i) (9;0:s)

=1

~

3

= Z(—a@-s) + (e €0)(0;05)

i#]
= — Z 81818
i=1

So the Laplacian of s is — Y1, 8%/0(z")?s.

Remark 3.1.8. Let’s try to do this in a more general setting. Let (M,g) be an oriented Riemannian
manifold without boundary. A tangent bundle 7 : TM — M is a real vector bundle with rank n and a fiber
metric g. So (T, M, gp) is an n-dimensional real vector space with a positive definite inner product. Then

CUT,M, gp) ® C is the complexified Clifford algebra. Hence we obtain C¢(T'M) ® C, which is the C-vector
bundle of rank 2" over M whose fiber over p is C4(T, M, g,) ® C. Checking of local triviality is left as an
exercise.

Suppose S is a bundle of Clifferd modules over M, i.e. S is a C-vector bundle over M such that s, is a

module over C4(T,M, g,) (we will see that there are such s that always exist). We need a way to differentiate
sections of S, i.e. we need a connection on S.
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Definition 3.1.9. We say that S is a Clifford bundle if it is equipped with a Hermitian fiber metric A and
a h-compatible connection V such that for all p € M, S, is a module over C4(T,M, g,) ® C, and
1. the Clifford action of a vector X, € T, M is skew-adjoint with respect to h,, i.e.

hy(Xyp - spstp) + h(sp, Xp - tp) =0

for all X, € T,M, s,,t, € Sp, and
2. the connection V on S is compatible with the Levi-Civita connection V on T'M in the sense that for
all X, Y e I'(T'M) and s,t € I'(5),

Vx(Ys)=(VxY)s+Y(Vxs).
Note that the Vs are not all the same above.

Definition 3.1.10. The Dirac operator D : T'(S) — T'(S) of S is defined by, for {e1,...,e,} a local
orthonormal frame for T'M,

\Y I(T*M & S) mus. iso. I(TM ® ) Chff.ord T(S)
of ® section

I(S)

sp————>Vs=e" @V, s (") #* @V, s ——— g*ey ® Ve,
This follows as (e¥)# = gMe; € T(TM|;), with g** = g**. We employed the fact that ((e¥)#,e;) = e*(e;) =
(5}“ and <gkeeg, ej> = 5;»“. Moreover, since all the maps used are C-linear, their composition is C-linear.
Remark 3.1.11. Let’s compute D?s at p € M. Let {ej,...,e,} be a local orthonormal frame centered at

p such that (Ve,e;)(p) = 0 for all j (this is a geodesic frame). We know that [e;, e;] = V¢, e; — Ve e = 0,
hence [e;, ¢;][,, = 0 for all 4, j. So then

D?%s = Zeivei (e;Ve,s)
4,J
= Zei ((Vei€j) - (Ve;5) +€;Ve, Ve, s) .
4,J
Evaluate this at p € M to get

(D%), = > eil, (Veei)l, (Veys) |, + il (Ve Ve,9),)

i,J

= Z (veq‘,veis)p + Z 67;|p ' ej |p (vez vejs - vej veis)p - (v[eiaej]s)p
i=1 i<j T

n
> (Ve Ves), + Y eil, el - F¥ (eie))s.
i=1

i<j

some kind of Laplacian curvature term
We would like to write — > ; V¢, Ve, s in a more invariant way.

Definition 3.1.12. For the connection V : I'(S) — I'(T*M ® S), define the formal adjoint V* : T(T*M &
S) = T'(S). We will see that — > | V.,V s = V*Vs. This is the rough Laplacian, or connection Laplacian
on I'(S). This will follow as I'(S), I'(T*M ® S) tave positive-definite Hermitian inner products.
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Definition 3.1.13. Let s,t € I'(S). Define a Hermitian product, with (h(s,t)), = hp(sp, tp), by

((s, 1)) = /M h(s, t)vol,.

Note that ((s,s)) = 0, so h(s,s), = 0 for all p. Hence s, = 0 for all p, so s = 0. Similarly, we get a
positive-definite Hermitian inner product on I'(T* M) as follows. For «, 8 € T(T M), s,t € T'(S), let

((a@s,ﬂ®t>>=/ g(a, B)h(s, t)voly,

M

so g(a, B) = aBeg* locally. Extend this by linearity and check this is a Hermitian metric. With these
metrics, I'(S), T'(T*M ® S) are not complete as normed vector spaces.

3.2 The adjoint and the Hodge star

Definition 3.2.1. Suppose E, F are vector bundles over M with fiber metrics hg, hp. Let P : T'(E) — I'(F)
be a linear map. Then P* : T'(F) — I'(E) is the formal adjoint of P if ((Ps,t)) = ((s, P*t)) for all s € T'(E)
and t € T'(F).

Moreover, if such an adjoint exists, then it is unique. To see this, suppose that @, @ satisfy
(Ps, 1)) = (s, Q1) = ({5,Qt))

for all s,¢. Then <<s, Qt — @t>> =0, so take s = Qt — @t. This implies that Qt = @t for all £, so Q = @

Proposition 3.2.2. For any vector bundle S with a metric and compatible connection, V : T'(S) = I'(T*M®
S) has a formal adjoint V* : I'(T*M ® S) — I'(5).

Proof: In a local coordinate chart, Vs = daz/ @ V;s. Let B € Q'(M), t € I'(S), so B&t € T(T*M ® S).
Then, using { ) for the pointwise inner product, and (( )) for the Ly-inner product, we have that

(Vs,B@t) = (da’ ® Vs, B )
= (da2’, B) (V;s,t) Brg’" (V; (s,t) — (s, V;t))
= vj (Bkgjk <87t>) _gjk (VJBk) <S,t> - Bkgjk <Sa vjt>
N————’

a vector field Y
= div(Y) + (s, —¢’* (V;By,) t — Brg’*Vt).

defines a global smooth section of S

Now we integrate and use the divergence theorem to get that for all s, ¢, B,
((Vs,B®t)) =0+ ((S,—¢""(V;Bi)t — Brg’"Vt)).
Hence locally, V*(B®t) = —gjk(VjBk)t - Bkgjkvjt. [ |

Remark 3.2.3. Above, we had t = V;s, B = d2?, By = 0 and B; = 1 for j # k. Then V*Vs € I'(9) is
given by
V*Vs = V*(dz! @ V;s)
= —BkgekV£VjS
= —g9V,V;s

= - i V@k ngs
k=1
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for {e1,...,en} orthonormal. Hence D?s = V*Vs+ Ks, where Ks = DicjCitej FV(e;,e;)s. This is known
as the Bochner—Weitzenbock formula.

Proposition 3.2.4. The operator V*V is positive and self-adjoint.

Proof: For self-adjointness, check that (PQ)* = Q*P* and (P*)* = P, so then (V*V)* = V*(V*)* = V*V.
For positivity, note that
((V'Vs,5)) = ((Vs,Vs)) = [Vs]* > 0.

Proposition 3.2.5. The operators D, D?, K are all self-adjoint.

Proof: By Bochner—Weitzenbdock, it is enough to show that D is self-adjoint. Observe that
(Ds,) = [ fex Vst
M
= */ (Ve,s,ep 1) (by property 1. of S)
M

= f/ ( Ve, (s,ex - 1) — (8, Ve, (ef t)>) (by metric compatibility)
M —_—

div. of a v.f., so 0 by Stokes
= / (s, Ve, (er - 1)).
M
By compatibility in a geodesic frame and by property 2. of .S,

Ve, (er - t) = (Ve,er) - t+er - (Ve t).
———

0atp
Therefore ((Ds,t)) = [,, (s,ex - Ve, t) = ({s, Dt)), so D is self-adjoint. ]

Lemma 3.2.6. Ds =0 iff D?s = 0.
Proof: The direction — is immediate. For the other direction, note that
D¥*s=0 — <<D25,s>> =0
((Ds, Ds)) =0
0

=
— ||Ds||® =
< Ds=0.

Theorem 3.2.7. [BOCHNER]

Suppose that the least eigenvalue of K at each point of M is strictly positive. Then there are no non-trivial
solutions to Ds = 0.

Proof: Pointwise, we can do (Kpsp, Sp) = Amin(p)|sp|?, if sp # 0. Then
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For s nowhere-zero, there exists ¢ > 0 such that <I‘(35|125> > ¢ > 0. Then

({D?s,s)) = ((V*Vs,s)) + ((Ks,s))
IDs||* = | Vs||” + ((Ks, s)),
——

>0 >0

since s # 0 in some open set by continuity. This implies that || Ds||> > 0, so Ds # 0. |

Example 3.2.8. Consider the important example of a Clifford bundle, the complexified exterior bundle
AN (T*M) ® C = C/(TM) ® C. This is a complex vector bundle that is not a complex vector bundle
as an algebra over C. Let {ey,...,e,} be a basis for T,M and {e',...,e"} a basis for TyM. The map
et Ao Aett s el .. ek is a vector space isomorphism (where multiplication is Clifford multiplication).

Using this isomorphism, we will see that the natural action of C/(TM) ® C on itself makes \* (T M) ® C
into a Clifford bundle. We need to put a metric h and a compatible connection V on A\*(T*M) ® C and
check that conditions 1. and 2. hold. To do this, we need a brief digression on the Hedge star.

Remark 3.2.9. Let (V,( -, - )) be an n-dimensional real oriented positive definite inner product space. This
induces positive definite inner products on V* and A*(V*). Then (-, - ) on V* and A*(V*) is defined by
declaring that et A---Aef*, for i; < --- < i} are orthonormal when ey, ..., e, are orthonormal. Alternatively

(and equivalently),
(@ B)y. = (a5, 8),  and (@l Ao nab BUA A g, = det (0l 87),,.)
for o, 37 € V*. Diagramatically, we then have that

. . induces . . induces . . n
an orientation of V ———— an orientation of V* ————— an orientation of \" (V™)

{e1,...,en} {el,... e} {e" A---Aem}

where the last set is a singleton, and all are ariented bases.

Definition 3.2.10. Define the Hodge star = by

o NV = AR
e A---ANett eIl A N eIn—k ]

where {i1, ..., i j1,- s dn-kt =1{1,...,n} and €2 A--- Ae* Aelt A--- Aedn—k = el A--. Ae™. Define this
on a basis and extend by linearity.

Example 3.2.11. Consider the Hodge star on R? with the usual inner product and orientation. Then

*(61)262/\63, 61/\62/\63262/\(—61/\63)261/\62/\63.

x(e2) = —e1 ANes = ea Aeq,

" Exercise 3.2.12. We present the following exercises as facts:
1. %2 = (=1)k=k) on A¥(V)
2. x is an isometry, i.e. (xa,*8) = (a, )
3. aA*8=(a,B) el A ANe™ = (a,B) , for p the volume form (so [u| = 1)
4. ¥l =u, xp =1

We may now proceed to the global view. Let (M, g) be an oriented Riemannian manifold. Then * : Q¥ (M)
Qn=k(M).
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Proposition 3.2.13. Let a € Q'(M). Let of € T(TM) be the metric dual vector field. Let w € QF(M).
Then
o Jw=(=1)"""x (a A xw).

Corollary 3.2.14. For all w € Q¥(M), n € QF=1(M), a € QY(M),
(o Jw,n) = (w,aAn).
That is, the interior product is the adjoint of the exterior product.

Proof: Observe that, for u the volume form,

<ozﬂJ w,n)p=(— D" (x(a A sw), m) p (by proposition)
= (=1)™ T A x(x(a A *w)) (by 3. above)
= (—1)"kHn (=) (AN GE=Dpn A o A sw (by 1. above)
=a/AnN*xw
= (@ An,w)p
= (w,a An) fi.

Definition 3.2.15. Define d* : Q*(M) — Q*~!(M) to be the formal adjoint of d : QF(M) — QF1(M).
That is, ({(da, 8)) = ({a,d*B)), for all a € QFHL(M) and B € QF(M).

"« Exercise 3.2.16. On QF(M), d* = (—1)"*+n+1 & dx.

Corollary 3.2.17. Similarly to d, (d*)? = 0.

Proof:
+ % d * *dx = *d%* = 0.

Proposition 3.2.18. The Clifford action of a 1-form « € Q(M) (which is the same as a vector field) on a
k-form w € QF(M) is given by a-w = a Aw — of Jw.

Proof: Both sides of the equation are linear in «,w (this may be checked on an orthonormal basis of 1-forms
{e',...,e"} at a point). We need to show that e’ -w = e/ Aw — (e)! Jw, for all j. So write w = e/ Ao+,
where o, 7 have no e’s in them. Isomorphically, this is e’ - ¢ 4+ 7. Then

1som.

e w=e (e o+T)=—0+¢e T 2 o+l AT,
dANw=0+¢e AT,
(e Jw= () J(e No+7)
= (e )No—e A o)+ (D) T

a.

This follows as
0 ifk#j

() 16k = K ((e)F) = g(k, o) = 6% = {1 iy

Hence —o + e/ A7 =—(e/)  Jw+el Aw. |
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Lemma 3.2.19. We know A°®(7*M) has a natural Riemannian metric g = ( -, - ). Then A*(T*M) ® C,
equipped with its natural metric and connection, is a Clifford bundle.

Proof: Define a Hermitian fiber metric A on A\*(T*M) @ C by h(a, 8) = (a, B). Check that it is actually
Hermitian, and that the induced connection V from V¢ on TM is h-compatible. It remains to check
conditions 1. and 2. for being a Clifford bundle.

1. Let a € Qf (M), and w,n € Q*(M) @ C. Then

h(a-w,n) = hla Aw —af Jw,n)
= <o¢/\w—ozu_lw,ﬁ>
= <w7aﬁ_|w—a/\77>
= h(w, —(a An —af_in))
= —h(w,a-n).
2. Check that Vx (Y Jw) = (VxY) Jw+Y 1 (Vxw) and Vxaof = (Vxa)t, to get that
Vx(a-w)=Vx(aAw—of Jw)
= (Vxa) Aw+aA (Vxw) — (Vxof) Jw —of 1 (Vxw)
=(Vxa) w4+ a- (Vxw).

So *(M) ® C is indeed a Clifford bundle. |
Remark 3.2.20. If w € Q*(M) ® C, then dw = Y _;_, ex A V., w for any local frame {ey,...,e,} and any

torsion-free connection V on TM. Also, d*w = — Y}, ey 1 V., w for any orthonormal frame {es,...,e,}
and the Levi-Civita connection. The Dirac operator then is

Dw = iek Ve, w

k=1
= Zek AV, w— Zek_l Ve, w
k=1 k=1
=dw+d'w
=(d+d")w.

So D is this case is d + d* : Q& (M) — Q& (M), which is called the Hodge-de Rham operator.

Then D? = (d+d*)? = d? + dd* + d*d + (d*)? = dd* + d*d = A4, the Hodge Laplacian, for Ay : QF (M) % .
We will find out on the next assignment that Ay = V*V+ (other stuff).

To get more examples of Clifford bundles, we need to use representation theory.

3.3 A short digression on representation theory

Suppose V is an n = 2m-dimensional vector space with a positive definite inner product. Let C' = C4(V)®C.
We want to understand representations on C. Let S be a complex vector space that is a module over C. Let
{e1,...,en} be an orthonormal basis of V, so {e%' ---eir : i; € {0,1}} is a basis of C. Then E, the group
of order 2"*! consists of all elements {:i:e’i1 -wweln ¢ i; € {0,1}}. This is clearly a multiplicative subgroup

of C. Denote v = -1 € E.

Proposition 3.3.1. There is a 1-1 correspondence between representations of C' and representations of F,
on which v acts as —1.
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Proof: A representation S of C gives a representation of E, and v = e? acts as —1. Thenv-s = (e1---¢;)-5 =
—1-s = —s. Conversely, a representation of F for which v acts as —1 induces a representation of C' by
C-linearity (that is, a surjective homomorphism from the group algebra CE to (). |

Let’s work out some representations of E. Note v is a central involution (i.e. v € Cen(FE), the centralizer
of E) and v! = 1 € E, hence v must act as = 1 or —1 on any irreducible representation of E. Those
irreducible representations on which v acts as +1 are representations of the abelian group E/(v) of order
2", so there are 2" of them.

Lemma 3.3.2. The center of E is {1,v}.

Proof: Recall that the center of a representation F is the set {a € E : ag = ga V g € E}. So let

g = eil1 ---eiln € E. Suppose that ip = 1, ig = 0. Then epeqg = —gepeq = vgepeq (check this), hence
g € Cen(E). So only i = e ---e, might be in the center. Since n = 2m is even, eju = —ue; = vuey, so
u & Cen(E). [ ]

Remark 3.3.3. Next, we may count the number of irreducible representations of E by counting conjugacy
classes in E. That is, if g € Cen(FE), then the conjugacy class of g is {g} = {hgh™" : h € E}. If g & Cen(E),
then the conjugacy class of g is {g, gv}. Then for all h € E, gh = hg or gh = —hg = hgv. So the number of
irreducible representations is the number of conjugacy classes, which is

2n+1_2
=2"+1.

2 -
+~—v—/2 "
K\—J X L where v acts as 1

{1,v} in center conjugacy classes where v acts as —1
of the rest

Hence there exists a unique irreducible representation of C. This representation is called the spin represen-
tation of C, and denoted by A. Recall that the sum of the squares of the dimensions of the irreducible
representations of E equals the order of E. Hence the order of F is

27 = 27(1)? 4 1(dim(A))?,
=  dim(A)? =2"" - 2" =2"(2 — 1) = 2" = 2%™,

Moreover, since A is the only irreducible representation of C, it is isomorphic to the matrix algebra End(A).
Note that dim(End(A)) = (dim(A))? = (2™)2 = 2" = dim(C).

Remark 3.3.4. We can now construct this representation V explicitly. Note that V = R?™ = C™, so we
may endow V with a complex structure J. Then J : V — V is linear so that J? = —I and is compatible
with (-, - ) in the sense that (Jv, Jw) = (v,w), so we have orthogonality. Further, we always have that

— _ 11,0 0,1
Ve=VoC=V"aV">",
+i —i

where V1.0 and V0! are eigenspaces of .J, complex vector spaces of complex dimension n. Now, consider the
exterior algebra A\*(V19) = S = A. We can make this into a madule over C = C/(V) ® C as follows: let
a € \*(VH9). For v+w €V ® C, so that v € V10w € V1 define

v-oa=V20Aa and w-o=V2w_a.
These extend to an action of C on A = A*(V1?), as v? = w? = 0, and
(vw+wv)-a==2WAWLa)+TI(vAa)) =—20W)a=-2(v,w).

Now we put this on a manifold.
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Definition 3.3.5. Let (M,g) be a compact oriented Riemannian manifold. Then there exists a Clifford
bundle S — M, and M is called a Spin® manifold

Remark 3.3.6. We have shown that any almost Hermitian manifold (a compact Riemannion manifold
(M, g) with an almost complex structure J € I'(End(T'M))) is a Spin® manifold. So what is the Dirac

operator here? It is o
D =+2(0+ 9 ") + (other stuff),

where the other stuff vanishes when (M, g) is Kéhler. Moreover, in Kihler geometry, D = v/2(9 + 5*) is
called the Hodge—Dolbeault operator.

Remark 3.3.7. Let us return for a moment to the index theorem. If D is a Dirac operator of a Clifford
bundle S — M, then

forms on M representing )

ind(D) = dim(ker(D)) — dim(coker(D)) = /M < characteristic classes of TM, S

Thi index theorem applies to elliptic operators. We will only prove the one on Dirac operators, but it is
enough to prove it in general. We have proper inclusions of operators as in the diagram below:

Fredholm
operators

elliptic operators

Dirac operators

3.4 Analytic properties of Dirac operators

The analytic properties of Dirac operators and properties of solutions to the heat and wave equations and
Ds = 0 (which we need for the proof of the index theorem) are described in terms of the Hilbert space of
sections of vector bundles. That is, put some metric on F to induce a norm on I'(E') and take the completion
to get a Hilbert space.

Start on a torus T™ = R®/27Z" = (R/27Z)™, which is a compact oriented Riemannian manifold. We will
define Sobolev space of functions on T, then use this to define Sobolev spaces of sections £ — M.

Definition 3.4.1. Let f : T™ — R be Lebesgue integrable. The Fourier series for f is the formal series
1 Z a,e’P® for ap = fp = S / f(z)e Podx
(2m)n/2 ez P em)n? J

and p-x =Y ,_, prxk is the usual dot product on R".

Now we present some results from the theory of Fourier series. All will follow from the fact that exp :
x> e®/(27r)"/? form an orthonormal basis of the Hilbert space L?(T™).

Theorem 3.4.2. [PLANCHEREL]

If f € IA(T™), then [ |f2 =X, | f(0))|

Theorem 3.4.3. [INVERSION THEOREM FOR L2
If f € L?(T™), the Fourier series of f converges in the L2-norm to f.

2
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Theorem 3.4.4. [INVERSION THEOREM FOR C°)

If f € C(T™), the Fourier series of f converges in the Frechet C'*°-topology (i.e. uniform convergence of
all derivatives). In particular, the Fourier series coefficients f (p) are rapidly decreasing. This means that,
for all N € Z, there exists Cy > 0 such that

P N
If()l < COn (1+1p1*)",
where |p| = p? + -+ + p2.
Definition 3.4.5. Let k be a positive integer. Then the Sobolev k-inner product on C*°(T™) is defined by

(i, fhr = Y A fa0)(1+ [p)?,

pEZ™

for f1, fo € C°°(TM). This converges because fi (p) and f (p) are rapidly decreasing. The Sobolev k-norm
in the norm induced by the Sobolev k-inner product.

Definition 3.4.6. The space LZ(T™) = W*(T™) is the completion of C°°(T'M) with respect to this norm.

Notice that by Plancherel, W° = L% = L2, the usual L?. We will see that we may think of LZ(T") as
the space of functions whose first k& derivatives are in L2.

Proposition 3.4.7. The Sobolev k-norm on C*°(T™) is equivalent to the norm

1/2
2
of
I DI pa
0z || 12 ’
lal<k
— n _ of _ __ ol°ly
where a = (au1,...,an) € Z%, o] =1 + -+ ayp andm—a—m.

Proof: Recall that f(p) = [,. f(z)e " *dx/(2r)"/? and use integration by parts. Let fo(p) = il*lp® f(p),
where p® = p{* - - - p&~. So by Plancherel,

fallz = D [fa@)* = Y " f)P.

pEZ™ pEZ™

Next, let 30, <, Ip|?!*l = a and (14 |p|?)* = b, both of which are polynomials of degree 2k in pi, ..., p,. So
there exist ¢, C' > 0 such that ca < b < Ca, hence for any f € C®(T"),

c| Do Mallze | SIAE<C{ Y fallfe

|| <k || <K

Proposition 3.4.8. [P1]
Using the norm 3, < suppn {fa} = || fllc*, Ck(T™) C W*(T™), and the inclusion map is continuous.

Proof: Take f € C*(T™), so for all a with |a| < k, f, is continuous, hence f, € L*(T™), so > lal<k I fall2: <

oo, implying that f € W*(T™). For continuity, check that there exists ¢ > 0 such that || f|w+ < ¢||f||cx for
all f e Ck(T™). |

Proposition 3.4.9. [P2 - SOBOLEV EMBEDDING THEOREM]
If ¢ > 2, then W*+(T™) c C*¥(T™), and the inclusion is continuous.
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Proof: Using Cauchy—Schwarz, we find that

P

<Z|f(p (1+|pl? Wz) <Z|f 2(1+[p?) (1+Ipl2)€>-<2(1+lpl2)‘€>-

<oo if fEWH+E <oo if £>2

Hence if f € W**¢, then the term on the left is < co. Then the Fourier series for the first k derivatives of f
converge absolutely and uniformly to f € C*¥ (check this). [ ]

Proposition 3.4.10. [P3 - RELLICH LEMMA|
If k1 < kg, then the inclusion map W*2(T") — W¥ (T") is a compact operator (i.e. it takes bounded sets
to precompact sets).

Proof: Let B be the unit ball of W*2 and Z = {f € W*2 : f(p) = 0 for |p| < N}. This is a subspace of
Wkz of finite codimension. Let ¢ > 0. We claim that we may choose N big enough so that for all f € BN Z,
[ f1lx, <e. To see this, observe that

2roN12 2k | . 2\ k1—k2
1F11%, (Zlf 21+ [pP?) ) (Zf(p)l 1+ [pl%) ) (1+1p)

p
- efor|p| >N
=lfllk,, so <1 for some N

Hence for this N, if f € BN Z, then f(p) = 0 for |p| < N. Hence

IF1Z, = D PO+ )™= @+ p) = <e | Y0 1f@PA+ PP | <e

lpI=N <e [p|>N

=I1£112,<1

Now consider the unit ball in W*2 /Z = Z1. This is compact, hence Z+ is finite dimensional, so it can be
covered by finitely many balls of radius €, those being B(g1,¢€),...,B(gum,¢), for g; € B. Now suppose that
f € B, Then f = fi + f5, where f; € Z and fo € Z+. Then

1> IfIIE, = 117, + 1f211Z,,

so f1, f2 € B, hence f1 € BNZ and f, € BNZ*. Therefore fs € B(gj,€) for some j. Then f—g; = fi+fa—g;,
hence
1 = gill%, < IR +fo = gjlli, < € +e=2e

So f € B(gj, v/2¢). Hence B can be covered by finitely many balls of radius v/2¢ in the W¥-norm, so B is
precompact in the W¥-norm. [ |
/
Let us now consider some corollaries to the fact that || fo || is equal to (ngk \|fa||2L2) .
Corollary 3.4.11. Multiplication by a C*° function on T is a bounded linear operator on each Sobolev
space. That is, if f € C°°(T™), then my : Wk — W*, given by ms(h) = fh, is bounded linear operator.

Corollary 3.4.12. A linear differential operator P of order ¢ acts bounded linearly from W* to W*=*,
That is, for h, € C°(T™),

al

1
P=>" ha g

lor <€
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Corollary 3.4.13. Let f € L?(T™) with supp(f) on a compact subset K. Let U C T" be open with K C U.
Let ¢ : U — f(U) C T" be a diffeomorphism. Then f € W* iff f oo € Wk,

Proof: By the symmetry of the statement, it is enough to show that we can estimate L? norms of derivatives
of foy in terms of L? norms of the derivatives of f (up to order k). However, by the chain rule, for y = (),

“equals” or [\ o
83:" (foa) “equals Z (ByB o > pes

So to compute the L? norm, we integrate, and the change of variables formula will give us a | det(Jac(y))|.
Then ¢ is smooth and 7™ is compact, implying that all the terms dy” /92 and | det(Jac(p))| are bounded.
Hence, for |a| < ¢,

2

<cz

L2 || <k

of
dak

H 8x0‘ L2

3.5 General Sobolev spaces

Let M be a compact smooth oriented manifold. Let {U,} be a cover of M by domains of (a finite number
of) charts. Let {p,} be a partition of unity subordinate to {Us}. Let ¢, be a diffeomorphism of U, into
the open set ¢, (Uy) C T™.

T?’L

Definition 3.5.1. The Sobolev k-norm on CF (M) is given by

e =Dl (pat) o0 llks

C e

where |||/, on the right is the W*(T™) norm. Note this definition depends on the choices of charts {(Us, ¥a)}
and {p,}. Homever, by the three corollaries above, if we make different choices, we replace the norm by an
equivalent one. Hence we define W*(M) to be the completion of C& (M) with respect to this norm, which
then makes it well-defined as a topological vector space.

Definition 3.5.2. Let 7 : E — M be a vector bundle. Cover M by a finite number of charts (U — a, ¢4 )
such that v, (Us) CT", and WLOG E|;; trivializes. If s € I'(E), then over Uy, s = s%e, for {e1,...,e,} a
local frame over U, correspondlng to the trivializations s* € C¥ (U, ). Define

n
Isllk =Y [1(pas) 0w Il where [|ls%qlf = > [Is°[I7-
a a=1

This defines W*(E) as the k-Sobolev space of sections of E, or the completion of I'(E) with respect to || - ||
Also, note that W*(M) = W*(M x C).

Remark 3.5.3. Propositions P1, P2, and P3 still apply to W*(E). On Assignment 3 you will show that
the general section can be reduced to the special case W*(T™).
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Corollary 3.5.4. If s € WF(E) for all k € N, then s € I'(E), so s is smooth. That is,
() ¢¥(B) = () WkE) =T(E).
kEN keEN

Suppose S is a Clifford bundle over M, and D : I'(S) — I'(S) is the associated Dirac operator, so

Dszelve,s Z(fl -+ g;8 )

Then, since D is a 1st order linear differential operator, there exists ¢ > 0 such that ||Dsl||g < C||s||1. This
is also true in general for any 1st order linear differential operator. For Dirac operators (and more generally,
for elliptic operators), some kind of partial converse holds.

Theorem 3.5.5. [GARDING’S INEQUALITY]
For all k& > 0, there exists ¢; > 0 such that for all s € T'(S),

l[sllk+1 < k([ Dsllx + [Is]]x)-
Proof: This will be done by induction. Let k¥ = 0. By a partition oy unity, WLOG we may setrict to the

domain U of a coordinate chart such that U is compact, so smooth things on U will be bounded (check this).
So let’s do it on a chart. Recall the Bochner—Weitzenbock formula Ds = V*Vs+ ks, where ks = Fg ‘€;j-€e;-S.
Before we start, recall that for € T(T M|y ),

(X s = (X 5,X-5)= (X (z-5),5) == ((X-X)s,5) = |X|*|s]".
So take the L? inner product of the Bochner-Weitzenbock formula with s to get

({D?s,s)) = ((V*Vs, s)) + ({ks, s))
Il
IDs]|* = [ Vs||” + (s, 5)) < [[Vs]* + M]s||?,

for some M > 0. Then by Cauchy—Schwarz,
[ ({5, 8)) | = | Fiy {{ei-ej5,8)) | < Mlles-e; - sl| |Isll = M]s||?,

S0
IVs| < [IDs]| + C]ls]l- (3)
In local coordinates, V;s = 3878 + A;s, where s is a vector-valued function and A; € T'(End(S|y)). Then

|Vs||? = /gij (Vis, Vjs) volys

= /gij <§31 + A;s, 68; +Ajs> volay,

and since there exists co > 0 such that g* > 36",

3]
>C?/Z‘381+A5

2

2
VOlM

Isl® _ llsll® ||2
— [[Ass®

_CQZ<HW
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Hence ||Vs||2 > ca||s]|3 + cal|s]|2 — 2| Ais||3, so there exists ¢ > 0 such that ||A;s]|o + ¢||s||. Therefore, for
c3 = 02(1 + é),
IVsl* = cals]T — esllsllo- (4)

Now combine (3) and (4) to get that
sl < M|\V8||0+M|| 15

M (|Islig + 1 Dsll§ + 2lslloll Dsllo) + Mlls]l3

1 2
< M ([Isllo + [ Dsllo)” -

Therefore ||s]1 < c(|[s]lo + || Ds]lo). This cempletes the base case. For the inductive case, assume we have
the case for k — 1. As before, we are on U with U compact. For the equivalence of norms, ||s|/x+1 <
AT 11 o7 llx) for some A; > 0. By the inductive hypothesis,

19is]lk < ck—1 (|0in|lk—1 + [[DOis|[r-1) , (5)

where 0;s = gj But 9; is a 1st order linear differential operator, so by Corollary 2, there exists Ay > 0

such that

10isls—1 < Azls]]1- (6)

Also, [D, 0;] is a 1st order linear differential operator, with

[D, d;]s = D(0;s) — Ze] (05 - 0;s) Zej 0;s :—Z(ai-ej)-@s.

J
Further, there exists Az > 0 such that
I[D, di]sllk—1 < Asllslk, (7)
so by the triangle inequality and @ and ,
[1D0is|k—1 < 0:Ds|lk—1 + (D, 0i]sl[k—1 < Azl Ds|lx + As||s|lx- (8)

This implies that

[[sllk+1 < Az (Z ||5i8|k>
< Aveg-1 Y (|9is]le—1 + 1DOyslk—1 k1) by

< Arcg—1 (nAzl|sllx + nA2l|Ds|l + nAs|s|[x) by () and
=nAick—1((Az + As)||s||x + Az||Dsl|x)-
Hence |[s[k+1 < e([[sllx + [ Ds]lx)- u
To study the Dirac operator, we think of H as an unbounded (“not necessarily bounded”) operator on
L2(S) = WO9(8S).

Definition 3.5.6. Let H be a Hilbert space. An unbounded operator on H is a linear map P defined on
some dense subspace dom(P) of H to H (the map need not be continuous). The graph of an unbounded

operator P is
I'p={(s,Ps) : sedom(P)} C H® H,

where the inclusion is as a subspace. In this class, we will take P to be the Dirac operator D, H to be
L?(S) = WO(S) and dom(P) = I'(S), the space of smooth sections.
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Lemma 3.5.7. The closure Tpof I'pis also a graph, i.e. there exists ¥ O dom(D) a subspace of L3(S),
and a linear map D : Y — L?(S) such that I'p = {(s,Ds) : s € Y} =I'g, where Y = dom(D).

Proof: If not, there exists (0,t) € T'p with ¢ # 0 (because if not, then there exists (s,t1), (s,t2) € I'p with
t1 # to and the closure of a subspace is a subspace). So there exists a sequence s; € I'(S) with s; — 0 in
L*(S) and Ds; — t # 0 in L?(S). But for all u € T'(S),

((Dsj,u)) = ((t,u))
I
((s5, Du)) = ({0, Du)) =0,

hence ((t,u)) = 0 for all v € I'(S), so t = 0. ]

Hence we have an unbounded operator D : dom(D) — L?(S), where dom(D) is the set of all s € L?(S)
such that there exists a sequence s; € I'(S) for which s; — s and Ds; converges in L?. But by Gérding
(which was ||s|| < ¢(||s]lo + | Dsllo)), we see that dom(D) = W(S), so D : W(S) — W°(S). Now, suppose
that s,¢ € I'(S) with Ds = ¢. Then for all v € I'(S), we have ((Du,s)) = ((u, Ds)) = ({u,t)), so this
expression makes sense for all s,¢ € W% = L2,

Definition 3.5.8. If 5,t € WO(S) are such that ((Du, s)) = ((u,t)) for all u € T'(S),we say that the equality
Ds =t is satisfied weakly.

Definition 3.5.9. A bounded linear map A : L*(S) — L2(9S) is called a smoothing operator if there exists
a smooth section k € 75 (S) ® 75 (S*), where m; : M x M — M is projection onto the ith factor such that

(As)(z) = / () ) vl
y s,

where x(z,y) € S, ® S; = End(S,, S;) and vol, means integrating only with respect to the variable y. The
map k is called the kernel of A, and it will be a main player in the proof of the index theorem. Note that
by differentiation under the integral sign (since # is smooth), we have that Im(A) C I'(S) € W°(S), i.e. the
image of a smoothing operator consists of smooth sections.

Definition 3.5.10. Let S be a Clifford bundle. A mollifier for S is a family F,, € € (0,1) of self-adjoint
smoothing operators on L?(S) such that

a. {F. : €€ (0,1)} is a bounded family of operators on L?(S) (i.e. there exists ¢ > 0 such that
IF(3)]lo < cllslo for all ¢ € (0, 1)),

b. {[D,F.] : €€ (0,1)} extends to a bounded family of operators on L?(S) (i.e. there exists ¢ > 0 such
that ||[D, Fels|lo < ¢|ls]lo for all s € T'(S) and € € (0,1)), and

c. F. — 172(s), the identity operator, as ¢ — 0 in the weak topology of operators on L2(S) (i.e. for all

5.t € L2(S), ((Fes, )y~ {{5.1)),)-
Lemma 3.5.11. Mollifiers exist.

Proof: Self-adjointness follows by replacing F. by (F. + F*)/2 (check this). As usual, by partitions of unity,

we can restrict to a single chart U such that U is compact. Let p, be a partition of unity. Notice that (check
the details)

[D,F] = [paD,ppFl =Y papslD. Fl =Y (pa(Dps)F. — ps(Fepa)D)
a,f o, a,B
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is bounded on a chart U such that U is compact. Now choose a smooth function ¢ : R® — R with ¢ > 0,
compact support, and radially symmetric with fRn @ =1, as below.

R

R’n

Let p.(x) = e ™p(x/€). Define F, by

(o)) = (v o)a) = [ oo = mstuvol, = 5 [ (22 stopvol,

€

where * is the convolution operator. Then ||@e * s||r2 < ||@ellri||sllzz = ||s]|z2, which follows as |[p.]lzr =1
since fR" @ =1, and is called Young’s inequality. This proves a., and c. is a standard fact about mollifiers
(see any text on distribution theory).

For b., note that the Dirac operator is a sum of 1st order and Oth order operators, so if h is a smooth
function, then by the triangle inequality and a., with ¢ independent of ¢, we have that

ITh, Felsllo = l[hFes — Fehsllo < cl[s]lo-

It remains to show that [h%, F] is uniformly bounded for all j. To see this, observe that

(haiers> (z) = 6% / h(z)0; (”3 - y) s(y)vol, 9)

by the chain rule and as %(p(xzy) = 1(9;¢)(*=%). Moreover,

(£ (hims) ) @0 = & [ (Z22) @) v,

o [ (B7Y) omwmstonon + 2 [ (S sl o)

The first term on the right side of has L2-norm equal to ||| r1[[(9jh)s|| L2 < c||s]lo, where |||z = 1,

hence
0
[P s

€

c T —y
<elislo+ oo [ |00 (222)

by the mean value theorem and Cauchy-Schwarz. Now the second term is the convolution of [s| with
the function g. : ¢ — Z57[(0;¢)(%)||z|. Again, using the standard convolution estimate, the 2nd term is
llgellills|lzz. But ||ge|lz1 is independent of € by change of variables, hence ||[h%, F.]sllo < ¢||s]lo, indepen-
dently of e. |

C<elslo+ i [ | @) (S2L) | 1) = sl

[z —ylls(y)|voly,

We will now apply the existence of mollifiers.

Proposition 3.5.12. [STRONG PROPOSITION] - -
Suppose that s,t € L2(S) = W°(S), and that Ds = t weakly. Then s € W1(S) = dom(D) and Ds =t (this
is a strong solution).
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Proof: Let F be a mollifier. Let s = Fes € T'(S). If uw € T'(S), then ((Dsc,u)), = (se, Du), since D is
self-adjoint, and (s, Du), = ((s, FeDu)), since F is self-adjoint. Hence

((Dse,u))g

((s, FeDuy),

((s, DFcu))q + ((s, [Fe, D]u)),

((t, Feu))o + ((s, [FeDlu)),

Iitlloll Feullo + ||slloll[Fe, D]ullo (since Ds = t weakly)
[e1]luo + c2f[ullo (by a. and b.)

IN N

= c|lullo-

Therefore | ((Dse,u)), | < c||ullo for all u € T'(S) for some ¢ > 0 dependent on s,¢ and independent of e.
Therefore ||Ds.|| < ¢ uniformly in e. Now recall Garding, ||v]1 < ¢(||v|lo + ||[Dv||o) for all v € T'(S), and
apply to v = s, to get

[selln < e(llsello + [[Dsello) < ¢
independent of €, by a.. And, ||s¢|lo = ||Fesllo < ¢||s|lo. Hence there exists a sequence ¢; — 0 such that
s, — w € W(S) Wl-weakly, because a closed ball in the Hilbert space W' (S) is weakly compact. Also,
by Rellich’s lemma, by possibly passing to a subsequence, s, — w in the norm topology of WO(S) in the

2 J— J—
L?-norm. By c., s, L s as €; — 0. Hence s = w € W'(S) = dom(D) and Ds = t. |
Now we generalize.

Proposition 3.5.13. Let k > 1 and s, € W¥(S). Suppose that 3 =t. Then s € WF*+1(S).

Proof: Again, it is enough to reduce this to a chart U such that U is compact. By the previous strong

proposition, Ds = t iff Ds = t weakly, so the strong proposition is the k& = 0 case of this base case. For
the inductive step, note that d; = % extends to a bounded linear map from W* to W*~1. Since Ds =t

weakly,
D(ajs) = aj(DS) + [D, 6]}8 = Ojt + [D, 8J]S

weakly

But the right side is in W*~! since [D, d;] is first order. By the inductive hypothesis, 9;s € W* for all j,
implying that s € Wk+1, [ ]

We are now almost ready to understand the spectral theory of D.

3.6 Spectral theory

Lemma 3.6.1. Let H = L*(S) = W%(S) and I' = I'p be the graph of D. Let J: H® H — H® H
be given by J(s,t) = (t,—s), so J? = idgem. Then there exists an orthogonal direct sum decomposition
HeH=TaJ(T).

Proof: Suppose that s,t € I't. Then for all u € T'(S), we have that

((s,8), (w, Du))) =0 = ({s,u)) + {(t, Du)) = 0
= s+ Dt=0 weakly
= D(-t) =s weakly.

By the strong proposition, —t € W1(S), so (—t,s) = J(s,t) € . Hence (s,t) € J(T). [ |

Remark 3.6.2. Now define a map Q as follows. Let s € H = L*(S), and let (Qs, D(Qs)) be the orthogonal
projection of (s,0) onto I' in H & H. Here Qs € dom(D) = W1(S) C WO(S). Then for some t € W(S),

(5,0) = (Qs,D(Qs)) + (—Dt, 1),
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where the two terms on the rigt are orthogonal. Therefore s = Qs — Dt and 0 = D(Qs) +t. So

Isll5 = 1(@s, D(@s))II5 + I(=Dt, )13
= [1Qsll + 1D(@s)II5 + I DG + [ItI[5,

therefore ||@Qs||2 < [|s]lo and ||D(Qs)|lo < [|s]lo- Now we have that ¢ = Qs — D(—=DQs) = (I—&—EZ)QS = s,
and (I —|—52)(Q) = I. Hence Q is injective and self-adjoint. Next apply Garding, [lull1 < c(||ullo + [[Dullo),
to u = Qs. So ||Qs]l1 < c(||@sllo + |D(Qs)]lo) < c|lsllo, so @ : WO(S) — W1(S) is bounded. By Rellich,
WL(S) = WO(S) is compact, so Q : W°(S) — WO(S) is compact.

Theorem 3.6.3. [SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS ON A HILBERT SPACE]
Let @ : H — H be a compact, injective, self-adjoint positive operator. Then H = @20:1 E,,, which is an
orthogonal decomposition, and F,,  is an eigenspace of () with eigenvalue p,, each E,  is finite-dimensional,
and the eigenvelaues are discrete, strictly positive and tend to 0, i.e. py > po > -+ with lim, o [p,] = 0.
That is, any v € H is

oo
v = g Un, where QUup, = lnUn,
n=1

and the sum converges in the H-norm.

Theorem 3.6.4. There is a direct sum decomposition of H = L?(S) into a sum of countably many orthogonal
subspaces H). Each H) is a finite-dimensional space of smooth sections, and is an eigenspace for D with
eigenvalue \. The As form a discrete subset of R.

Proof: Let s be an eigenvector for Q, so Qs = us for some p > 0. Then s = %Qs € W(S), so there exists t
such that

(5,0) = (@5, D(Qs)) + (=Dt t) = pu(s, Ds) + (= Dt, 1),

so ps — Dt = s and uDs +t = 0. Now note that the eigenvalues of Q are in (0, 1], because ||Qs|| < ||s|| in
the previous calculation. Next, rearrange to get (u — 1)s = Dt and t = —uDs. Let A2 = (1 — u)/p and
u = —t/(u\), so that

— 1 — 1 1—p

Ds=——t=Xu and Du=——Dt=

= \s.
I HA o

Now, since Ds = \u and Du = s, u+ s and u— s are eigenvectors of D with eigenvalues \, —\, respectively.
Check also that this works for A = 0.

So H can be written as a direct sum of countably many (necessarily orthogonal) eigenspaces of D, each
eigenspace a finite-dimensional subspace of W'(S). We need to show the eigenvectors of D are in I'(S). So
for Ds = As = u, by Garding

Isllk+1 < cxllslle + [1Dsllr) = cxllsllk + [Alllsllk) < pllslle,

for all k. This is called bootstrapping, and gives us that s € W¥(S) for all k > 1, so s € I'(S). |

Let o(D) = {\, : n € Z} be the spectrum of D. Let f : (D) — C be bounded. Then we can define a
bounded operator on L?(S) = WO(S) by letting f(D) be multiplication by f()\) on E) the \-eigenspace of
D. That is, if s = ) cpsp, then f(D)s =) ¢, f(An)sp. This f(D) is clearly a bounded linear map, i.e.
[f(N)] < M for all X € o(D), so || f(D)sllo < M||s|o-

Proposition 3.6.5.

1. The map f +— f(D) is a unital *-ring homomorphism from bounded forms on ¢(D) to bounded linear
maps on W?(S). On functions it is f* = f an involution, and on bounded linear maps of W°(S) it is f* the
formal adjoint involution. The map acts by

(f,9) — f(D)g(D) 1 — id
f+g9 = f(D)+g(D) o= (D)
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2. If A: WO(S) — WO(S) is linear and commutes with D, then A commutes with f(D) for any such f.
3. f(D):T(S) = I(9).

Proof: 1. If s =3 ¢psp, then

9(D)f(D) = g(D) (Z Cnf()‘n)sn> = chg()‘n)f()‘n)sn = (9f)(D)(s).

Similarly, f*(D)s =", ¢nf(An)s, and

(f(D)s, 1))y = <<chf(>‘n)5m me5m>> = chf(An)a = ZCn?O‘n)bn = ({(s, (D)) .
n m 0 n n

Hence f*(D) = (f(D))*.
2. This is clear. Check that f(D)As = Af(D)s, where AD = DA (i.e. A preserves eigenspaces of D).

3. Let s € I'(S), so D¥s € WO(9) for all k > 0. Hence ﬁkf(D)— = f(D)D*s € W°(S). By the strong
solution proposition, f(D) € W¥(S) for all £ > 0. Hence f(D)s € T'(5). [ |

3.7 Hodge theorem

Consider a special case. Let VO, V1, ... V" be finite-dimensional C-vector spaces with Hermitian inner
products. Suppose we are given linear maps P; : V¢ — V*+! such that P; o P, , = 0 for all i > 1:

0 0 VO PO Vl Pl PN_l VNfl PN VN 0 0

This is a complex of vector spaces, with Im(P;_1) C ker(P;). Define the ith cohomology of this complex to
be the complex vector space H'(V*, P,) = ker(P;)/Im(P;_;). Note that H* = 0 iff ker(P;) = Im(P;_;). In
this case, we say that the complex is ezact at V.

Definition 3.7.1. The Fuler characteristic of the complex above is

n

X(V*,Py) = (—1)' dim(H").

i=0
Definition 3.7.2. Take the complex above and consider the dual maps:
0 Py P Py Py 0
0 VO Vl . VNfl VN 0
0 Py Py Py P 0

The map P : Vi1 — V¥ is the formal adjoint, defined by the Hermitian inner product as (v, Pfw) = (Pv, w)
for all v € V* and w € VL. Define H'(V*®, P,) = ker(P;) Nker(P; ;) C V. This is called the subspace of
P-harmonic elements of V. Note that Im(P;,_1) L Im(P;) in V*. This follows as P; o P;_1; = 0 and

<Pi_1U7Pi*’lU> = <P,'PZ‘_1’U,’LU> = (O,w) =0.

Theorem 3.7.3. [FINITE-DIMENSIONAL HODGE THEOREM]
1. The induced map m; : H/ — H7 is an isomorphism.
2. Given the objects

N N N
V:@Vi ' P:@Pi ’ P*:G_%Pi*q . Ap=(P+P*)?

where Ap : V — V is the Laplacian associated to P, the space H*(V) = G}ZN:O H' = ker(Ap).
3. The cohomology of V(V*, P,) vanishes iff Ap is an isomorphism.
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Proof: 1. We need to show that 7; is injective and surjective. So suppose that v € ker(m;). Then Pjv =0
and P; ;v =0 and [v] = 0 in H’. So v = P;_yw for some w € VI~'. Hence P} | P;_jw = 0, implying that

<Pj*71Pj_1w, w> =0 = |Pj_1w|2 =0.

Hence v = 0 so the map is injective. For surjectivity, we use finite-dimensionality. We need to show
every v € ker(P;) is cohomologous to some u € ker(P;) Nker(P;_;). That is, if v € ker(P;), there exists
u € ker(Pj) Nker(P;_;) such that [v] = [u], so H? > [v] = m;(u). The cohomology class [v] is given by
[v] = {v+ Pj_qw : we VIt

/ [v], affine subspace of ker(P;)

ker(P;)

I

By finite dimensionality, there exists a point v € [v] closest to the origin (we also need completeness).

Consider the function
fw R — [0700)
t — dist(u+tPj_1w,0)? = |u+ tPj_jwl|?

for w € VJ~1. By construction of u, f,,(t) > f.,(0) for all . Hence f/ (0) =0 and

[u+ tPjyw]* = (u+tpj 1w, u + tPj_1w)
= |u® + t (pj_1w,u) +t (u, Pj_yw) + t*| Pj_ w]|?
= |ul® + 2tRe((Pj_ 1w, u)) + t*| Pj_qw]|?.

So f1,(0) = 0 = 2Re((P;j_1w,0)) = 0 for all w € VI~', so 2Re((w, Py ju)) = 0 for all such w. Let
w= P} jue V! sothat |Pf ju|* = 0, meaning that P} ;u = 0.

2. Let v = @i]\io v; € V. Then v € H iff v; € H* for all 4, iff Pu; =0 and P v; = 0 for all 4.

3. Note that (P + P*)(v) = @io(ﬂ_lvi_l + Pfv;41), where every element in the direct sum is in V.
Now note that (P + P*)(v) =0 iff P,_jv;—1 + Pv;11 = 0 for all 4, where the two terms are orthogonal, as
Im(P;—1) L Im(P}). Hence v € ker(P + P*) iff P,_yv; = 0 and Pjv;41 = 0 for all i, iff v; € H%. So then
Ap = (P + P*)2, so ker(P + P*) C ker(Ap). Notice (P + P*)2 = P2+ PP* + P*P + (P*)? = PP* + P*P.
Let v € ker(Ap). Then

Apv=0 = (Apv,v)=0
= (PP*v+ P*Pv,v) =0
= |P*]* +|Pv|* =0,

so v € ker(P + P*). [ |

We now move to the more general version of the Hodge theorem. Let (M,g) be a compact oriented
Riemannian manifold. Let S° S',..., S be Hermitian vector bundles over M. Suppose for all i, P; :
['(S%) — T'(S**1) is a 1st order linear differential operator with P; o P,_; =0 (and Py = Py = 0).
Definition 3.7.4. We say that the complex 0 — T'(5°) -2 T(51) s ... ot L(SN) — 0is a
Dirac complezif S = @Z]-V:O St is a Clifford bundle and D = P+ P* = Zfio(Pi + P} ;) is the Dirac operator
for S, so D : T'(S) — I'(S).
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Example 3.7.5. Consider S' = A\ (T*M) ® C and T'(S%) = Q& (M). Take P; = d : Q(M) — Q5 (M).
We have already seen that A\*(T*M) = @fio N (T*M) is a Clifford bundle with Dirac operator D = d+ d*.
Also, Ag = (d + d*)? = dd* + d*d.

Theorem 3.7.6. [(MORE) GENERAL HODGE THEOREM]
1. The map 7; : H/ — HY is an isomorphism.
2. The space H'® is finite-dimensional.
3. ker(D) = ker(Ap).

Proof: The injectivity of m; is exactly as in the previous Hodge theorem. For surjectivity, consider the
extended complex:

Po HZQ P1 Hll PN HZN
0 ——>T(8° (st SNy —» 0
(5%) 2 (5%) P, P (™)

For all j = 1,..., N, we have defined maps p; : I'(S7) — H7 by orthogonal projection onto H’, as W9(57) =
H7 @ (H7)*. Note that p;oi; =1 and ijop; =1 — f(D), where f(A) = { } 320 Let g(\) = {)‘82 A0 and
define G = g(D?) (this is called Green’s operator for D), a bounded linear map W(S) — W9(S). Notice
that D*G = { | ifg , 50 D?G = f(D) =1—1; op;. Also notice that

D?P = (PP* + P*P)P = PP*P = P(PP* + P*P) = PD?,
so P commutes with D2. Hence P commutes with G = g(D?), and

D?G = PP*G + P*PG = PP*G + P*GP = PK + KP

for K = P*G. Let w € HI(S*, P,), so w = [u] with u € I'(S7) and Pu = 0. Then u = 1-u = i;(p;(u)) +
PKu 4+ KPu, where the first term is inv’Hj7 the second is in Im(P), and the third vanishes. So [u] =
[1j(pj(u)] = w and w = 7;(i;(p;(u)) € H/.
2. Let v; € H', so Piv; = 0 and P ;v; = 0, meaning that (P + P*)v; = 0. So H' = ker(D) NT(S?) (we
already know that ker(D) C I'(S)), and ker(D) is finite-dimensional because Ej is the eigenspace of A = 0.
So H' is finite-dimensional.

3. This is done exactly as in the previous version of the theorem. |

Corollary 3.7.7. The cohomology of a Dirac complex over a compact oriented manifold is finite-dimensional.

Remark 3.7.8. Define 5" = @, ... S and S = P, ., S*. We know that P, P*, D : §even — godd
and S°% — Geven et D, : §even — §°dd and D_ : §°4d — Geven  We claim that D% = D_. To see
this, note that ((Dys,t)) = ({(s, D_t)). Next define Heve", Hodd Hever o4 analogously. From the Hodge
theorem, ker(D,) = H’*" and ker(D_) = H°%. Hence the Euler characteristic is given by

N
X =Y (—1)"dim(H’)
i=0
= dim(H**") — dim(H°")
= dim(H") — dim(H°*)
= dim(ker(D;)) — dim(ker(D_)).
This is the first example of an index theorem. It is the difference in dimensions of finite-dimensional kernels
of Dirac-type operators.
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4 The index theorem

4.1 Fredholm operators

Definition 4.1.1. Let By, B be Banach spaces. A bounded linear map P : By — Bs is called Fredholm if
the following conditions are satisfied:

a. ker(P) is finite-dimensional,

b. Im(P) is closed in Bs, and

c. coker(P) = By/Im(P) is finite-dimensional.
If P is Fredholm, define the indez of P to be

ind(P) = dim(ker(P)) — dim(coker(p)) € Z.

Remark 4.1.2. Knowing something about the index of an operator tells you how much it fails to be a
bijection. Indeed,

if ind(P) > 0, P is not injective,

if ind(P) < 0, P is not surjective,

if ind(P) = 0, P is an isomorphism iff ker(P) =0
iff coker(P) = 0.

In practice, an index theorem is combined with vanishing-type theorems, which is a Bochner-Weitzenbock
argument to find both dimensions.

Example 4.1.3. It is useful to know when an operator P : B; — Bs is surjective to apply the Banach space
implicit function theorem, to conclude that some subsets defined by P have smooth structure.

Now we will show that our Dirac operator is Fredholm. Note that P — ind(P) is constant on connected
components of the space of Fredholm operators. It is stable under compact perturbations, i.e. ind(P+17T) =
ind(P) for T : By — Bs compact.

Lemma 4.1.4. Let (M, g) be a compact oriented Riemannian manifold and S a Clifford bundle with a Dirac
operator D. The bounded (shown before) map D : W(S) — W9(S) is Fredholm.

Proof: We already saw that ker(D) is finite-dimensional. We claim that Im(D) = (ker(D))+ in W°(S). If so,
we are done, because WO(S) = Im(D) & ker(D). Any orthogonal complement is closed, and the just given
statement says that coker(D) 2 ker(D) is finite-dimensional.

So suppose that s € ker(D). Let t € W(S), so there exists a sequence {t;} € I'(S) such that ¢; — ¢ in the
W1(S)-norm, so Dt; — Dt in the W°(S)-norm. But then ((Dt;,s)), = ((t;,Ds)), = 0, since s € ker(D).
Hence ((Dt, s)), = 0, so Im(D) C (ker(D))> .

Conversely, let ¢t € ker(D)*. Define f on o(D) by f(0) =0 and f(\) = 1/, so Df(D)t =t, as t ¢ ker(D).
But t € WO(S), so the strong solution theorem says that f(D)t € W!(S). Therefore t = D(f(D)t) € Im(D),
so ker(D)* = Im(D). [ |

Remark 4.1.5. Let D : W'(S) — W°(S) be the Dirac operator of a Clifford bundle. Then
ind(D) = dim(ker(D)) — dim(coker(D)) = dim(ker(D)) — dim(ker(D)) = 0.

So ind : W1(S) — WO(S) is always zero. To get an interesting (non-zero) index, we need to introduce
additional structure, a Z/2Z-grading, a.k.a. a superstructure.

Definition 4.1.6. A Dirac operator D is graded (or supersymmetric) if it comes from a Dirac complex of
length 2, i.e.

P
0 ——I(S") =—=TI(5") ——0
P*

)
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s0S=8"®S'and D = P+P* = [g %*] with respect to the grading S = S°@S'. The operator £ = [6 _01]
is called the grading operator, so we see that S is the +1-eigenspace of £ and S' is the —1-eigenspace of £.

Remark 4.1.7. Observe that D : I'(S) — I'(S) is graded iff DE + ED = 0. Indeed,

A BY[I 0] [T 01[A Bl [24 o0

¢ pllo 1| T|o —1|lc D|T |0 —24|
Since D is Fredholm, P : T'(S') — I'(S!) is also Fredholm. We leave it as an exercise to show that ind(P) =
dim(ker(P)) — dim(coker(P)) and coker(P) = ker(P*) as before. To show this, use P* : T'(S!) — I'(SY),
where I'(S?) = Im(P) @ ker(P*). From before, we will still have

d: QM) = Q% and  dF QUMM — Qv

Moreover, as D = d+d*, the Euler characteristic of M is given by x = ind(d) = dim(ker(P)) —dim(ker(P*)).
Hence the Euler characteristic is the index of a Fredholm operator.

Theorem 4.1.8. [ATIYAH-SINGER THEOREM FOR DIRAC OPERATORS]
Let (M, g) be a compact, oriented Rimenannian manifold such that D is graded and D = P + P*. Then

ind(P) = MA(TM) = <A(TM), [M]>7

is probably true, where

A= |det

is the A-hat genus and [ - | is the fundamental class.

Proof: The idea behind the proof is a finite-dimensional linear algebra result, which we will extend to
our setting. Let U;,U_ be finite-dimensinoal complex vector spaces with Hermitian metrics ( -, - ), with
n =dim(Uy), m =dim(U_). Let P: Uy — U_ be a linear operator.

First we claim that Im(P) = ker(P*)* and Im(P*) = ker(P)*. This follows as (Pv,w) = (v, P*w), so
w € ker(P*) iff w € Im(P)*. So Uy = ker(P) @ Im(P*) and U_ = ker(P*) @ Im(P), meaning P induces an
isomorphism P : Im(P*) =, Im(P). Then

ind(P) = dim(ker(P)) — dim(coker(P))
= dim(ker(P)) — dim(ker(P*))
=n — dim(Im(P)) — (m — dim(Im(P*)))

Let’s now give another more complicated proof, which generalizes to infinite dimensions.

Proof: Let U =U;, @ U_ and D = [ 3 "] : U — U. Notice that D* = D and

(D(u,v), (s,t)) = ((P*v, Pu), (s,t)) = (P*v,s) + (Pu,t) = ((u,v), P(s,t)) .
P*P 0
0 PP* . 5
o(D?) € [0,00). Let p > 0, so then ker(D? — ul) = ker(D — \/ul) & ker(D + \/ul). Let & = [ o IU,}
be a grading. Then D? commutes with £, so they are simultaneously diagonalizable for any eigenvalue u of
D2 ie. E,= E:[ @® E,, the sum of the +1-eigenspace and —1-eigenspace. To finish the proof, we need the
following lemma. ]

We can compute the self-adjoint operator D? = [ } is non-negative, so <D2x, x) > 0, meaning that
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Lemma 4.1.9. For all non-zero p € o(D?), dim(E;) = dim(E, ). More precisely, Plgs EY N E,.

Proof: First note that [D, D?] = 0, so E,, is D-invariant, i.e. D(E,) C E,. Suppose 11 # 0 and v € ker(D|g, ).
Then

Dv=0 = D% =uw=0,

and for p # 0, it must be that v = 0. So D|g, : E, =, E,,and D = [1% %* ]7 meaning that

P:EFf =5 E;  and  P*:E; — Ef

wo

proving the claim. Now we have that U, = EBi‘EU( D2

dim(Uy) — dim(U-) = dim(E; ) — dim(E, ) = dim(ker(P)) — dim(ker(P*)) = ind(P).

VB and U = ®i_€a(D2) , and by the claim,

Definition 4.1.10. Let T': U — U be an operator. The supertrace of T, denoted str(T"), is defined to be

C D 0 D c 0
So str(T) = str(Teven), as well as str(T) = Tr(ET) = Tr([§ % | [A B)).
Remark 4.1.11. With the above definition, for any t > 0

str(eft[ﬁ): Z e”"(dim(E;}) — dim(E,)).

u€o(D?)

str(T) = Tr(A) — Te(D) = Te(T|y, ) — Te(T|y. ) where T = [A B} - [A O} 4 {0 B] = Toven + Toa-

9

By the previous lemma, these cancel in pairs except when p = 0 (also called supersymmetry). So we see that

str(e _tDz) dim(E;) — dim(E; )
= dim(ker(P*P)) — dim(ker(PP*))
= dim(ker(P)) — dim(ker(P*))
= ind(P).
The last expression is smooth in ¢ and independent of ¢, so
ind(P) = tl—i>%1+ [Str(eftDQ)] = str <t1_i>r5£r [etD2}> =str(ly) = dim(U;) — dim(U_).

The above illustrates the main idea that we will follow: D is a Dirac operator for a Clifford bundle S =
ST @S, Write ind(Dy : WH(ST) — WO(S7)) = str(e*P) (which still needs to be defined). We will show
that the right side is independent of £. The index theorem will then be obtained by equating ¢t — oo and
t — 0 on the right hand side.

Now, recall that if D is a Dirac operator, for all s € I'(S) we have that ||s||r+1 < cx(||Ds|le + ||s]lk)s
where ¢ depends on k, M, S but not s € I'(S). Also, since D is first order linear, there exists ¢ > 0 such
that || Ds|| < cglls|[xs1 for all s € WETL(S) and s € T'(S). Since D is mth order linear, |D™s||x < c||s|lktm
for some ¢ > 0.

Proposition 4.1.12. There exists a constant ¢ = ¢(m, k, M, S) such that ||s||x+m < c(||D™s||x + ||s|lx) for
all s € T'(S).

Corollary 4.1.13. Define a norm ||s||~ = ||s|lo + ||D™s|lo- Then the previous statements imply that || - |~
is equivalent to || -+ |-

Proof: Observe that

1
lsllm < llsllo + D™ s]lo < clls]lm-
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4.2 The heat kernel
Definition 4.2.1. Given vector bundles as on the left, define the box tensor operator X as on the right.
M x M
m 2 SK S* 7H(S) ® m5(S*)
(SKS*) = S,XS:=End(S,,Sy)

M M
mT1(p,q) =p m2(p,q) = ¢

Recall that a smoothing operator Ay for S is determined by a smooth section &k of S X S* by

€S,

——l
(Aus)(p) = /M Kpa) o) vol,

€ End(S,,Sp) € S,

The integrand is a smooth function on M taking vectors in S,. Note that Ays € I'(S) even if s € WY(S).
The map k is also called an integral kernel for s.

Example 4.2.2. Consider the following examples of integral kernels.

- Let s € I'(S), a € I'(S*). Then sKa € I'(SX S*) is defined by (s X ), q) = 84 ® g € S, ® S, which
is a decomposable integral kernel.

- There exists a conjugate linear map I'(S) — I'(S*), given by s — s*, such that s*(t) = (¢, s) for all
t € S (this is a pointwise fiber metric). Also, (As)* = Xs* for all A\ € CF(M). Hence if s,t € T'(9),
then s & t* e F(S X S*). Next, let k € I'(S X S*) be an integral kernel for S. For all s € W°(9),
(Ars)(p) = [, k(p,q)sqvol, and Ak WO(S) — I'(S) is linear.

- Let A € o(D) and let my = dim(F)) = dim(ker(D — AI)), the multiplicity of A. The space E) is the
A-eigenspace of D, which is finite-dimensional and consists of smooth sections. Let Py be the orthogonal
projection onto E, with Py : W(S) — E). Fix an orthonormal (with respect to thet W9(S)-norm) basis
51,...,8m, of E and define k) = Z 1 85 X s7. Now let ¢ € I'(S), for which

(4600) = [ ko atla)vl, —Zsj ) [ (6(@).55(0) vol, = (P o)

So Ay, = Py and Pxt = )" a;s;, where ay = ((Pxt, s¢)) = ((t, s¢))-

7=1
Let’s generalize the last example further. Let I C [0, 00) be a compact interval. Define ky = 3 reo(D) Fx €
I'(S X S*). The smoothing operator A, corresponding to kr is A, = Py, the orthogonal projection onto

P Ex= P He,

rce() AEa (D)
where E) are the eigenspaces of D and Hy: are the eigenspaces of D%, If [ = {\}, then E; = E\ = H,:.
Define also

@ Py and dy = dim(Ey) = Z my.

A€o (D) A€o (D)
[Xer Ixer
. dr
Let s1,...,84; be an orthonormal basis of E;. Then k; = ZJ 155 W s
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Theorem 4.2.3. Let r = rank(S). Then there exists ¢ > 0 such that

a. dy < c?rvol(M™)(1 4 b*), for all I C [a,b] C [0,00), where £ = | %] 4 1. This is a bound on dim(Ey)
in terms of 1+ b%.

b. For any j > 0, there exists a constant B; > 0 such that for any [a,b] C [0,00), we have that
lkrllos < Bj(1+ b**+27). This is a bound on the C7-norm of k; in terms of 1 + b2+2/.

Proof: For all j > 0, there exists M; > 0 such that ||s||; < M;(||s]lo+ ||D?s|lo). From the Sobolev embedding

theorem, if £ > j + %, there exists A = A(/, j) such that

Islles < Allslwe < AMe(lIsllo + 1 D%s]lo). (11)

Let I = [a,b]. For any s € WO(S), set s; = Prs € I'(S). Let u € T'(S), so then for u; = Do|njer CASx, we
have that Dfu; = Zwel exXfsy and

ID urllg =" I feal® < B> leal® = b flus[3,
[Aerl |Xel

Now we see that
[urllg + (1D ur[I§ < (1407 Jurll§ < (1 + 6> [Jull3- (12)

Let £; = | %] 4+ j + 1. Then (11 and (12) for j = 0 and s = u; give
lurlloo < Bo(1 + )" ullo, (13)

for all u € WO9(S), passing to the limit. Next, fix a point pg € M and w,, € S,, of unit length. Define

Vio,wp, (@) = Z?;l (Wpy $i(Po)) si(q). This means that vy, w, € I'(S). Also, ur(po) = Zf;l ({u, 83)) si(pi)
for all w € W. Further, notice that

dy

(ur(po), wpe) = D ((u,80)) (54(P0)s wpo) = (W 0po o)) - (14)

i=1
Hence for all u € WO(S),
(s Oy )) = (ur(po)s wpy) < Jur(po)l < Jurleo < Bo(1+6)2|fulo,

where the first equality follows from and the first inequality from Cauchy—Schwarz. Since this holds for
all u, take u = Vp, w, - Then [y, aw,, 15 < Bo(1 + 6*) Y2 ||vy, a,, llo, hence

10pg s llo < Bo(1+2)1/2. (15)
Since s1,..., 54, is an orthonormal basis of Er, |[vpgw,, [I§ = Z?;l (wpy, 8i(po)) |?. Let e1,...,e, be an
orthonormal basis of s, with respect to (-, - ), . Then
0
r r o dr
2
D Moppenl? =D Hew, si(po))
k=1 k=1 i=1
d] T
2
=> > lew si(po))l
i=1 k=1

dr
= Z |Si(p0)‘2 )
i=1
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hence Zf-lil |s(po)|* < rBE(a+ b*), by (15), for any po € M. Now integrate over M for

dr

dr
/ D IsilPvol =Y |lsil|® = dim(Ey) = dy < rBvol(u)(a + b*),
M =1 i=1

which proves a.. For b., use for [|s]lc; < M;(1 + b%9)1/2||s|l, where £; = %] +j+ 1. Then k; =
Z?;l s; W s¥, and

dr
lkrlles < lIsillzs
=1

MZ(1+ ) dr
MZ(1+b29)B3r(1 + b*)vol(M)
NJ(]. +b2€0+€j)7

INCINN

and £y +£; = 2(| 5] + 1+ j), which is what we wanted. [ |

Recall that if f : o(D) — C is bounded, we can define f(D) : W°(S) — W°(S) bounded linear with
f(D) =X seo(p) TN Prs.
Proposition 4.2.4. Suppose f : R — R is continuous with rapid decay at infinity. That is, suppose that

1im\>\|%0“)\|kf()\)] =0 for all k > 0. Then f(D) is a smoothing operator Akf associated to the integral kernel
k= Z)\EO’(D) F(N)kx, where Ay, = Px.

Proof: For all n > 1, set

kpm= Y. fWka= Y f(Vka

rea(D) [Al€[n—1,n]
[A€[n—1,n]

where kyx = 0 if A ¢ o(D). This is an integral kernel, ie. kf, € I'(S X S*). Now, we claim that
> ns1kfn = ks converges in C7(S X S*) for any j > 0. This shows that ky is smooth. To prove this claim,
we first let

d, = dim(Ep, 1) and fn = " ?up ]{If(t)l}
t|€[n—1,n

for all n. Note that f,, < co because f is continuous. Then

ka,n||0j<< sup {If(t)|}> Y lkalles

[t|€[n—1,n] IA|E€[n—1,n]
< fnM (14 m+%9)
Since f is rapidly decaying, >°>°_, f, (1 +m*+%) < o0, s0 kf.m e, ks in the C? norm, for all j. This
proves the claim and proves the proposition. ]

Definition 4.2.5. Let f;(\) = et This is rapidly decreasing for any ¢ > 0, so by the previous proposition,
fi(D) = e~*P* is a smoothing operator with integral kernel f; = 2 oreo(D) e~ kyx. The collection {h; : t >
0} is called the heat kernel of D.

Definition 4.2.6. Define a bundle 7 : Ryo X M x M — M x M by =(t,p,q) = (p,q), projection onto the
second factor. Define -
SKS* =7"(SKSY),

which is a bundle over Rx¢ x M x M, whose fibers are S/BTS*(typyq) = (S S5*)(p,q) = End(S,, Sp).
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Proposition 4.2.7. With respect to the definitions above,

a. the heat kernel {h; : t > 0} defines a smooth section of SX S by (t,p,q) — hi(p,q) € End(S,, S,),
b. for any fixed ¢ € M, %ht (p,q) + Dght (p,q) =0, i.e. h satisfies the heat equation on S, and

c. if s € T(S), then lim,_,q+[[|s¢ — s|co] = 0 for s, = e=tP°s = Ap,s.
Proof: For any N > 0, set hy N (p,q) = X2 <n e kx(p, q), recalling that kx(p, q) = >0 55(p) B s%(q).

Then h; n is a smooth function of p, ¢ for any V. The previous proposition showed that h; Noeo, h; in
the C* norm, for any k, and is uniformly integrable on compact subsets of R>¢. Also note that

. . 0
ng)\ = )\216/\ 1mply1ng (8t + D12)> ht,N =0
for all N. Now, the integral kernel Dghn ~ converges in any C* to the smooth integral kernel associated to
the rapidly decaying function A — AZe—tA? (and this too is uniformly convergent in ¢ on compact subsets of
R>o). Hence hy = limy_, [k v] is CF in p, g, t for all k (i.e. a C* function of ¢, p, ¢ by uniform convergence
on compact subsets). Hence h: Rx¢ x M x M — SX S* is a smooth section and

0
(825 +D§) he = 0.

This proves a. and b.. For c., let s € T'(S) and s; = etP? . Write s = Ap,s = ZAEU(D) sy, for sy = Pys.
Let m > 0, for which
ID™s|5 < Y I lIsallg < oo,
A€o (D)

since D™s € I'(S). Therefore

m — 2 2 m
1D =)= > (7 =1) A sl
A€o (D)

Consider the functions ¢; : o(D) — R given by ¢;(A) = (e~ — 1)2|A|2™||s,||2. Equip o(D) with the
canonical discrete topology. Apply the dominated convergence theorem to interchange the sum and the
limit. Then )

. mi. 21 _ . —tA? 2m 2| _

i (1D (- 9IR) = 3 tim | (e < 1) gl =0

t—0 t—0+
A€o (D)

for all m > 0. Hence
lim [[|D™(s¢ — s)[[5 + [ls: — s3] = 0.

t—0+

Last time, we showed that the norm ||[D™s]|Z + ||s||2 is equivalent to the W™ (S) norm. Hence lim,_,q+[||s; —
sllwm(sy] = 0 for any m > 0. So by the Sobolev embedding theorem, lim,_,+[[|s; — s|[cx] = 0 for all £,
proving c.. |

Lemma 4.2.8. [UNIQUENESS OF SOLUTIONS TO HEAT KERNEL)]
Let S denote tha pullback of S — M to [0,00) x M = R3¢ x M. For any so € I'(.S), the initial value problem

(5 + D) ster =0 (16)

where s(0,p) = so(p) for all p € M, admits a unique solution, which is a continuous section of S on [0,00) x M
and smooth on (0,00) x M.
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Proof: Assume that s(t,p) is a solution of (I6). Let s, = s(t, - ) be the restriction of s to {t} x M. For
uniqueness, we need to show that if sg = 0,then s; = 0 for all t > 0. Then

21t {{8ue) (0 803)
= ((=D?s1,51)), + ({s1,=D?s1)),

= 2| Ds¢|3
<0.

So [[s¢]|3 < |50/l = 0, meaning that s, = 0 for all ¢ > 0. |

tD

Above we showed that s; = e~ 250 is a solution, so s; = fM hi(p, q)so(q)vol, and

Dy = [ (Dimilpa)so(avol,

0
=/ aht(p, q)s0(q)voly

0
— 5.

at!
The fact that the solution is smooth on (0,00) x M and continuous on [0, 00) x M follows from similar facts
about h;, which we will fix next time.

Theorem 4.2.9. [MAIN THEOREM]
The heat kernel (ht)¢~o is the unique smooth section (k¢);~o of S X S* satisfying:

a. ki(p, q) satisfies (% + Dg)kt(p, q) =0 for all ¢ € M, and

b. if s € I'(S), then lim; ,o+[|| Ak, s — s]|co] = 0.
Proof: We already know that h; satisfies a. and b., so we only need to show it is unique. Firstly, we know
that s, = e tP” so satisfies (% + D?)s; = 0, where s¢|;—g = S0, and that this solution is unique. So suppose
we have a family of integral kernels (k;):~¢ satisfying a. and b., for which we would like to show k; = h;. Let
sp € I'(S), t > 0, and set wy = Ay, so. Let v, = wyye = Ay, so0. By hypothesis, v; satisfies (% + D)V, =0,
where vg = we = Ay, So. By uniqueness of solutions to the heat equation,

—tD?
Ap, .50 =1 =¢ We.

Let € — 0, so then w, — so in CY by hypothesis b.. Then finally Ay, so = e~tD’ so for any s, so Ax, = An,,
implying that k; = h;. |

Recall that we want to prove the index theorem by mimicking the baby case - for P : Uy — U_ linear,
ind(P) = str(e~*P*) = dim(U,.) — dim(U_), where D = (o2 andU=U,; 0 U-.

Theorem 4.2.10. [ATIYAH-SINGER INDEX THEOREM|
Let D :T'(S) — I'(S) be a graded Dirac operator. Let (h¢)t>o be the heat kernel of D. Then

ind(P) = [A(TM)](|M)) = /M A(TM).

Theorem 4.2.11. [MCKEAN—SINGER FORMULA]
Let M be a compact oriented Riemannian manifold, S a Clifford bundle, D a Dirac operator of .S, assumed
to be graded as D = [ /"], with § = ST @® S~ and P : T(ST) — I'(S7). Let h; be the integral kernel of

e 2% for t >0 (i.e. the heat kernel of D). Then
ind(D") = ind(P) = / str(he(p, p))vol,
M
for all t > 0, where D* = D|p(g)y. Note that this is independent of ¢.
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Proof: Write D? = [P;P P?y] = [A()+ AO :|7 S0

>
+
I

PP T(S*
PP*:T(

i

|
nn
1l
4
@

Let p > 0 be an eigenvalue of D?. Let

NF = dim(ker(Ay — pl)) and N, = dim(ker(A_ — ul)),
| —— —_———
= H;f = H,

where H:E is the p-eigenspace of D?, restricted to I'(SE). Let s;

o8t be an orthonormal basis of HE
wn,1s ’ M,Nﬁt

orthonormal with respect to the W°(S)-norm. Then {Su,j : j=1,...,NFf, peo(D?)} is an orthonormal
basis of WY(S). Express
—tD? _ —t
= 3 e (Pup Py ).
pu€o(D?)
where PH‘i is the orthogonal projection onto Hff We already saw that PHE = Akpi, so the smoothing
: i

operator associatos to the integral kernel by

kpx (P st o) (@)

Also, H/J[@H; =H, =FE n9FE_ /, where E represents an eigenspace of D. Hence kP;r +kPg =k_atkm,
and so further

hepg)= Y e (kp;(p7q)+kp;(p,q)),

u€o(D?)

and

str (kp, (p,p)) = Tr (kp+ (p,p)) —Tr (k' Pr (p,p))

N N
Z R (sh) )= s, ;)8 (s,;)" ()
j=1 j=1

When p = g, then (S XS5, = S, K S; = (S ®5),. We need to know how to compute Tr(v @ v*) for

v € (V,{-,+)) a hermitian vector space. So let ey, ..., e, be an orthonormal basis of V, with respect to (-, ),
with P:V — V and Tr(P) = E; 1 (P(ej),e;). Then

T

Trw@ o) =Y (0@ v*)(e)), e5)

j*l

= Z (ej)v,ej)
= Zvj (v,¢5)
j=1
T
j=1
= |v]?

= (v,v),
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S0 TI(SIJ (p) X (sjj)*(p)) = |s:;j (p)|?, where the norm is the pointwise norm on S from the fiber metric.

N
str(kp, (p, p Z |55 (p) 2—2 |5,:,j(p)’2,
j=1
N Ny
_ 2 _ 2
str(h:(p, p)) = Z et Z |S:J(p)| - Z |Su7j(p)
j=1 Jj=1

neo(D?)

So

/ str(he(p, p))vol, = Z xu Vol - Z/ S, volp
M

uEa(D2
=2 " (N: - N;) :
neo(D?)
where the reduction occurs since the integrals are all 1 on an orthonormal basis. Now, just like in the baby
index theorem, D|H;r : HI‘}‘ — H,. If s € Hy,, then Ds = 0, so D?s = pus = 0. Hence if u # 0, s = 0.
Therefore D‘HI : Hf — H is an isomorphism if 4 > 0. This means that

/M str(h(p, p))vol, = - Ny
= 1m(ker( 1)) — dim(ker(A_))
im(ker(P)) — dim(ker(P*))
1nd( ).

Remark 4.2.12. The strategy we will use to prove the index theorem is to find a way to calculate
Jos str(he(p, p))vol,, which is independent of ¢ for ¢ > 0. We will see that even though h(p,q) can’t be
computed exactly, by finding an approximate expression for h.(p, p), the expression [ 1 Str(he(p, q))vol, can
be computed exactly.

4.3 Approximating the heat kernel

Definition 4.3.1. Let B be a Banach space and f : (0,00) — B a function. We say that a formal
series ZEOZO ar(t), with ar(0,00) — B, is an asymptotic expansion for f near t = 0, and denote this by
F(t) ~ 372, ak(t), if for every positive integer N, there exists {y € Z-( such that if £ > ¢y, then there
exists c=c¢(¢,N) > 0 and 7 = 7(¢, N) > 0 such that

£
H F&) =" ar(t) c(t, N)tY

k=0

B

for all t € (0,7(¢, N)]. In words, given N, f minus a sufficiently large partial sum is O(t") for ¢ sufficiently
small.

Example 4.3.2. Note that an asymptotic expansion for f need not converge to f at t = 0 in any sense.
Indeed, Consider B = R or C and f : (—e¢,e) — B smooth. Take the Taylor series of f at ¢t = 0, given by
Yorco tk f(5)(0)/k!. We know from Taylor’s theorem this is an easy asymptotic expansion for f near t = 0.
But the Taylor series does not converge to f unless f is analytic at ¢t = 0.

59



Theorem 4.3.3. [MAIN THEOREM - ASYMPTOTIC EXPANSION OF HEAT KERNEL)]
Let (ht)t>0 be the heat kernel for a graded Dirac operator D. Let dist: M x M — [0,00) be the geodesic
distance function on M x M determined by G. Let n = dim(M). For any ¢ > 0, define

1 dist(p, ¢)?
Pt(P’Q)ZWeXP T )

Then:
a. There exists an asymptotic expansion for h; of the form hs(p,q) ~ p:(p,q)(Oo(p,q) + tO1(p, q) +

t205(p, q) + - -+ ), where
pt(p7 Q) (Z thk(p7 q)) = Zak(t)7
k=0 k=0

for O € T(SK S*) for all k € Zx,.

b. The expansion is valid in the Banach space C7(S K S*) for any j > 0. It may be differentiated
formally with respect to ¢, p, g to obtain asymptotic expansions for the corresponding derivatives of h(p, q).

c. The sections Ok(p, q) (along the diagonal) and their derivatives with respect to p are described by
universal algebraic expressions involving the metric g on M, the fiber metric h on S, and the connections
and their derivatives. Also, ©g(p,p) = ids, .

To prove the main theorem, we need a criterion for recognizing an asymptotic expansion of hg.

Definition 4.3.4. Let m € Z~q. An approximate heat kernel of order m for a Dirac operator D is a t-
independent section iLt(p7 q) of SX S* that is C* in ¢, C? in p, ¢, and satisfies

a. for all s € I'(S), lim; o+ [[| 47,5 — sl[cm] = 0, i.e. hy converges to a d-function in C™, and

b. for all p,q € U, all t > 0, and r+(p, ¢) a section of SX S* that descends continuously on ¢,

(gt + Dg) (Bt(n Q)) = t"r4(p, q)-

Proposition 4.3.5. Suppose we have a sequence Oy € I'(S X S§*), for k € Z>( such that for any m € Z,
there exists J,, € Zx¢ such that for any J > J,,, the integral kernel

J
hi(pq) = pe(p, ) (Z t* O (p, q))
k=0

is an approximate heat kernel of order m. Then the formal power series p;(p, q)(zgzo t*O(p, q)) is an
asymptotic expansion for the heat kernel, in the sense of parts a. and b. in the main theorem.

You will complete the proof to this in Assignment 5. This proposition says that to prove a. and b. of
the main theorem, it is enough to find an approximate heat kernel of order m > 0 for any m of the form

hi (p.q).

Lemma 4.3.6. Let f; be a section of S that is C? in p € M, continuous in ¢ > 0. Then there exists a
smooth section s; of S, differentiable at ¢ > 0, with s = 0, such that (% + D?)s; = f;, i.e. it solves the

inhomogeneous heat equation. In fact, then s, = fot e~ (t—w)D? fudu, i.e.

s1(p) = /O t ( /M hi—u(p, q)fu(q)volq) du. (17)

Proof: Uniqueness is exactly as in the homogeneous case. If s;, §; are two such solutions, then s; — s; solves

(£ +D?)( - ) = 0 with initial value 0, meaning that s; — §; = 0. For existence, note that is smooth in p
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and differentiable in t. We need to check that satisfies the inhomogeneous heat equation. We find that

o= [ ([ o tatpa) ool ) du tim | [ bt fulareon

= [([ 00 sty utarot) + 5 [ [ netvarsictao

= —DZs:(p) + fi(p)

by the d-function properties of the heat kernel and continuity of f; in ¢. |

Corollary 4.3.7. For any j > 0, there exists ¢; > 0 such that ||s¢|; < tcj(supgcyci{l fullj})-

Proof: Recall that s; = f e~ (t=wD* £ dy. so

(4 2
lselly <t P ]| <tesllfully < tes s {7ul}

Oust

because e~<P° : Wi(S) — W3 (S) is uniformly bounded for all € > 0. [ |

Proposition 4.3.8.

a. Let hy be the heat kernel for D. For every m > 0, there exists m’ > m such that if hy is an approximate
heat kernel of order m/, then h:(p,q) — Ry (p,q) = t™ei(p, q), where e; is a C™ section of S X S*, depending
continuously on ¢ > 0.

b. (% + Dg)ht(p, q) = t™ri(p, q), where r; is C™ in p, ¢ and continuous in ¢.

Proof: Take m/ > m + dim(M)/2. By the definition above of arroximate heat kernel of order m/, hy(p, q)
tends to a d-function as ¢ — 0%, proving part a.. For b., Let v;(p, q) be the unique solution (for fixed ¢) to
the inhomogeneous heat equation, i.e.

<;+D2> +(p,q) = —t"r4(p, q),

with vo(p,q) = 0. Then ﬁt(p, q) + vn(p,q) has d-form properties as t — 0F. Also, (% + Df))(ﬁt(p, q) +
vn(p, q)) = 0, hence by the result characterizing heat kernels, hy + vy = hy, and

mm«q@wwnm) as)

Oust

By , we find that

lll < ¢ sup {[u™ ru(p,g)ll} < BE™
U
Define e; by v; = t™ey, so [[t™e;|l; = |lvll; < Bt™ 1, but also [|t™ey||; = t™||es|;, hence

le]l; < Bttm'=m+1,

|
Fix ¢ € M and take normal coordinates {z!,..., 2"} centered at ¢q. Let p = p(p,q) as above. Let
p=(x',...,2"), so then dist(p, q)? Z;L (")? = r2. Hence in these coordinates, p = We‘rz/‘“.

Lemma 4.3.9. In the described chart,
a. Vp = ——r ~ for V as a function of p on (M, g), and

b. m + Ap = Z;t gf, where det(g;;) = g is a smooth function on the domain of the chart.
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Proof: For part a. notice that

1 2 2r r r
e il Vo= (dp)t = L art = 2y
dp nt)/? e ( yr dr) and p = (dp) 5 (dr) 5 VT

by Riemannian geometry that gives us Vr = %. For part b., note that Af = —div(Vf) = V*V [, where
V* = —div, a vector field. Recall that div(fX) = fdiv(X) + (Vf, X), so

~Paiv(»2) 122 (2
N Qtdw (Tar) e < 8r7rar>’

0

or

and because |d | = 1, we have that

-p/ 0 0 —pr?

—{r—,r— )=

42\ or’ or 4¢2
Ity = Yl ”7 in local coordinates, then div(Y') = % 2.7 (Yz\f) Since % = XTia(zi and ’I“ar X0 oot
and Y = Xl, we have that

4¢2

d1v< 87") \}Zﬁa
f¥( zfaw)
o
Hence Ap = £ (n + QZ%) - %, and ap = (-5 + 4t2)p, so
el

Lemma 4.3.10. Let t € C°°(M), D be the Dirac operator. Then
a. (D, f]s = D(fs) — f(Ds) = (Vf) -5 and
b. [D?, f]s = D*(fs) — f(D?s) = (Af)s — 2Vyys.

Proof: Choose an orthonormal geodesic frame {ej,...,e,} centered at g, so the e;s are orthonormal eigen-
values in the chart. This means that V,,e; = 0 for all z; € I'(T;M). For part a. observe that

Zez e; fS
—Z (Ve f)s+ f(Ve ))

— <Z (Ve f) ei> s+ fVs

g

=(Vf) s+ fDs.
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For part b., note first that

DA, = Do it (Ve (Ve (Ver£5)

q

= > e (Ve (Ve - (Ve f) s+ £ (Ve,9)))

=Y eirej- ((Ve.Ve,f) s+ (Ve, ) (Vers) + (Ve ) (Vey8) + £Ve, Ve, 5)
%7 q

We know that V¢ e; =0 at g, and V, Ve, f — V. Ve, f =0 at g, as well as that

ei(ejf) - ej(eif) = [eiveﬂf = (veiej - vejei) f
—_—

0 at ¢

Therefore we find that

D eiej (Ve Ve, f)s)| = (Zvelveif)s
i=1
q

— (V'Vf)sl, = (Af)sl, -

q

The last term reduces to fD?s. And finally, the two middle terms become
D i e (Ve f) (Ve,5) + (Ve, f) (Ve,5)) = =23 (Ve f) (Ve,8) = —2Vyys.
‘7j ‘7]‘

We will use the above two lemmas to derive a recursive procedure for solving ODEs in normal coordinates,
to obtain ©ys. The idea is to find smooth sections O (p, g) of S ® S* such that for any m > 0, the partial

sum p;(p, ‘J)(Zizo t*O4(p, q)) is an approximate heat kernel of order m for sufficiently large .J.

Proposition 4.3.11. It suffices to construct Ox(p, q) for p near ¢, i.e. in an open neighborhood U of the
diagonal in M x M.
M
U

M

This will happen because p; — 0 faster than any power of ¢t as t — 0, so we can cut off our definition of
Ok (p, q) smoothly to 0 outside U.

Proof: Again, fix normal coordinates {z!,...,2"} centered at q. Let p = 1/(4nt)"/? exp(—r2/4t) as before.
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Let s be a section of SX Sy (for ¢ fixed), i.e. s( - ,q) is a section of S S*. By the above two lemmas,

1 8 2 o 85 2
p(at—l-D)(,os)— as+pat+pDS+(Ap)3_2VVp5>

0 0 2
(mp-i-Ap)—i—p(at—&-D >8—2Vg:aarp>

rp 99 9 pr
4gt8r>s+p(6t+D>S+ tV@e;s)

g 0 9 1
L) s+ (24D SV, o
gt@r)s <8tjL >S+t g ®

e N - - N

Remark 4.3.12. Define H = %(% + D?)(p - ), and call it the conjugate heat operator. Above we have

shown that 5 ) 5
o= (2 1 p2)eit 99\,
(s) <8t+ )S+tv’"§rs+(4gt8r>s

We want to find p(3, t*ux) = s which solves the heat equation, i.e. (& + D?)s = 0 iff H(3, t*u;) = 0. So
let s = t*u with u independent of ¢t. Then

H(thu) = kt* a4+ t*D%u + t"71V o u + th~! ro u
or 4g Or
=¢h! <Vra +k+ Tag) u+ t*D?u.
or 4g Or

Let’s formally try to solve (% + D?)(pgs) = 0 with s ~ ug + tug + t>ug + - - -. Equating powers of ¢,

r 0
VT%uk + (k + 498“;{> up = —D?up_1, (19)

which is an ODE for uy along the radial geodesic emanating from ¢ in terms of ug_;. Next, introduce an
“integrating factor” r¥g¢'/* for

1 0 k 0
Vo (Tkgl/4uk) _ krk_lgl/‘lDQuk + frkg_3/4—guk +Tk_1gl/4vrguk —(k+ K og s —DQu;@,l,
or 4 or or 4g Or

which implies that
Va (rkgl/4uk) _ —rk_lgl/4D2uk,1, (20)

ar

where u_; = 0. For k = 0, ug is uniquely determined by its initial value uo(0) = id|s,. The origin 0
corresponds to the point ¢ € M, because we want O¢(q,q) = idg,. For k > 1, determines uy in terms
of up_1 up to a constant multiple of a term of order r—* near » = 0, because (ckr*kg*1/4)(rkgl/4 =c is
constant. Since we want a smooth solution uy as r — 0, we must have ¢, — 0. So all the ks are uniquely

determined from u((0) and the demanding of continuity at r = 0.

Proposition 4.3.13. Choose an open neighborhood U of the diagonal in M x M such that every point in
U lies in a normal coordinate chart centered at (g,q) € M x M. Define O(q, ¢) to be the section of S X S*
over U represented in normal coordinates by Ux(z!,...,z") defined above. neighborhood U of the diagonal
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in M x M.

Fix a smooth neighborhood V' C U and ¢ : M x M — [0, o) smooth such that ¢(p,q) =1 for all (p,q) € V,
o(p,q) = 0 for all (p,q) € M x M \ U, and smooth in between. Now define ©; on all of M x M by
©(p,q)Ok(p,q) € T(SK S*). For J >0, let

hi(p,q) = @(p,9)pe(p.a (Ztk@k P,q ) :

Let m > 0. Then ﬁg is an opproximate heat kernel of order m for J sufficiently large.

Proof: Since ©¢(p, p) = ids, if s € I'(S), then lim;_,o+ [”Aﬁi’s — $|lgo] = 0 by the d-functions property of p;.

That is, lim;_,o+[p;] has the d-function property. And,

@0(pa Q) = @0(p7p) +@0(p7 q) - 60(p7p) .

= idsp —0 as t—0

That was the first condition to be an approximate heat kernel. Also we need to show it approximately solves
the heat equation. By construction of the uys, we have that

(aat N Dz) (W ®.0)) =t/ pu(v. @)e (v,0)

for t > 0, where ¢] is a smooth section of S X S*, which is continuous in ¢ > 0. This follows as the terms up

tot’~1in ?L;’ are killed by the heat operator on the new diagonal, and all that’s left in a neighborhood of
the diagonal is t” D2 (¢p;©). Now let m > 0. If J > m+ %, then ¢/ py(p, ¢q) — 0 in the C"™-norm as ¢ — 0.

So for J >m + 3, iL;j (p,q) is an approximate heat kernel of order m. Hence by Assignment 5 question 2,
pt(> e o t*Ok(p, q)) is an asymptotic expansion of h¢(p, q) as required. [ ]

Remark 4.3.14. Finally, for the last part of the main theorem on the asymptotic expansion, for all k£ > 0

O (p,p) can be expressed as an algebraic expression involving matrices, connections, and their derivatives.
It follows by induction on the form

In practice, nobodoy really does this, but this shows that it exists.

Remark 4.3.15. Recall the McKean—Singer formula, which said that for D = [ % "] with P : I'(ST) —
I'(S7) and P = D = D|,(g+), we have that

ind(P) = ind(D") = /M str(h(p, p))voly,

which is independent of ¢ > 0. For p, as previously, we showed that
1 [ee]
h ~ t*O( = t*e
t( Pt pa (Z k p7 ) (47Tt>n/1 <nz_% k(pap)> )
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so then str(h:(p,p)) ~ W > peo tFstr(©k(p, p)). We also know that the integral of str(h:(p, p)) over M
is independent of t. So (check this), [ ©O(p,p)vol, = 0 unless k = n/2.

Corollary 4.3.16.
0 if n is odd

ind(D") = 1 .
ind(D™) W/M str(0y,/2(p, p))vol, if n is even

Moreover, ©,,/5(p, p) is an algebraic expression in metrics, connections, and their derivatives.

Now, the last step is to find a way to rewrite the expression for ind(D™) more invariantly, i.e. in terms
of characteristic classes. Before we can talk about the rescaling trick of Getzler to compute the index, we
need to gefine the Bochner—Weitzenbock formula.

€ 6]‘ . 1'71v

Recall that if S is a Clifford bundle and D is a Dirac operator, D?s = V*Vs+k-s, where k = ZKj i

for ey, ..., e, a local orthonormal frame of M, and FV the curvature 2-form of the connection on S. Let
¢: TM — End(S) denote Cliford multiplication, i.e. if Z, € T,M and s, € Sp, then ¢(Z,) € End(S,) such
that ¢(Z,)sp = Z,, - sp. We see that ¢c: I'(T'M) — I'(End(S)) by (¢(Z)s)p, = c(Zp)sp-

4.4 Curvature

Lemma 4.4.1. Let X,Y,Z € T'(TM). Then [FV(X,Y),c(Z)] = ¢(R(X,Y), Z), where R is the Riemann
curvature tensor of the metric g on M. That is, the curvature R of (M, g) measures the failure of FV to be
a 2-form-valued endomorphism of S in the category of C4(M) ® C-modules.

Proof: This identity is pointwise on M. Let p € M and {ej,...,e,} be an orthonormal geodesic frame
centered at p. That is, (Vxe;), = 0 for all X, as [e;, ¢;]|, = 0. By linearity, it is enough to assume X = e;,
Y =e;, and Z = ej. Then

vei (Vej (ek ’ 8)) = Vei((vejek) "S5+ ep - (v6j5>)
= (Ve,Ve,er) -s+er - (Ve, Ve, ).
Now take the difference of the last line with itself with ¢ and j switched to get
FY¥(e;,ej)(ex - 8) = (R(ei,ej)ex) - s +ep - (FY (ei,€5)s).

Definition 4.4.2. Recall that R(e;,e;)er = TfjkEg = 2221 Rijieee in an orthonormal frame. The Riemann
endomorphism RS of the Clifford bundle S is defined to be the End(S)-valued 2-form given by

1
RE(X,Y) = 7 Y clen)e(er) R(X, Y, ex, ep),
k0
in an orthonormal frame, independent of the orthonormal frame.

Lemma 4.4.3.
[RS(X,Y),c(Z2)] = ¢(R(X,Y)Z).

Proof: It is enough to show the result for X = e;, Y = e;, Z = e,,, where {e1,...,e,} is an orthonormal
frame. Then

R¥(ei,ej)c(em) — clem) R (ei, ;) = %Z Rijie (c(er)c(er)c(em) — clem)c(er)c(er))
k.t

1
=1 Z c(egerem — emerer)
k¢

1
=1 > Rijuec([erer, em)) -
k
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If k = ¢, then [exep, e = [—1,em] = 0. If k, £, m are all distinct, then exepe,, — eneges = 0. The only
remaining case is m = k # £ and m = £ # k. Then

1 n
Rs(ei, ej)c(em) — c(em)RS(el, €;) Z Rijmec (emegem €2 eg 1 Z Rijkme (ekefn - emekem)
Z 1 k#m
1 1 &
= Z Z RiijC(Qel Z Z 1jkmc 2ek
=1 k=1

§ Rzymec 6(

( (€i,€5)em).
|
Definition 4.4.4. The twisting curvature of the Clifford bundle S is denoted by F*° and is defined by
FV = RS + F%.

Corollary 4.4.5. For all X,Y, Z, [F*(X,Y),c(Z)] = 0. Hence F¥(X,Y) is a C4(T M) ® C-linear endomor-
phism of S.

This now allows us to rewrite the Bochner—Weitzenbock formula.

Lemma 4.4.6. In an orthonormal frame,
Z Rijrec(eiejer) = —2 Z(Ric)gjc(ej),
.5,k J

where Ric is the (2,0) Ricci tensor.

Proof: If i, j, k are distinct, then e;eje, — ejepe; = ere;e;. But Rijre + Rjkic + Ryije = 0 by the 1st Bianchi
identity, so those terms vanish, as do the i = j terms. Only i = k # j and i # k = j remain. So

> Rijnec(enejer) + Z Riprec(eierer) = ¥ Rijrec(e;) + Y Rigec(e;)

gk
i#k 7?516

=23 Rjuuec(e;)
J.k

=-2 Z(Ric)jgc(ej).

Corollary 4.4.7. For F'S = Do F9(ei,ej)e; - ej and K = Do FVY(e;,ej)e; - ej the scalar curvature,

D?* =V'V + 1K + F¥.
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Proof: We already know that D? = V*V + K. We just need to show that DicjCiejR(eie) = 1K. Well,

1
Zei cejR% (e e5) = I ZZR(ei,ej,ek,eg)ei ej e eg

i<j i<j kL

1
=3 E Rijree; - €5 - ep - e
.3,k,L

9 _
=3 Z(Rlc)gjej - ey
4.

1< )
=y miee
j=1

Z(Ric)jj

>

N N

Recall that a Clifford bundle S has the property that each fiber S, over p € M is a representation of
C{(TM)® C. From now on, we will assume that

1. n = 2m is always even (otherwise ind(DT) = 0), and

2. S, is an irreducible representation of C4(T,M) ® C.
We assume 2. because if we don’t, then the algebra is much messier. Moreover, for the special cases of
Chern—Gauss—Bonnet, the signature theorem, Hirzebruch—Riemann—Roch, the assumption holds. Note that
for the first two, S = A\*(T*M)® C and D = d+d*, but they have different splittings. For the last theorem,
S=A\""(T*M)and D=0+8 .

Recall that there is exactly one non-trivial irreducible representation A of C/(R?*™)®C of dimension 22 = 2"
(up to isomorphism). For us, S will be of rank 2", as the main example will have S = A\*(T* M) ® C, which
has rank 2™.

Example 4.4.8. Recall the definition of a Z/2Z-graded (or supersymmetric) Clifford bundle S = St & S~.
For example, we have S = A\*(T*M)® C. If v e [(TM) and o € T'(S), then v-a=vAa—v_la.

Definition 4.4.9. Let S be Z/2Z graded. given A, B € End(S), define the supercommutator of A and B
with respect to S by

(A, B = [A, B| if A or B are even
" TV (A,BY = AB+ BA  if A and B are odd |
An endomorphism A is even if A(S*) C S%, ie. A = [§}3]. Similarly, A is odd if A(S*) C ST, ie.
A= (93],

Lemma 4.4.10. If P = [A, B]s is a supercommutator, then str(P) = 0.

Proof: There are 3 cases to check. First note that by writing A = A*+ A~ and B = B* + B~, we have that
[A,Bls = [A", BT] + [A",B7] + [A7,BT]+{A7,B"}.

Case 1: A and B are both even. Then [4, B]s = [4, B] and

N N
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so str([A, B]s) = str([4, B]) = Tr([a, v]) — Tx([8, 6]) = 0.
Case 2: One of A, B is even, one is odd. Then [4, B]s = [A, B] = [2 4], so str([4, Bls) = 0.
Case 3: A and B are both odd. Then for A, B as above,

ay+9p8 0
0 Bé+~6|°

Hence str([A, Blg) = Tr(ay 4+ 68) — Tr(86 + ya) = 0. |

[AvB]S = {AvB} =

Remark 4.4.11. Consider a € I'(C/(TM) ® C), so o, € C4(T,M) @ C = End(S,), with a,(sp) = ap - sp
the Clifford action. Then str(a) € CF(M). Let e,...,e, be a local orthonormal frame of M. Let
I={in<---<ip : ij€{l,...,n} V j}. Define ey =¢;, ---e;,. Then

a= Z arey and str(a) = Z agstr(er).

all multi- all multi-
indices I indices I

Note that at some fixed I,

2

[€as€a - €rls = €q €45 — (—l)kHea cer-eq = ei cer — (—=1)es - e = —2ey,

S0 €1 = [eq, —3€q - €1]s. Hence str(ey) = 0 unless I = {1,2,...,n}.

Remark 4.4.12. Let T' = e;---e,. What is str(I')? To compute this, recall that we found an explicit
realization of A, the unique non-trivial irreducible representation of C/(R?™) ® C. We described A as
follows: Let J be a complex structure on R?™ = V. Then

Ve=VeC=vgyl! and A= N\(V1O),

where V1'% and V%! are the +i-eigenspaces of J, respectively, and A is given as a complex vector space of
dimension 22™ = 2. Then A becomes a C/(V) ® C-module by letting, for all « € A*(V10), v+w e V& C
with v € V1.0 and w =€ V0! (so w € V1Y),

veoa=vV2uAa and w-a=—V/2w_a.

This satisfies z-y-a+y-z-a = =2 (z,y) a for all z,y € V@ C. Next, choose a basis e1, ..., em, Jer, ..., Jen
of V. Let

v; = %(ej—it]ej) EVl’O and €; = (Uj+wj)/\@
w; = %(ej‘i’iz]ej):ﬁj e vio Jej :i(vj—wj)/\/i '

Thene; -a =vjAa—wWjla =v; ANa—vjla. For a € A, (Je;) - a = i(v; A+ v;Ja), so letting
a=7v; A Av, € A, we then have that

o ifje{iy,... ix} 0 ifje{is,....ix}
0 ifj¢{is,...,ix} o if 5 iy, i}

Hence I'-a = (e1-Jey) - (€m - Jem) -, where I' = ey - Jey - - - €y, - ey, has the standard orientation. Also,

”j/\(vj—'a){ and vj_l(vj/\a){

ej-(Jej) -a=e;-(i(vy Na+vjda)) =1i(v; A (v;d o) —v;d(v; Aa)),

soI'a=im(—1)""*q, where m — k is the number of v;s not in {i1,...,ix}. Hence
str(l) = S (=) - vg,00) = S (=D (1) Pl oy ) = ST (1) = (—i)m2m = (<20)™
J J J

This allows us to conclude that if o = ", arer, then str(a) = aj..,str(I') = .., (—2¢)™, i.e. only the top
degree component of « contributes to the supertrace. Hence we need to find a method (it will be Getzler’s
method) of picking the top degree part a;..,,I' of @ € C/(V) ® C. To introduce this method, we need to
discuss graded and filtered algebras.
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4.5 Graded and filtered algebras

Definition 4.5.1. Let A be an algebra over C (a vector space with associated multiplication). We say that
A'is Z-graded if A = @, ., A™, for A™ a subspace of A and A™ - A" C A™*". If a € A™, we say that a
has degree m.

Example 4.5.2. The space A = C[z] is Z-graded, with A™

span{z™} if m>0 "

{ {0} if m<0

Similarly, A = A®*(V), the exterior algebra of a vector space V, is Z-graded by A™ = A" (V).

Definition 4.5.3. Let A be an algebra over C. Then A is a filtered algebra if there exists a family of
subspaces A, of A, for all m € Z, with A,, C Ayq1, Amn C Amgn, and A=, ,cz Am-

Example 4.5.4. The space A = C4(V) ® C, the complexified Clifford algebra of (V,( -, -)) is filtered, with
A, being the span of Clifford products of m or fewer elements. Note that A is not Z-graded, because for

«, B the product of m,n elements, respectively, a - 8 may not be the product of m + n elements. However,
A is Z/2Z-graded.

The space A = D(M), the algebra of linear differential operators on CF (M), is filtered. We call (D(M)),
the space of differential operators of order < m. This is not a graded algebra.

Our main goal now is to find a way to compute str(6,,2(p, p)) without actually computing ©,,2(p, p).

Remark 4.5.5. Note that any graded algebra is filtered, by letting A,, = @nez,ngm A™. Note also for

f:+ A — B ahomomorphism of algebras, A filtered implies f(A) is filtered. That is,

as f is a homomorphism and A is filtered. Let’s use these facts to construct a canonical filtration.

Definition 4.5.6. Let A be an algebra. A filtration of A is a collection of subspaces A, C A for all m € Z,
such that |J,,c, Am = A, Ay C Ay, and Ay Ay C Ay

So suppose A is an algebra, B is a subalgebra of A, and V is a subspace of A such that A is generated
by BUV. We will construct a filtration on A by assigning an order to elements of B and V: an element of
B has order 0 and an element of V' has order 1. Define

QRV=Bo(BeVeB)®BRVRBRIVB)®--.
B

There exists a surjective homomorphism f : ®*BV — A. If a € Ais a = byvibavs - - bpugbgy1, then
f1®v1 ® - @b, ® U ®bgy1) = a. Moreover, the space ®73 V has a natural grading (where the degree is
the number of vs). So A has a canonical filtration. An element a € A is of order k if it is a linear combination
of products of elements of B,V with at most k& elements of V' in each term.

Example 4.5.7. Consider C/(V) ® C), the space of complexified differentials of (V,{ -, -)). Take B = C,
V =V. Then C/ is generated by B U V. That canonical filtration described above is the usual filtration of
L.

Definition 4.5.8. Let A be a filtered algebra. Define (G(A))™ = Ay /Am—1, and G(A) = P,,,cz(G(A))™.
It is left as an exercise to show that G(A) is graded. Next, let G be graded, both A, B complex-valued
algebras. A symbol map o, : A — G is a collection of linear maps o, : A, — G™ for all m € Z, such that
1. opp(a)=0if a € Ay—1, and
2. ifa€ A, and b € A, then 0,,(a) - 6,,(b) = opin(ab).
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Example 4.5.9. The map 7 : Ay — Ar/Ar_1 = (G(A))* is a symbol map. Also, if we let A = C/ =

C/(V)® C and G = G(A), then G = \*(V) ® C. We can also compute 7, : (C£),, — (G(A))", by showing
that for all 0 < k < n,

Tk E arer | = g are;, N Aej, .

multi-indices T 1|k
|71<k =

Here the symbol map “picks out” the top degree part. This is what we need to compute str(6,,/2(p, p)).

Remark 4.5.10. Next we are going to consider a very important example. Let A = D(M), the algebra of
linear differential operators on CZ (M). If p € A, locally

olel
p= Z fOé (xla"'axn) 8?7

lal<m

and p is of order m. We write z® for (z!)® ... (2")*". Note that A is filtered, with A,, the set of linear
differential operators of order < m. We leave it as an exercise to show that this definition is independent
of coocdinates. We will now construct a symbol map o from A = D(M) to a particular graded algebra. So
let V' be a finite-dimensional vector space and let C(V') be the C-algebra of constant coefficient differential
operators acting on C* (V). If {ey,...,e,} is a basis of V, then v € Visv = __, 2%, so z',...,z" are
global coordinates on V. So

ol
TecClV ds t T = o
eC(V) coresponds to Z Cagra

lal<k
Then C(V) is a graded algebra, where (C(V))™ = span{(%—n; ol =m}.

Definition 4.5.11. Let M be a smooth manifold. Define C(TM) to be the bundle of algebras over M
whose fiber over p € M is C(T,M). The space of sections I'(C(T'M)) is graded, by T € (I'(C(T'M)))™ if
Tp € (C(T,M))™.

We would next like to define o : D(M) — I'(C(T'M)), map from a filtered algebra to a graded algebra. Let
p € (M, g), and choose normal coordinates centered at p. Let

olel
T = Z Ca($17...,$n)am7a

la|<m

in this chart, for T' € (D(M)).,. Define 0,,,(T') € (T'(C(TM)))™ =T ((C(TM))™), 50 (6:m(T))p = omp(T) €
(C(Tp,M))™, and set
glel
D)= 3 e
which is an mth order constant coefficient differential operator on C& (T, M). This is well-defined, and
Omp(T) =0if T € (D(M))m—1 (you will see this is Assginment 6). Also, if T € (D(M)),, and U € (D(M)),,
then
Omtnp(TU) = Omp(T) - onp(U).

Remark 4.5.12. Note that D(M) is generated as an algebra by B = C (M), which is of order 0, and
by the vector space W = I'(T'M), which is a smooth vector field on M. Then D(M) is the homomorphic
image of ®E W, hence it has a canonical filtration, which coresponds to the usual filtration. So to specify a
symbol map o on D(M), it is enough to specify the effect of o on generators of D(M). For this o, we then
have oo(f) = f, i-e. 00p(f) = f(p) is multiplication by the constant f(p) on CF (T, M). Then

0
ox?

) =X and o01,=X,= iai(p) 0 € (C(T,M))*.

o1(X) =0y (ai(xl, conx™) s oxt
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Remark 4.5.13. On End¢(S), the bundle of C-linear endomorphisms of a Clifford bundle S, we want
to construct a natural filtration. Recall that if n = 2m, any finite-dimensional representation of C{ =
C/(R?*™) ® C is a direct sum of finitely many copies of A, the unique irreducible representation of C/,
with dim(A) = 2™. Also, ¢/ = Endc(A) as we saw some time ago. Hence if S is a finite-dimensional

representation of C¢, then
S=Ad- - A=ZARV
S ———

k times

for some finite-dimensional V' with dim(V) = k, such that — ® v € A ® v, and a(s ® v) = (as) ® v. Note
that is S = A ®c V, then

Hom,, (A,S) 2 A" ®,, S = (A* Qe A) RQeV V.

Moreover, observe that

Endc(S) > S*"®Rc S
= (V*"®cA")®c (A®cV)
=2 (A" ®cA)@c (V*ecV)
~ Endc(A) ®c Ende (V)

~ Cl ®@c Endc(V),
and
Endc(V) 2V*RcV
= (5" @ &) 0c (A" @, 5)
~ 5 ©,, (A®cAY) @, S
= S*®, Endc(A) ®, S
> 5% @, CL®,, S
~ 5% g, S
=~ End,, (5).

Hence End¢(S) = C¢ ®c End, (S), so any C-linear endomorphism of S may be written as T' =Y, a; @ T}
for a; € C¢ and T; a Cfl-linear endomorphism of S.

Definition 4.5.14. Let F' € End,, (S), and define TrS/2(F) = Te(T) to be the relative trace of F. Hence
F < T under the isomorphism End, () = End¢ (V). It helps to think of S/A as V.

We now use the isomorphism Endc(S) = C/®@c End,, (S) to make Endc(S) a bundle of filtered algebras,
by using the standard filtration on C¢ and assigning order 0 to the elements of End,, (S). Also note that if
A, b are filtered, then A ® B is filtered, i.e. (Cf ®c End,,(S))m = (Cl)m ®c End,, (S).

4.6 Getzler’s method

Let D(S) be the algebra of linear differential operators acting on I'(S). This is generated by Clifford
multiplication, covariant derivatives, and sections of End,, (5).
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Definition 4.6.1. The Getzler filtration on D(S) is that determined by the following assignment of orders
to generators of D(S):

1. a C¢-module endomorphism T € End, (S) has order 0,

2. ¢(X), for X e I'(T'M), has order 0, and

3. Vx, for X € T(T'M), has order 1,
where V is the connection on S that makes it a Clifford bundle. With this, we would like to get a symbol
map o, : D(S) — G for G some graded algebra.

Definition 4.6.2. As before, V is a finite-dimensional vector space. Let P(V') be the algebra of polynomial
coefficient linear differential operators acting on CF (V). Note that

18l

P(V) = span {xf’awﬁ

., are multi—indices} .

We get that P(V) is a graded algebra, if we define xa% to have degree |3| — |a|. Then (xo‘%)(aﬂ%)
has degree |8 + 9] — || — |«]-

Definition 4.6.3. Let (M, g) be a manifold with a metric, with p € M, and (x!,...,2™) normal coordinates

centered at p. Then P(T'M) is a bundle of algebras over M with fiber (P(T'M)),, = P(T,M), and T'(P(T'M))
is a graded algebra. We write

181
U € (T(P(TM)))™ < U, € (P(T,M))™ = span {xagxﬁ}
for all p € M.

Recall that we want a symbol map on D(S) with respect to the filtration we defined. The map will be
0e : D(S) = T(P(TM) 2 A\*(T*M) ® End , (9)).

Example 4.6.4. Let (M,g) be a compact, oriented, Riemann surface. Then the Riemann curvature
operator R € Q?*(End(TM)). Let Y € T'(TM) and consider the map T,M — /\2(T;M), given by

V= (Rp( -, -)Y,, V). Explicitly, if (',...,2") are normal coordinates centered at p and V = V* 32“ then

1 . .
Vo ikaZRijuel A el

for et = da’| p- Identify T}, M with Ty M using the metric g. Then this map is a degree 1 polynomial function
on T, M with vectors in A’ (T M). Denote it by (RY, - ), the function
1 7 1 o *
§XkYERijkge Nel e P(T,M) ® \*(T; M) ® End,, (S).
Proposition 4.6.5. There exists a unique symbol map o, : D(S) — T(P(TM) @ \*(T*M) @ End, (S))
that has the following effect on generators:
1. if F € End,,(S5), then 0o(F) = F
2. if X € T(T'M), then oy (¢(X)) = X € N'(TM)
3. if Y € I(TM), then 01(Vy) = 0y + § (RY, )

The proof is postponed until we can generalize this further. Also, note that

0 1 ,
= O — ngRijmgee Nel.
Remark 4.6.6. A smybol map is uniquely determined by its effect on generators. The conditions 1., 2.,
3. above uniquely determine a symbol map on @5V for B = End,(S) and V =T(TM) & T(TM). So we
only need to show that o,(T") is independent of choice of representative of T' € D(S) using these generators
(i.e. that it is compatible with the relations). We will accept it as fact for now.

01 (vei)
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Example 4.6.7. Consider the expression
VxVy —VyVx = Vixy = FY(X,Y) = R¥(X,Y) + F¥(X,Y).

————
€ End ,, (S)

Both sides are in D(.S), so we take the symbol o of both sides. We take o2 since the order is < 2. It is
enough to show this for X =e;, Y = e¢;. We would like to show that

O'1(Veivej —Vejvei) = Ug(Rs(ei, ej)).
—_———
()
The left side expands as
(*) =01 (vei)al(vej) - O-l(vej)o'l (vei)

0 1 0 1 ) .
= (8xi — gRiskgxsek A ez) (6371 — gRjkabee“ A eb) — (i 7)

0° kA L
= —— — Rigue" Ne'z° — —
O0xtoxI iskt oxs
1
= *Rijabea AN ab.

4

Some calculations are ommitted because hey, who the fuck wants to do this shit anyways. The right side
expands to the same expression, yielding the desired result and justifying the definition of o1(Vx).

Example 4.6.8. Let D be the Dirac operator on S, so D =" | ¢(e;) in an orthonormal frame. This has
Getzler order 2, i.e. the order of the element in the filtered algebra is 2. So

02(D) = Z a1(c(ei))o1(Ve,)

i=1
n
0 1 ,
— ) _ el ok ¢
= Zez 97 8 Z Rijpexle” Ne
i=1 j,k,L
n
0 1 o
— - = . J,t k 4
_Zelaxi 8,2 Rijrer’e” Ne¥ Ae
i=1 i,7,k€
>eig
= ei :
— Ox

by the 1st Bianchi identity. Also
oa(D) =Y ¢'o— =dT,M,
i=1

which is the exterior derivative on the smooth manifold 7}, M.

Corollary 4.6.9.

04(D?) = 02(D) - 02(D) = drp - dpas =0,
so D? has actually Getzler order < 4. We will see that D? has Getzler order 2.
Example 4.6.10. D? has Getzler order 2 and

2

72D == | gy — 3 2 T | +FS
j=1

=1

Ul(vgi)
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where R;; € A*(TM).
Proof: We showed that D? = V*V + 1K + ¢(F¥). In local coordinates,

VIV =) (—g*V; Ve T3V,

- Z@(Vivi)
i=1
=— i 01(Vy)o
i—1

This apparently completes the proof. |

Remark 4.6.11. We would now like to apply Getzler symbol calculus to the asymptotic expansion of the

heat kernel. Recall that
1 —dist( p,
hi(p, q) ~ (amtynr2 &P ( > (Z t*Ok(p, q ) ;

with ©g(p,p) = ids,. This is not in D(S); it is the kernel of a smoothing operator. We have o, : D(S) —
D(P(TM) @ A\*(T*M) ® End,, (5)). The idea is to replace polynomials by formal power series. Note that
D(S) acts on kernels of smoothing operators.

Definition 4.6.12. Let V be a finite-dimensional vector space. Let C[[V]] be the ring of formal power
series on V. That is, if (e, ..., ey) is the basis of V, then for v € V, v = Y7 | z’¢; an element of C[[V]] is

a formal series
S cas = Sealey o o
« «

Note that P(V) acts naturally on C[[V]]:

8 ol°l |5|
The space C[[V]] is graded, where deg(z®) = —|a|. The gradings are compatible with the action. That is,

if pe (P(V))™ and a € (C[[V]])", then pa € (C[[V]])™".
Remark 4.6.13. We will now define a filtration on I'(S K S*) and an induced map
I(S®S*) —T (C[[TM}] ® \*(T*M) ® End,, (S)) .
Let s € I'(S X S*). Fix ¢ € M, fix normal coordinates (z,...,2") centered at q. Let ti|y,...,t:|, be an
orthonormal frame on S,. Define ¢1,...,¢, in the domain U of normal coordinates by parallel transport |[..]
Each t; has Vaiti =0on U and Vx, t; =0 for all X, € T; M. Consider the map
p+— S(p,q) € End(S,,S,).

We can write this map with respect to the coordinates (z!,...,2") in this frame as

(zt,...,2") — ZZSij(ml, csati(r) @t5(0) = Szt ... 2™).

i=1j=1
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Expand S,(z',...,2") in a Taylor series at the origin. S,(z!,...,2") ~ Y so2®, where s, are sections of
S ® S, that are parallel along radial geodesics emanating from g, i.e.

L (09155(0) :
Sa = Z Ca <8xi) tl('r) & tj (0)
ij=1
Note that since s, is determined by it value s,(0) at ¢. We may think of this as an element of C[[T;M]] ®
End(S,). Hence, as q varies over M, we get a soction of the bundle C[[T'M]] ® End(S), which is filtered. So
since C[[T,M]] is graded and End(S,) has the canonical filtration, End(S,) = Cf ® End, (S,).

Definition 4.6.14. Define a filtration on I'(S X S* as follows: s € I'(S W S*) has order < m if its Taylor
series at ¢ has order < m, at each point ¢ € M. We then get a symbol map

0o :T(SKS*) =T (C[[TM]] ® \*(T*M) ® End,, (S)) ,

where 0,,(s) is a section of the image. We define 9, (s) to be the constant term in this power series.

Theorem 4.6.15. [MAIN THEOREM]
Let T € D(S) be one of the operators described before. Let m € {0,1} be the Getzler order of T. Let
Q € T'(S X S*) be of Getzler order < k. Then TQ € T'(S X S*) has Getzler order < m + k, and

Om+k(TQ) = om(T) - ok (Q), (21)

where the left side and the second factor on the right are symbols on I'(S X .S*), and the first factor on the
right is a symbol on D(S). This works for:

- T =F eT'(End,(9)),

- T=¢(X) for X e T(TM),

-T=Vx for X e (TM).

Proof: Fix ¢ € M, normal coordinates (z,...,z") centered at q. Let s4(z) ~ >, sox® be the Taylor series

of s4(z) at ¢. We would like to verify for the three T's described above. First, if ' = F € End,, (S) and
VF =0 at g, then the Taylor coefficients of F's are F's,. So, when m = 0,

or(Fs) = Foy(s) = oo(F)og(s).

In general, let Fyy be the parallel transport of F|, along radial geodesics emanating from ¢q. Then VFy = 0
at ¢ and F' — F tas vanishing constant terms in its Taylor expansion at ¢. Hence oo(F — Fy) = 0, since og
picks out the constant term. Hence

ok (F's) = o (Fos)or(s) = oo(F)ok(s),

by the above. Case 2, T = ¢(X), is identical to the above case. For the third case, let T' = Vx, which is
linear in X, so it is enough to prove it for X = a?ﬂ . LetY = r% =z 8?“.. First we assume that s is parallel
along radial geodesics emanating from ¢ (this is a shot special case). Then V 25= 0 everywhere, so Vy =0

everywhere. Then for Vxs ~ " toz?,
Vx<vY8) — Vy(VXS) — V[ny}s = FV(X, Y)S.
Also note that 5 5 5 5
R B ay 0T ey a
{393“36 5‘:EJ} ozt X ’ V) = dzI (%) = lada?,

so the equation above becomes 0 — Vy (Vxs) —Vxs = FV(X,Y)s. Replace by the Taylor expansion of V xs
to get

~Vy (taz®) — taz® ~ FY(X,Y)s,
—(lo] + Dtaz® ~ FY(X,Y)s = Y _ Fyals,
J
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where the last term has order < k+ 1, Fj; having order 2, 27 having order —1, and s having order k. So the
Taylor coefficients of Vxs are determined by the Taylor coefficients of FV. Next, equate powers of z and
keep terms of order < k£ + 1 on both sides to get

— E 2tj{L'j = E ' RS (aai’ 3aﬂ> s + (linear order)
€T €T
j=1 j

— tj:—;RS<a 8)5,

ozt dxi
o 0 1 1 1
o2 (RS (&ci ; W)) =03 (4Rijkéc(ek) A 0(82)) = zRijkéek Nel = §Rij-
Now take oj41 of both sides, so gx11(Vx$) = opt1(taz®) = —iRijx]’ A oi(s). That concludes the special

case. Now for the general case, where s ~ >~ sqz®. Then
V s NZ(Visa)xa—l—Zsa isa ,
Bal r - oxt

and

1 ; 0 0 1 ~
Ok+1 (V o 5) = —ZR”IJ A Optla) ()T + pys (ok(s)) = (8.’17i — 4Rijzj) Nop(s) = o01(Vx)ok(s).

ozt

Corollary 4.6.16. The Getzler symbol on D(S) is well-defined.

Proof: Let T € D(S). Let T be a partial representation of 7" in a basis of generators T = T7,..., T} of order

< k. Then by the main theorem, oy (T's) = o¢(T)ox(s). Since this holds for all s € T'(S K S*), oy(T) is
uniquely determined by T'. Hence o, is well-defined on D(S5). |

Recall that we wanted str(©,,/2(p,p)). Let’s now apply the Getzler formalism to the heat kernel h;.

Theorem 4.6.17. The terms O(p, ¢) have Getzler order < 2k and the heat symbol, defined as
Wt =W = Pt (O’o(@o) + tO'g(@l) + t20'4(@2) =+ 4+ tm/QO'n(@n/Q)) )

satisfies the equation

8871/;/ +oo(DH )W =0 (22)

and is the unique solution of this equation of the form pi(vg + tv; +--- + tm/va/g), where v; is a symbol
of Getzler order < 25 and vy = 1.

Proof: Recall that in normal coordinates centered at g € M, hy(z) ~ pt(x)(vo(z) + tvy(x) + - - - ) such that

Vag (rkgl/4uk> = —Tk_lgl/‘lDQuk,l , u_1=0. (23)

r

These equations determine the ug uniquely, given vg(q) = id. We will take the Taylor series of both sides.
Our aim is to prove uy has Getzler order < 2k, by induction. First, vo = id € End,, (S5), so order(vy) = 0.
Let k > 1 and assume that ui_; has Getzler order < 2(k — 1). Take o of both sides and use the fact that
D? has Getzler order 2, to get

rk_lgl/4uk Lok (Vaggwl) w4 rkgl/zlvaiul~c — _pkmlgl/ApZy,
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Let a be the Getzler order of u;, and b the Getzler order of 7¥¢'/4. Then everything on the left has Getzler
order b+ 1+ a. And on the right, everything has order b+ 1+ 2+ 2(k — 1), so equating, we get that a = 2k.
So uy, has Getzler order < 2k. Then o941k of both sides of implies that

0
o (Tkagk(uk)) = " Loy (DYoo (up—_1).

But this is exactly the recurrence relation satisfied by the heat symbol W. We don’t have to find the heat
kernel h; for all terms in the asymptotic expansion or even the first n/2 terms to get the sum of their symbols.
Let a;; be a skew-symmetric real n x n matrix, for n = 2m, and b € R. Consider the differential equation
on R" given by

2
n

a—W—Z a—izazjxi W + bW = 0. (24)
j=1

ot P ox!
We want to show that this has a solution for small ¢. It is an analytic function of b and the a;js, and is
asymptotic to exp(—|X|/(4t))/(4nt)"/? as t — 0. The first step is to let W = e ®*Wy(x', ... 2™, t) such
that

ow Wy Wo ~(0 1 N
o = bW +e En and 5 Z(@xi 4a”z Wy=0

i=1
are satisfied. Since a;; is skew-symmetric, there exists an orthonormal basis eq, f1,...,€m, fm of R*™ and
corresponding coordinates u!,v', ..., u™,v™ where the bilinear form becomes
0 X
- 0
0 A
- 0

0 X
=X 0

with zeroes in the empty spots. In this new coordinate system (check this),

W /o 1.\ LNV T
m_z<8xi_4)\iv) W_Z<8xi+4)\iu) W =0.

i=1 i=1

Now use the separation of variables. Assume that it is a function of several variables and check it reduces to

2 2

ot oxt 4 oz’

so we are now reduced to solving

oW o 2w\’ 0\’
at_<au_4> W‘(av+4) w=0

For W = W (u,v,t), we leave it as an exercise to show that

1 a2 \Y? ) .
W (u,v,t) = N (sinh(it)\/Q)) exp (8(u2 + v?) coth(zt/\/2)> .
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Hence

W =e "W Wy ---W,,

= W <det <Sin£‘Z3/2))>1/2 exp Ctl <’52“ coth(ta/?)X,X>> et
SREL )

So this solves (24). Next, recall we saw o9(D?) = — Z?:l(aii — IR;;a7)? + F¥, which is a differential
operator on C*°(T,M). Hence R;; = 3 R;jree” A€’ is a skew-symmetric matrix whose entries are 2-forms. So
F% is a 2-form with sections in End , (S), so the R;; and F'¥ terms all commute. Since 2-forms are nilpotent

elements of the exterior algebra,

W= W (det (mfﬂim))w exp (42 <t§“ coth(tR/Z)X,X>) exp(—tFS)

is a formal power series and solves (22)). |

So W is of the form W = W(vo +tvy+-- ~+t”/2vn/2), where vy, has Getzler order < 2k and v(0) = 1
(by explicit calculation). Hence we have shown the following:

Proposition 4.6.18. With notation as above,

n/2

kzzoagk(@k) = (det (sinf(/]g/Z)))l/Z e er (/\.(T*M) ® Enda(s)) .

Theorem 4.6.19. [ATIYAH, SINGER (1960s-1980s)]
With notation as above,

R/4mi 1/2 S0
. D+ _ T S/A _—F /27r1.
ind(D7) /M (det (sinh(R/47ri))) e

Proof: We have shown, by McKean-Singer, that ind(D) = W Jas str(©4,2), but ©,,/5 € T(Endc(S)) =
I'(Cl ®@c End, (S)), and by a previous result,

str(0,,/2) = (—24)™ (9"7,/2)1" )
———

top degree
part of @"/2

s0 str(0,,/2) = (—2i)"/2Tr5/ A 50

n

ind(D") = W(—Qi)"m /M (det <Sm}]f(/32/2)>>1/2 TrS/8e 17

Replace R and F° by ﬁR and %F 3. respectively, to get the result. |

7

(©4,2), so we get

Remark 4.6.20. If F is the curvature of a connection F, then Met(m}f{F%))l/z is the A-genus of E. This

is a closed mixed degree form whose cohomology class is independent of V. Also, TyS/Ae—F7/2mi = ch(S/A)
is called the relative Chern character of S. So the index theorem may be written as

ind(D*) = /M A(TM)ch(S)A) = (A(TM) - ch(S/A)) [M].

79



Finally, consider some special cases of the theorem:

Theorem 4.6.21. [CHERN, GAUSS, BONNET]
) = [ eran),
M

where e is the Euler class, S = A*(T*M) ® C, and D = d + d*.

Theorem 4.6.22. [SIGNATURE THEOREM]
Using the same S and D as above, but with a different splitting S = ST @ S~

ign(M4F) / (TM) (ar) = (det (L2 v
1211 = = PR A —
Vi s o “\ tanh(R/27i) ’
where n = 4k.
Theorem 4.6.23. [HIRZEBRUCH, RIEMANN, ROCH]
Xe(MP™) = Y (1) dim(HOH(M) = [ (T M)eh(TM),
k=0

where xc is the holomorphic genus, S = A*(T%'M) and D = § + §*.
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Index of notation

Jap

Hom(E, F), End(E), Aut(E)
KP"

I"E

I'(E)

OF (M)

det(E)

Er

V, VXs

Ag

Vo0

FFY

dv

[ IR ]
(B, V), c,(E), c(E)
chi(E,V),chi(E),ch(E)
End_(F)
tdi(E, V), tdi(F), td(E)
pr(E), p(E)

Ce(V, (-, -)),cLV)

d+ d*

AV
Cen(FE)

A

Tn

ap, fpu f(P)
WH(E)

< R >k
I'p

o(D)
HI(V®, P,)
ind(P)

transition function

set of bundle morphisms, endomorphisms, and automorphisms
K-projective space

pullback bundle of E by f

section at p

space of sections on F

space of sections on k-forms of M
determinant line bundle

underlying real vector bundle of F
connection, covariant derivative

space of connections on F

trivial connection

curvature (of a connection V)
generalization of differential d

bracket on k-forms and ¢-forms of M

Chern form, class, total class of E

Chern character form, character, total character of F
set of endomorphisms that are infinitesimal isometries on p
Todd form, class, total class of £
Pontryagin class, total class of F

Clifford algebra associated to V and ( -, - )
Dirac operator

adjoint of the connection V

inner product on I'(S) or I'(T*M ® S)
Hodge star operator

sharp and flat musical isomorphisms
interior product of o and

formal adjoint of d

Hodge-de Rham operator

Hodge Laplacian

centralizer of the representation F

spin representation

n-dimensional torus

pth Fourier coefficient for f

space of functions that converge in Lo-norm, equivalently L5(E)

Sobolev kth inner product

graph of an operator P

spectrum of an operator D

subspace of P-harmonic elements of V¢ P

index of an operator P
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&
str(T)
S X Sy

(ht)e>0
S X S*

Ft) ~ 3250 ax(?)

pt(p, ), Or(p,q)

ch(S/A)

Index

A-hat genus,
adjoint,

formal,

self-,
algebra

filtered, [70]

graded,

of linear diferential

operators, [70]

approximate heat kernel,
asymptotic expansion, [59]
Atiyah—Singer theorem,

base space,
Bianchi identity, [I9]
Bochner—Weitzenbock
formula,
bootstrapping,
box tensor,
bracket ([ -, - ]),
bundle
Clifford,
conjugate, [10]

line, []

grading operator

supertrace of an operator T'

box tensor of two bundles S; and S,
heat kernel

hat box tensor of a bundle S

the formal series Y -, aj(t) is an asymptotic expansion for f
near t =0

auxiliary functions in asymptotic expansion of heat kernel
Clifford multiplication

Riemann endomorphism

twisting curvature

supercommutator of elements of End(S) for S supersymmetric
algebra of linear differential operators on C& (M)

graded algebra of a filtered algebra A

symbol map

algebra of constant coeff. diff. operators acting on C> (V)
relative trace of F'

algebra of poly. coeff. lin. diff. operators

ring of formal power series on V'

relative Chern character of S

pullback, [7] flat,
tautological, [6] trivial, [I2]
trivial, [ connection Laplacian, [30]

bundle isomorphism,

center, [36] curvature, [I7]
centralizer, scalar, [67]
Chern twisting, [67]
character,
character, relative, [79]
class,
Chern—Weil theorem,
Clifford algebra,
complexified,
Clifford bundle, [30]
compatible connection, [T5]
complex

convolution, [44]
covariant derivative, [I1]

Dirac complex,
Dirac operator, [29] [30]

Euler characteristic, [47]
exactness, [7]

fiber, 2]
fiber metric
Dirac, [4§| Hermitian,

complexified Clifford algebra, Riemannian, 9]

filtered algebra, [70]
conjugacy class, [36] filtration, [70]
conjugate bundle, Getzler,
conjugate heat operator, flat connection,
connection, [T1] formal adjoint,
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Fourier series, [37]
Frechet topology,
Fredholm operator,
fundamental class, [51]

Garding’s inequality,
Getzler filtration,
Getzler order,
gluing cocycle, [4]
graded algebra, [70]
graded operator, [50]
grading operator, [50]
graph,

Green’s operator,

harmonic elements, [47]

heat kernel,

heat symbol, [77]

Hermitian fiber metric, [I0]
Hodge Laplacian,

Hodge star,

Hodge theorem, A7} [49]
Hodge-de Rham operator,
homogeneous map,

index

of an operator, 50|
integral kernel,
interior prouct, [34]
invariant map, 2]
inversion theorem,

kernel, [43]

Laplacian, 29
Hodge,

Leibniz rule,

line bundle, [4]

local trivialization,

McKean—-Singer formula,
metric
Hermitian fiber, [10]
Riemannian fiber, [9]

mollifier,

multiplicity,
musical isomorphism,

operator
box tensor,
Dirac, 29]
Fredholm, [50]
graded,
grading,
Green'’s, [49]
smoothing,
supersymmetric, [50]
unbounded,
order
Getzler, [74]
orientability, [9]

Plancherel’s theorem,
polarization,
Pontryagin class, [27]
pullback bundle, [7]
pullback of sections, [J]

relative Chern character, [79]
relative trace,

Rellich lemma,

Ricci tensor, [67]

Riemann endomorphism,
Riemannian fiber metric, [9]
ring of formal power series,

scalar curvature, [67]
section,

self-adjoint,

sharp,

signature theorem,
smooth structure, [2]
smoothing operator, 43|
Sobolev k-inner product,
Sobolev embedding theorem,
spectral theorem, [46]
spectrum, [£0]

spin representation, [36]
Spin® manifold,

Index of mathematicians

Banach, Stefan,
Bianchi, Luigi, [T9]
Bochner, Salomon,

Chern, Shiing-Shen,
Clifford, William,

Dirac, Paul,
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star (operator),

strong proposition, [44]
submersion,
supercommutator, [63]
superstructure, [50]
supersymmetric operator, @

supersymmetry, [52]
supertrace, [52]

symbol map, [70]

tautological bundle, [0]
theorem
Atiyah—Singer,
Chern—Weil,
Hodge,
inversion, [37]
Plancherel’s, [37]
signature,
Sobolev embedding,
Todd class,
total
Chern character, 25
Chern class,
Pontryagin class,
Todd class,
total space,
trace
relative,
transition function,
trivial bundle, [4]
trivial connection,
trivialization
global, [4]
local,
twisting curvature, [67]

unbounded operator,

vector bundle,
vector bundle isomorphism,

weakly satisfied,

Young’s inequality,

Dolbeault, Pierre,

Euler, Leonhard, [47]



Fourier, Jean-Baptiste, [37]
Frechet, Maurice, [3§]

Fredholm, Erik,
Garding, Lars, []
Getzler, Ezra,
Green, George, [49]

Hermite, Charles,
Hodge, William, [33] [47]

Kahler, Erich, [37]
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