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1 Projective space and morphisms

1.1 Divisors

z Lecture 1 - 09.09.2013

Question: What are the transformations from one projective space into another projective space?

Begin with transformations from one-dimensional projective space into itself.

P1 → P1 : Möbius transformation
Trivial morphism

Definition 1.1.1. Let V,W be algebraic varieties. A morphism V → W is a function defined everywhere
locally by rational functions. A morphism may also be viewed as a polynomial map.

Definition 1.1.2. An algebraic variety V over an n-dimensional field F is the set of points satisfying
fi(x1, . . . , xn) = 0 for F -valued polynomials fi, i ∈ I.

Definition 1.1.3. A Möbius transformation is a morphism P1 → P1 of degree 1, that is, given by an
invertible 2× 2 matrix. It may be presented as:

az + b

cz + d
, ad− bc 6= 0 or [az + b : cz + d], ad− bc 6= 0

Example 1.1.4. This is a morphism P1 → P2 that parametrizes a circle:

[x : y] 7→ [x2 : xy : y2] ∈ V (Y 2 = XZ)

Combining this morphism with a projection from [0 : 1 : 0] gives a new morphism P1 → P1 : [x : y] 7→ [x2 : y2]
that still parametrizes a circle.

What are some other morphisms form P1 to itself? From the above example we have the following:

[x : y] 7→ [xn : yn]
[x : y] 7→ [ϕ0 : ϕ1]

Here deg(ϕ0) = deg(ϕ1) and both are homogeneous polynomials and have no common factors. Generalizing
to morphisms Pn → Pm, we simply need an (m + 1)-tuple of homogeneous polynomials of the same degree
d that do not have any common zeros in Pn:

[x1 : · · · : xn] 7→ [ϕ0 : · · · : ϕm]

Definition 1.1.5. A homogeneous polynomial is a polynomial with every term having the same degree
combining degrees from different variables. For example, x6 + 2x3y3 − 5xy5 + y6 is a homogeneous
polynomial of degree 6.

Proposition 1.1.6. The set of homogeneous polynomials of degree d in (n+1) variables in finite dimensions
has size

(
d+n
n

)
.

Proof: The space of homogeneous polynomials in d + 1 variables has a basis given by monomials. To each
degree, from 1 to d, assign an object of type a. Amongst the objects of type a, place n objects of type
b, that each represent a break between groups of objects a. Arranging all the objects in line, we have an
analogy - by assigning to the first variable the degree that corresponds to the number of objects a in the
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first group (before the first object b), and to the kth variable the degree that corresponds to the number of
objects a in the kth group (between the (k − 1)th and kth objects b), we have created a way of designating
all possible homogeneous monomials of degree d in n+ 1 variables. Hence the desired amount is equivalent
to the number of ways of choosing n items from a list of d+ n items, or

(
d+n
n

)
. �

Definition 1.1.7. Let m0, . . . ,mN be the set of monomials of degree d in x0, . . . , xn. The corresponding
morphism vZ : [x0 : · · · : xn] 7→ [m0 : · · · : mN ] is termed the dth Veronese embedding or d-uple embedding.
Note that N =

(
n+d
n

)
− 2, so the projective space of the range has size

(
n+d
n

)
.

Remark 1.1.8. In general, given some moprhism ϕ : Pn → Pm with ϕ : [x0 : · · · : xn] 7→ [ϕ0 : · · · : ϕm]
(where deg(ϕi) = d), the map ϕ may be presented as ϕ = L ◦ v, where L is the linear map induced by the
coefficients of ϕi.

Moreover, a linear map is a composition of a projection away form a linear subspace and a linear embedding
of a projective space in another space.

z Lecture 2 - 11.09.2013

Definition 1.1.9. A local ring is a ring with a single maximal ideal.

Definition 1.1.10. A discrete valuation ring (or DVR) is a principal ideal domain (i.e. an integral
domain such that for every ideal J that it contains, it also contains some a such that J = 〈a〉) with
only one non-zero maximal ideal.

Definition 1.1.11. Given a DVR, a uniformizer of the DVR is any irreducible element in it. A
uniformizer will be a generator of the only maximal ideal.

Definition 1.1.12. A degree d morphism from Pn into any projective space can be obtained by choosing a
subset of the space spanned by monomials of degree d in n+ 1 variables.

Example 1.1.13. Let X be the zero set of y2z = x3 − xz2 in P2. Consider a map ϕ : X → P1 given by
ϕ(x : y : z) = [x : z]. The map ϕ is not defined at (0 : 1 : 0), even though X is. So we need another map
that agrees with ϕ everywhere else, but is defined at (0 : 1 : 0). Note that

y2z = x3 − xz2 = x(x2 − z2) =⇒ y2

x2 − z2
=
x

z

Hence ϕ′(x : y : z) = [y2 : x− z2] is a map that agrees with ϕ everywhere, and is defined at (0 : 1 : 0). This
shows that sometimes a single polynomial may not describe a curve completely, whereas more than one will.

Definition 1.1.14. An algebraic vairety, or simply variety, is the solution set of a system of real- or
complex-valued polynomial equations.

Definition 1.1.15. Suppose that ϕ : X → Pm is a morphism, given by ϕ = [ϕ0 : · · · : ϕm] for rational
functions ϕi. The linear system associated to ϕ is defined as follows:

- Choose any irreducible subvariety Y ⊂ X of codimension 1 (i.e. dim(Y ) = dim(X)− 1)
- Choose a representation [ϕ0 : · · · : ϕm] of rational functions for ϕ that is defined on a nonempty Zariski

open subset of Y
- For any linear form L(x0, . . . , xm), define

ny,L = ordyL(ϕ0, . . . , ϕm)

DL =
∑
y∈Y

ny,Ly ⊆ Div(X), Div(X) =
⊕

codim(Y )=1

ZY

Then the linear system associated to ϕ is {DL}L.
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Definition 1.1.16. Given a space Y , a divisor of Y is a formal sum
∑
y∈Y nyy such that ny ∈ Z and

all but finitely many of the ny are zero. Moreover, codim(y) = 1 in Y . The group of divisors is denoted
Div(Y ). A divisor associated to a linear form L is denoted by DL.

Definition 1.1.17. Note that divisors of rational functions form a subgroup of Div(X). Hence we may
define the quotient group Pic(X) = Div(X)/(rat. func. divs) of divisor classes.

Remark 1.1.18. Note several things about divisors. First:

DL1
−DL2

= Div

(
L1

L2

)
=
∑
y∈Y

ordy

(
L1

L2

)
y

Next, if D1 and D2 are divisors of the same morphism, then D1−D2 is a divisor of a rational function. This
relationship is written D1 ∼ D2, and said that “D1 is linearly equivalent to D2”.

Example 1.1.19. Consider the map P1 → P2 that takes everything to the z-axis. Then the values DL

associated to this map will be linear combinations of points on P1. Similarly, a map that takes everything
to the circle will have a linear system composed of pairs of points on the circle.

linear system = {points in P1} linear system = {P +Q : P,Q ∈ P1}

z Lecture 3 - 13.09.2013

Recall the previous lecture. If we have a morphism ϕ : X → Pn, then the linear system associated to ϕ is a
collection of inverse images of linear slices of ϕ(X). Moreover, it is a collection of divisors. If X = Pn, then
the linear systems are always subsets of “zero sets of polynomials of degree d” for some d (they are also all
effective in this case).

Example 1.1.20. The linear system associated to ϕ(x : y) = [x2 : y2] does not contain all of the subsets of
degree 2, only some. The correct way to understand this morphism is that it is a small modification of the
Veronese embedding of degree 2.

The question then arises, are there vector spaces that will work like this for arbitrary X?

Definition 1.1.21. A divisor
∑
nY Y is effective iff nY > 0 for all Y .

Definition 1.1.22. Let D be a divisor on a smooth variety X. Then another way to describe the linear
system of D is as

L(D) = {f ∈ k(X)∗ : Div(f) +D is effective} ∪ {0}.

The set k(X)∗ contains all the non-zero rational functions on X.

Example 1.1.23. Let X = P1 and D = P , a single point [0 : 1] ∈ P1. Then the linear system is

L(D) = {f ∈ k(X)∗ : f has at most one pole, necessarily at P , of order 6 1}

=

{
at+ b

t
: a, b ∈ k

}
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Note that if D is a divisor in a linear system attached to a morphism ϕ, then that linear system is
contained in {D + Div(f) : f ∈ L(D)− {0}}.

Example 1.1.24. Find a morphism from X = V (y2z − x3 − xz2) to projective space whose linear systom
contaions 2[0 : 0 : 1].

First note that this will be a map to P1. We are now looking for any rational function whose divisor plus
2[0 : 0 : 1] is effective.

z Lecture 4 - 16.09.2013

We continue with the problem from the previous class. Let the curve C be defined by y2z = x3 + xz2, and
consider the map

ϕ : C → P1

[x : y : z] 7→ [x
2

y2 : z
2

y2 ]
.

However, this map doesn’t work at [0 : 1 : 0], so we use ϕ1 : [x : y : z] → [y4 : (x2 + z2)2]. Now let x = 0,
and away from [0 : 1 : 0], x = 0 corresponds to x2 = 0. This means that the affine piece at z = 1 looks like

x

y
C

So the divisor associated to x = 0 is 4[0 : 0 : 1]. And so {[x : z] or [y2 : x2 + z2]} gives 2[0 : 0 : 1] as desired.
It is natural now to ask why x vanishes twice at the origin. There is a theorem that answers this:

Theorem 1.1.25. Let C be a curve in Pn that is smooth at p, and L any linear form in x0, . . . , xn such
that L(p) = 0. If the zero set of L does not contain the tangent line to C at p, then for any linear form L′

that does not vanish at p, L/L′ restricted to C is a uniformizer at p.

So let us find a uniformizer for our question. Note that anything that does not contain the tangent line
will be a uniformizer. We see that y/z is a uniformizer at p = [0 : 0 : 1], and so

x

z
=

(
z2

x2 + z2

)(y
z

)2
non-vanishing at p

unit in the local ring at p

uniformizer at p

order of vanishing

We note that

div
(x
z

)
= 2[0 : 0 : 1] + [0 : 1 : 0]− 3[0 : 1 : 0] = 2[0 : 0 : 1]− 2[0 : 1 : 0]

div
(x
z

)
+ 2[0 : 0 : 1] = 2[0 : 1 : 0]

which is effective.

Remark 1.1.26. A curve of degree 2 is always isomorphic to P1. Simply pick a point on the curve and
project away from it.
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Now consider L(D), which contains {1, zx}. This is a basis of L(D). So say f1 = 1, f2 = z/x, f3 ∈ L(D).
Write ϕ = [1 : zx : f3].

What is the degree of the image of ϕ? We claim that it is either 1 or 2. If it were bigger, Bezout’s theorem
would say that it has more points. If ϕ is injective, then 2 points. If not injective, then less, so 1 point. In
this case, we note that deg(ϕ) 6= 2, as ϕ is not injective, because degree 3 curves are isomorphic to P1, and
C 6∼= P1. Finally, if deg(ϕ) = 1,then Im(ϕ) is contained in a line, so f3 ∈ span{1, zx}.

Theorem 1.1.27. [Bezout]
Let k be a feld with P,Q ∈ k[x, y] non-zero with no common factors. Then the algebraic curves

{(x, y) : P (x, y) = 0} and {(x, y) : Q(x, y) = 0}

have no common components, and intersect in at most deg(P ) deg(Q) points.

Remark 1.1.28. What is the diference between the “degree of a map” and the “degree of a curve”?

· The degree of a dominant rational map F : X → Y is the degree of the extension of the function field:

deg(F ) = [k(X) : F ∗k(Y )]

· The degree of a curve C ⊂ Pn is the maximum number, with appropriate multiplicity, of the degrees of
the points of the curve that intersect any one line.

z Lecture 5 - 18.09.2013

Recall our curve C ⊂ P2, defined by y2z = x3 + xz2, and that we were looking for a morphism ϕ : C → Pm
for some m such that the divisor 2[0 : 0 : 1] would be associated to ϕ. We begin with the map

ϕ(x : y : z) =

{
[x : z] if [x : y : z] 6= [0 : 1 : 0]

[y2 : x2 + z2] else

On the destination space, take a linear form. For m = 1, take a linear form in [X : Y ]. Taking x = 0
corresponds to the first coordinate of the representation being zero. And x = 0 corresponds to

x = 0 if [x : y : z] 6= [0 : 1 : 0]
y2 = 0 if [x : y : z] = [0 : 1 : 0]

Now we have to deduce the order of vanishing of x = 0. Well, it vanishes at [0 : 0 : 1] = p, so we should find
the multiplicity of x = 0 at [0 : 0 : 1], so consider

x

z
=

y2

x2 + z2
=

y2

x2 + z2

(
z2

z2

)
=

z2

x2 + z2
· y

2

z2

To get the second equality we multiplied by the expression because it was the simplest that would change the
main expression in any meaningful way. Further, the right-most factor in the last expression is a uniformzier,
and the left-most term in that same expression is a unit because it doesn’t vanish at p. Hence the divisor
corresponding to x = 0 is 2[0 : 0 : 1].

The linear system corresponding to ϕ is the collection of these divisors corresponding to the collection of
linear forms in {x, y}, or

L(D) = {f ∈ k(C) : D + div(f) is effective}.
Given an L(D), one may construct a rational map to projective space Pm by choosing m + 1 elements
f0 : f1 : · · · : fm ∈ L(D) and writing ϕ(p) = [f0(p), f1(p), . . . , fm(p)]. However, deciding whether or not
ϕ : X → Pm is a morphism is hard in general.

If ϕ is a morphism, then if span{fi} = L(D), then {D+div(f) : f ∈ L(D) − {0}} is the linear system
associated to ϕ.
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Example 1.1.29. Consider [1 : p1q1 : · · · : pmqm ]. As D+div(piqi ) is effective for all i, the zeros of qi are cancelled

by the zeros of D =
∑
nY Y . Clearing the denominators gives a simpler expression.

We would like a single “thing” that will correspond to L(D) and any of its associated morphisms.

z Lecture 6 - 20.09.2013

Recall from the last lecture that for a map K → Pm, we associated a linear system

L(D) = {f ∈ k(X)∗ : D + div(f) > 0} ∪ {0}

Now let U ⊂ X be a non-empty open subset. Define

L(D)(U) = {f ⊂ k(X)∗ : (D + div(f))|U > 0} ∪ {0}

Note that D > 0 for divisors iff D =
∑
nY Y for nY > 0, and D|U =

∑
Y ∩U 6=∅ nY Y , and L(D)(∅) = 0. Notice

that there are “restriction maps” resU→V : L(D)(U) → L(D)(V ) for any V ⊂ U given by resU→V f = f |V .
This leads us into the next topic.

1.2 Sheaves and presheaves

Definition 1.2.1. Let X be a topological space. A sheaf F of things on X is a thing F(U) for every open
subset U ⊂ X together with morphisms resU→V : F(U)→ F(V ) for every V ⊂ U , satisfying:

1. F(∅) = 0
2. resU→U = id
3. resU→V ◦ resW→U = resW→V
4. if U =

⋃
i Ui and resU→Ui(f) = 0 for all i, then f = 0

5. if U =
⋃
i Ui and the fi ∈ F(Ui) satisfy resUi→Ui∧Uj

(fi) = resUj→Ui∧Uj
(fj) for all i, j, then there

exists f ∈ F(U) satisfying fi = resU→Ui
for all i.

The elements of F(U) are termed sections. If the thing F(U) satisfies the first three axioms, then it is
termed a presheaf.

Example 1.2.2.
· The object L(D) as we have defined it above is a sheaf
· The set of functions on a topological space that satisfy any local property is a sheaf

Definition 1.2.3. Let F ⊂ k[x1, . . . , xn] and V (F) denote the set of common zeros of the elements
of F in affine n-space. Then a subset X of affine n-space that has the form V (F) for some F is
termed Zariski closed in the space. Such sets define a topology on the affine n-space, termed the Zariski
topology.

Put another way, a closed set in the Zariski topology, for An affine n-space, is

{x ∈ An : f(x) = 0 ∀ f ∈ S}

for S any set of polynomials in n variables over the base field k.

Definition 1.2.4. Let X 3 p be a topological space. Then the skyscraper sheaf at p is defined by

F(U) =

{
C if p ∈ U
0 if p 6∈ U

The maps resU→V are 0 or id as appropriate.
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Example 1.2.5. Let X = P1 with homogeneous coordinates [x : y] and U 6= ∅. Let F(U) = {fU (ax+ by) :
a, b ∈ k, fU ∈ O(U)}, where O(U) is the ring of regular (defined everywhere) functions on U . The restriction
maps are defined by

resU→V [fu(ax+ by)] = (fu|V )(ax+ by)

Then O(1) is termed Serre’s twisting sheaf, which is a sheaf of O-modules.

Example 1.2.6. The objects O(U) = {regular functions on U} is a sheaf of rings on X. For W ⊂ V ⊂ U ,
we have that O(V ) is bigger than O(U), and O(W ) is bigger than O(V ). Further, the object Op(X) is the
set of functions that are regular at p, the local ring at p. It also may be viewed as the union of all O(U)
over all U containing p.

In general, we have a poset of open sets containing p ∈ X, by

U

V

W

V ∩W
⊃

⊃
⊃
⊃

with each corresponding poset using resU→V . We would like for Fp =
⋃
U3p F(U), but that is impossible,

so we settle for
Fp = lim−→

U3p
[F(U)]

Here we have used the direct limit to define Fp, the stalk of F at p.

z Lecture 7 - 23.09.2013

Definition 1.2.7. Let {Mi} be a directed system (a collection of groups with maps between them) of
Abelian groups. That is, there are maps Mij : Mi →Mj for some i, j such that for all i, j there exists some
k such that mik and mjk both exist.

For example, we may have Mi = F(Ui) for some sheaf F , with M =
⊕
Mi. Let R be the submodule of M

generated by all elements of the form

(. . . , 0, x, 0, . . . , 0,−mij(x), 0, . . . ) .

Mi factor Mj factor

Then define the direct limit of M to be lim−→[Mi] = M/R. This essentially tries to mimic a union of things.

Example 1.2.8. With the structure above, consider R defined as

R = span
{

(. . . , 0, fU , 0, . . . , 0,−resU→V (fU ), 0, . . . )
}

.

F(U) F(V )

Then we may express Fp as
FP = lim−→

U3P
[F(U)].

Definition 1.2.9. Lot F ,G be sheaves of abelian groups on a topological space X. A morphism of sheaves
ψ : F → G is a collection of homomorphisms{

fU : F(U)→ G(U) : resGU→V ◦ fU = fV ◦ resFU→V ,
}
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or equivalently, maps fU for all U ⊂ X and V ⊂ U such that the diagram below commutes:

F(V ) G(V )

F(U) G(U)

fV

fU

resFU→V resGU→V

Note that once we have a morphism of sheaves, we may turn it into a morphism of stalks.

A natural question to ask next is what is fP : FP → GP ? So let s ∈ FP . Then fP (s) = fU (s̄), where
s̄ ∈ F(U) represents the corresponding equivalence class in GP . This observation leads us to the next
theorem.

Theorem 1.2.10. Let ψ : F → G be a morphism of sheaves of an abelian group. Then ψ is an isomorphism
if and only if ψP is an isomorphism for all P .

Proof: The forward direction is immediate. The reverse direction requires some work. We begin b noting
that we wish to prove that ψ|U : F(U)→ G(U) is an isomorphism.

For injectivity, we consider f ∈ ker(ψ|U ), for which we would like to show f = 0. Then ψ(f) = 0 in GP for
all P ∈ U . So fP = 0 for all P ∈ U , as ψP is an isomorphism (that is, fP is the equivalence class of f in
|mFP ). So for all P , there exists a VP such that f |VP

= 0. By the zero axiom, f = 0 on U .

For surjectivity, choose g ∈ G(U), for which we would like to find f ∈ F(U) such that ψ|U (f) = g. For all
P , we can find fP ∈ FP such that ψP (fP ) = gP for all P . For all P , choose VP such that fP is represented
by fVP

in F(VP ). Note that ψVP
(fVP

) = gP , so ψVP
(fVP

) and ψV ∗P (fV ∗P ) agree on some small neighborhood
of P . So we may glue the fVP

together to make f as desired. �

z Lecture 8 - 25.09.2013

We now explore the standard way to take a presheaf and make it into a sheaf, a process called sheafification.

Theorem 1.2.11. Let F be a presheaf. There is a sheaf F+ and a morphism θ : F → F+ such that every
morphism F → G for G a sheaf factors through θ. That is, there exists some unique f̃ making the diagram
below commute.

F+

F G

θ

f

f̃

Proof: This theorem follows by considering the action on the stalks. Note that

F+(U) =

{
f : U →

⊔
P∈V
FP :

f(P ) ∈ FP and for all P , there is some open V 3 P and
t ∈ F(V ) such that f = t as functions from V to

⊔
R∈V FR

}
.

Then θ is defined as
θ : F(U) → F+(U)

f 7→ {P 7→ fP ∈ FP }
.
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It is now trivial to see that F+ is a sheaf. Now say that f : F → G is a morphism of sheaves. Define
f̃ : F+(U) → G(U) by noting that there is some open cover {Ui} of U such that t|Ui

∈ F(Ui) for all i, so
f(t|Ui

) is well-defined. And
f(t|Ui

)|Ui∩Uj
= f(t|Ui∩Uj

) = f(t|Uj
)|Ui∩Uj

,

so we can glue {f(t|Ui
)} to f̃(t). This is well-defined and satisfies f = f̃ ◦ θ, as desired. �

Theorem 1.2.12. For sheaves F ,G and f : F → G a morphism that is an isomorphism on stalks, the map
f is an isomorphism of sheaves.

z Lecture 9 - 27.09.2013

What is the corresponding sheaf on an atlas of a manifold? This sheaf contains continuous differentiable
maps from the manifold to the disk in Rn that are everywhere locally a homeomorphism.

For example, if the manifold is X = S2, then F(X) is empty. However, if X = S2 \ {pt}, then F(X) = X.

In general, if X is not homeomorphic to a disk, then we can always find in F(X) the covering map. In fact,
this will note be a diffeomorphism from X to the disk.

Definition 1.2.13. Let f : F → G be a morphism of sheaves. Define the kernel presheaf K of f by
K(U) = ker(f |U ) ⊂ F(U). Note that K is a sheaf.

Define the image presheaf I by I(U) = Im(f |U ) ⊂ G(U). This is not a sheaf, however, as the gluing axiom
fails.

Example 1.2.14. Consider the following spaces and maps:

X = R2 \ {0}
F = {f : X → R} ⊂ C∞(X)
G = {(f, g) : fy = gx}

ϕ : F → G
f 7→ (fx, fy)

Since X is not simply connected, ϕ is not globally surjective. For example, ( −y
x2+y2 ,

x
x2+y2 ) is not globally the

image of anything in F , although it is in G(X) and everywhere locally in im(ϕ). Hence the image presheaf
is not a sheaf.

So we define the image sheaf to be the sheafification of the image presheaf:

im(ϕ) = I+

I G

θ

i

j

The map j is injective because i is injective and θ is an isomorphism of stalks. So I+ may be naturally
considered as a subsheaf of G.

Remark 1.2.15. Given a morphism of sheaves ϕ : F → G, we say that ϕ is surjective if and only if
im(vp) = G. Note this is not equivalent to saying “ϕ|U is onto for all U”. It is equivalent to “ϕ|U is
surjective for small enough U”. It is also equivalent to “ϕP is surjective for all P ∈ X”.

Definition 1.2.16. Let F be a sheaf of abelian groups, and G ⊂ F a subsheaf. Define (F/G)(U) = F(U) =
G(U). This is a presheaf but is not a sheaf, as it may be represented in terms of the image presheaf. So we
define the quotient sheaf to be the sheafification of F/G.

10



1.3 Modules

z Lecture 10 - 30.09.2013

A homogeneous coordinate ring is like an affine variety ring, but less useful. We may define it as follows:

Definition 1.3.1. Let X = V (f1, . . . , fn) ⊂ Pm. For f1, . . . , fn homogeneous, define the homogeneous
coordinate ring of X ↪→ Pm by

S = k[x0, . . . , xm]
/

(f1, . . . , fn)

The ring does not contain functions on X, but the elements do have well-defined zero sets on X. So S is a
graded ring, with S =

⊕∞
−∞ Si, where the Si are subgroups of the additive groups of S with Si ∩ Sj = {0}

if i 6= j, and SiSj ⊂ Si+j . So in this construction, Si = {0} for i < 0.

The idea of a module over a ring generalizes the idea of a vector space over a field.

Definition 1.3.2. Let R be a ring. A left R-module consists of an abelian group (M,+) and an
operation · : R×M →M with ·-identity 1R ∈ R such that for all r, s ∈ R and x, y ∈M ,

1. r(x+ y) = rx+ ry
2. (r + s)x = rx+ sx
3. (rs)x = r(sx)
4. 1Rx = x

A right R-module is defined the same way, except the associated operation is M × R → R, and the
axioms are expressed accordingly.

Definition 1.3.3. A graded S-module is an S-module M with M = · · · ⊕M−1⊕M0⊕M1⊕ · · · for additive
subgroups Mi such that Mi ∩Mj = {0} for i 6= j, and MiMj ⊂Mi+j .

Example 1.3.4. Let S[1] = M be given by M = S, but Mi = Si+1. S[n] is defined similarly for any n ∈ Z,
and is called the Serre twist, or just twist.

Example 1.3.5. Another example of a graded S-module is the free graded S-module M generated by
, symbolizing absolutely anything. Then:

S = k[x0, . . . , xm]

M0 = {0}
M1 = ( )k

M2 = k-span of x0( ), . . . , xm( )

= (linear polynomials)

How would a sheaf be made of this? The sheaf will be termed M̃ , and will be defined by

M̃(U) =

{
m

f
: deg(m) = deg(f), f ∈ S,m ∈M,f(p) 6= 0 ∀ p ∈ U

}
The restriction maps in this sheaf are inclusion maps. Note that M̃ is actually a presheaf, but sheafification
will give a sheaf.

Example 1.3.6.
· If M = S, then M̃ = OX .
· If M = S[1], then M̃ = O(1), with

M̃p = free rank-1 module over the local ring Op

=

{
f

g
: f, g homogeneous

}

11



In fact, there is always an open cover {U0} of X such that for all i, M̃(Ui) is a free rank-1 O(U)-module.
Then M̃ is called locally free of rank 1, or an invertible sheaf. In general, an invertible sheaf is exactly a free
module over the local ring of rank 1. In this case, we would like to relate O(1) with L(D) and with O(1) on
Pm. As the definition of O(1) is the same as that of L(D), things are slightly easier.

z Lecture 11 - 2.10.2013

Remark 1.3.7. Consider the following situation:

O(1) on Pn

S = k[x1, . . . , xn]

M = S[1]

What is [O(1)](Pn)? One way to describe it is by

[O(1)](Pn) =

{
m

f
: deg(m) = deg(f),m ∈M,m, f homogeneous, f ∈ O(Pn), f(p) 6= 0 ∀ p ∈ Pn

}
=

{
m

f
: deg(m) = 0, f ∈ k

}
= M0

= {linear functions}

Suppose that m1

f1
= m2

f2
, for which we assume mi, fi ∈ k[x1, . . . , xn] and are homogeneous. Since S is a UFD,

we get that gcd(m1, f1) = 1 implies m1|m2, so m1 = cm2 for some c ∈ k. Therefore f1 = c′f2 for some
c′ ∈ k.

Remark 1.3.8. Suppose that ϕ : X → Pn is a morphism. How can we use ϕ to construct a sheaf on X out
of O(1) on Pn?

Let us call the putative new sheaf F . For U ⊂ X open, what is F(U)? Well, we would like F to be a locally
free sheaf of OX -modules of rank one. So say that f ∈ [O(1)](V ) for some space V . Then we plug in the
coordinates of ϕ into f to get a new rational function, which we put in F(U). The space V is defined by the
necessity that V contains ϕ(U). Essentially, we would like

f ∈ lim−→
V⊃ϕ(U)

[
[O(1)](V )

]
So we define F(U) = f ∈ lim−→V⊃ϕ(U)

[
[O(1)](V )

]
= ϕ−1(O(1)).

Example 1.3.9. Let X = P1, and ϕ : X → P1 be defined by ϕ(x, y) = [x2 : y2]. The associated divisor
class is [2[0 : 1]] = {divisors of degree 2}. And F(P1) = span{x, y} = span{x2, y2}.
Further, we may let U = P1 \ {[1 : 0], [0 : 1]}, with

[O(1)](U) =

{
m

f
: · · · (as above)

}
=

{
m

f
: deg(m) = deg(f), f =

(
x

y

)n}
=
x

y
OP1(U)

Then F(U) = x2

y2 · (functions in OP1(U)), which is not an OX(U)-module.

Remark 1.3.10. In general, given a morphism f : X → Y and a sheaf F on Y , define

(f−1F)(U) = lim−→
V⊃f(U)

[
F(U)

]
and sheafify to get the desired sheaf. That is, make OX into a sheaf of fOY -modules, and let f∗F =
f−1F

⊕
f−1OY

OX . This takes the approach above by taking the OX -modules everywhere locally.

From the example above, we would have [ϕ∗O(1)](P1) = span{x2, y2, xy}, where the xy comes from multi-
plying x2 by y

x on x 6= 0, and multiplying y2 by x
y3 on y 6= 0.

12



z Lecture 12 - 4.10.2013

Given a divisor (or a sheaf), we want to make a sheaf (or divisor). We want to do this because divisors make
a group, and invertible sheaves make a group as well.

Definition 1.3.11. A Weil divisor is an integer linear combination of subvarieties of codimension 1.

A Cartier divisor is an equivalence class of

{(fi, Ui) : Ui ⊂ X open,
⋃
Ui = X, fi rational, fi/fj ∈ O∗(Ui ∩ Uj)}

where
{(fi, Ui)} ∼ {(gj , Vj)} iff fi/gj ∈ O∗ on Ui ∩ Vj ∀ i, j

The last statement says that fi/gj is a unit on Ui ∩ Vj .

Proposition 1.3.12. There exists a 1-1 correspondence between Weil and Cartier divisors.

Proof: Say D =
∑
nY Y is a Weil divisor. For each subvariety Y of the variety X, there is some UY open

and ty rational such that div(tY |UY
) = Y . Let {(tnY

Y , UY )} be the Cartier divisor corresponding to D. We
choose Uy small enough so that it does not contain any point of Y ′ if nY ′ 6= 0 and Y ′ 6= Y .

Conversely, if {(fi, Ui)} is a Cartier divisor, let

D =
∑

i such that
Ui∩Y 6=∅

(ordY (fi))Y

This is well defined because if Y ⊂ Ui ∩ Uj , then fi/fj is a unit on Ui ∩ Uj , so ordY (fi) = ordY (fj). �

Definition 1.3.13. A principal Weil divisor is a Weil divisor such that div(f) =
∑

ordY (f)Y . A principal
Cartier divisor is a Cartier divisor {(f,X)}.
Note that the principal Weil (or Cartier) divisor induces a corresponding Cartier (or Weil) divisor, by the
construction described above.

Definition 1.3.14. The divisor class group is defined to be

Cl(X) = Div(X)/Rat(X)

or the group of divisors modulo the group of rational functions. Note that the same group results if the Weil
or Cartier divisors are chosen.

Remark 1.3.15. Adding Cartier divisors {(fi, Ui)} and {(gj , Uj)} is done in the following manner:

{(fi, Ui)}+ {(gj , Uj)} = {(figi, Ui ∩ Vj)}

Example 1.3.16. Let D = 2[0 : 1] on P1 = {[x : y]}. What is the Cartier divisor corresponding to this Weil
divisor? By trial and error, we find that it will be

D′ =
{

(fi, Ui) : fi rational, Ui open, fi/fj unit on Ui ∩ Uj ,
⋃
Ui = P1

}
=

{(
x2

y2
,P1 − {[1 : 0]}

)
,
(
1,P1 − {[0 : 1]}

)}

13



z Lecture 13 - 7.10.2013

We were working on a corespondence between divisors and sheaves. Recall how the correspondence between
Weil and Cartier divisors worked.

Example 1.3.17.
The Weil divisor in P2 is {x = 0} − {y = 0}. The corresponding Cartier divisor is {(xy ,P

2)}.

The Weil divisor in P2 is {x = 0} − 2{y = 0}. The corresponding Cartier divisor is{(
xz

y2
,P2 − {z = 0}

)
,
(
1,P2 − {xy = 0}

)
,

(
x(x+ y + z)

y2
,P2 − {x+ y + z = 0}

)}
Remark 1.3.18. The above shows a general characteristic of Pn. If a Cartier divisor cannot be constructed
with only one element, it must have at least n+ 1 elements.

Definition 1.3.19. Let R be a commutative ring, with A and B R-modules. Define

H(A,B) =
⊕

a∈A,b∈B

R(a⊗ b)

Z(A,B) =
(

span of all elements of H(A,B) of the forms, for all a, a1, a2 ∈ A, b, b1, b2 ∈ B and r ∈ R :

a1 ⊗ b+ a2 ⊗ b− (a1 + a2)⊗ b, a⊗ b1 + a⊗ b2 − a⊗ (b1 + b2),

(ra)⊗ b− r(a⊗ b), a⊗ (rb)− r(a⊗ b)
)

Note that every ideal of R is an R-module. Indeed, even R is an R-module (it is a free R-module of rank
1). Finally, define

A⊗R B = H(A,B)/Z(A,B)

Example 1.3.20. Consider the following objects.

C⊗C C ∼= C via ϕ(z) = z(1⊗ 1)

X ⊗C C ∼= X via ϕ(x) = x⊗ 1 for every C-module X

X ⊗R R ∼= X via ϕ(x) = x⊗ 1 for every R-module X

C⊗Z C is very bad, as it is huge

What does (Z/3Z)⊗Z (Z/4Z) look like?

z Lecture 14 - 9.10.2013

Definition 1.3.21. Let F ,G be sheaves of OX -modules. Then (F ⊗OX
G)(U) = F(U)⊗OX(U) G(U) is the

tensor product of sheaves.

Remark 1.3.22. Is the tensor product of sheaves still a sheaf? The restriction map we employ is resF⊗G =
resF ⊗ resG The presheaf axioms are satisfied, but it is not a sheaf in general. So we must sheafify it to get
a sheaf.

The reason for introducing the tensor product arises from the desire to make a group of invertible sheaves.
This group will have the tensor product as the group operation.

Theorem 1.3.23. Let F ,G be invertible sheaves on a smooth variety X. Then F ⊗OX
G is invertible.

Proof: This involves the following algebra fact:

lim−→ [Mi ⊗Ri Ni]
∼=
(

lim−→[Mi]
)
⊗lim−→[Ri]

(
lim−→[Ni]

)
14



Using this, we get that
(F ⊗OX

G)p
∼= Fp ⊗Op(X) Gp

And as we have that
(F ⊗ G)p ∼= Fp ⊗Gp ∼= Op ⊗Op Op ∼= Op

And as OX is an invertible sheaf, F ⊗ G is invertible. �

So now we have that ⊗ is an associative binary operation on isomorphism classes of invertible sheaves.
As OX ⊗OX

F ∼= F for all F , it follows that OX is the identity element in the group we will soon have. Next
we seek to define inverses.

Definition 1.3.24. Let F be sheaf of an OX -module. Define the dual sheaf of F to be the sheaf

F∨ = HomOX
(F ,OX)

Definition 1.3.25. Let F ,G be sheaves of OX -modules. Define H = HomOX
(F ,G) by

H(U) = HomOX |U
(F|U ,G|U ) resU→V (h) = h|V

Theorem 1.3.26. The sheaf F∨ is an invertible sheaf.

Proof: This follows from considering the following algebraic fact:

F∨p ∼= HomOp(Fp,Gp) ∼= HomOp(Op,Op) ∼= Op

�

z Lecture 15 - 11.10.2013

Remark 1.3.27. For H = HomOX
(F ,G), is Hp ∼= HomOp

(Fp,Gp)?
In general, no. But if F ,G are invertible (more generally, if F ,G are coherent), then yes.

Proposition 1.3.28. Let F be an invertible sheaf. Then F ⊗ F∨ ∼= OX .

Proof: To show this, we need to censtruct an isomorphism from F ⊗ F∨ to OX . The isomorphism will be
constructed on the presheaf F ⊗ F∨, but will be such that if we choose an open set U small enough, then
all the desired properties will hold for stalks, and so will extend through sheafification to the sheaf F ⊗F∨.
So begin by defining a map

ϕ : (F ⊗ F∨)(U) → OX(U)
f ⊗ µ 7→ µ(f)

We have constructed this map on the pure elements of (F ⊗ F∨)(U), but it can be extended linearly to all
the elements. We now check that it satisfies all the necessary conditions from the big set H.

ϕ(λf ⊗ µ− λ(f ⊗ µ)) = ϕ(λf ⊗ µ)− ϕ(λ(f ⊗ µ)) = µ(λf)− λµ(f) = 0

Check the other condition too:

ϕ((f1 + f2)⊗ µ− f1 ⊗ µ− f2 ⊗ µ) = µ(f1 + f2)− µ(f1)− µ(f2) = 0

So we conclude that it is well-defined, but only on the presheaf F ⊗F∨. Now choose U small enough so that

F(U) ∼= F∨(U) ∼= OX(U) and F|U ∼= F
∨|U ∼= OX |U

Then we write F|U = xOX |U and F∨|U = yOX |U , which implies that

F(U) = fOX(U) and F∨(U) = µOX(U)

15



Injectivity is then proved by noting that ϕ(λ(f ⊗ µ)) = λµ(f), where λ(f ⊗ µ) is an arbitrary element of
(F ⊗ F∨)(U). If that expression is zero, then either λ = 0 ar µ(f) = 0. However, since µ generates F∨(U),
µ cannot be zero, so µ(f) 6= 0. Therefore λ = 0, and so ϕ is injective.

Surjectivity is given by taking some α ∈ F∨(U) such that α(f) = 1. Then ϕ(λ(f ⊗α)) = λ for any λ ∈ OX .
So ϕ is surjective, completing the proof that ϕ is an isomorphism. �

Remark 1.3.29. Now we see that invertible sheaves form a group with inverses. Now we want to show that
this group is isomorphic to the other two groups that we already have. We do this by finding a correspondence
between invertible sheaves (up to isomorphism) and Cartier divisors modulo principal divisors (f,X).

Let D = {(fi, Ui)} be a Cartier divisor. Let K be the constant sheaf associated to the function field k(X),
so that K(U) = k(X) if u 6= ∅.

Definition 1.3.30. Define a sheaf L by L|Ui
= f−1i OX |Ui

and sheafify. To see that the presheaf is well

defined, notice that if V ⊂ Ui ∩Uj , then f−1i OX |V = f−1j OX |V because f−1i /f−1j = fi/fj is a unit on OX |U
by definition of Cartier divisors.

z Lecture 16 - 16.10.2013

Our strategy so far has been to make the following relations clear:(
morphisms

) (
Weil divisors

) (
Cartier divisors

) (
invertible sheaves

)
Recall what we were working on in the last lecture. We had {(fi, Ui)} as a Cartier divisor, from which

we made an invertible sheaf by setting

L|Ui
= f−1i OX |Ui

i.e. L(V ) = f−1i OX(V ) ∀ V ⊂ Ui,

where f−1i OX(V ) ⊂ K(V ), and K(V ) is the constant sheaf associated to k(X). The associated restriction
maps are given by res(f−1i α) = f−1i res(α), and we use the sheaf gluing axiom to define L(U) for the open
set U .

Definition 1.3.31. Let X be a topological space. Define the constant sheaf associated to X to be the
sheaf K(X) whose stalks are all equal to X.

So now we have constructed an invertible sheaf from a Cartier divisor. Is the reverse possible?

Let L be an invertible sheaf, and let’s try to embed L in the sheaf K, and then run the previous process
backward. We will show that L⊗OX

K ∼= K. Begin by picking any open set U such that L|U ∼= OX |U . Then

L|U ⊗OX
K|U ∼= OX |U ⊗OX |U K|U ∼= K|U .

This is a local fact, not yet a global fact. Note also that it holds true for any K. Next, the restriction maps
of F = L ⊗OX

K are all isomorphisms for small enough open sets. Let U be any non-empty subset, and let
{Ui} be an open cover of X so that L|Ui

∼= OX |Ui
. This gives the following commutative diagram:

F(Ui ∩ Uj)

F(Ui) F(Uj)

F(U)
f = resU→Ui

resU→Uj

∼=∼=

∼=

The map f = resU→Ui
is an isomorphism by the gluing and zero sheaf axioms, as well as the commutativity

of the diagram. Hence F ∼= L ⊗OX
K is a constant sheaf, and is thus isomorphic to K.
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We now embed L in K via L 7→ L ⊗ 1 ↪→ L ⊗ K ∼= K. So assume that L is a subsheaf of K, and choose
an open cover {Ui} such that L|Ui

∼= f−1i Ox|Ui
for all i and some fi‖k(X). We now make a Cartier divisor

{(fi, Ui)}. We know the fi are rational functions and the Ui are open sets that agree on the sections (this
remains to be checked). Since L is well-defined,

f−1i OX |Ui∩Uj
= f−1j OX |Ui∩Uj

so fi/fj ∈ OX |Ui∩Uj

as desired. So our Cartier divisor is well-defined. Note that the principal Cartier divisors correspond to OX ,
so linearly equivalent divisors correspond to isomorphic invertible sheaves. Furthermore, the correspondence
is a group isomorphism. In other words, Cl(X) ∼= Pic(X).

Example 1.3.32. Let X be the zero set of y2z = x3 − xz2 ⊂ P2. Let S = k[x, y, z]/(yz − x3 + xz2) and
M = S[1]. Let L be M̃ , the sheaf associated to M . Find a Weil divisor associated to M̃ .

Recall that, as a presheaf,

L(U) =

{
m

f
: deg(m) = deg(f),m ∈M,f ∈ S, f is non-vanishing on U

}

z Lecture 17 - 18.10.2013

Recall the problem from last time, where we were trying to find a Weil divisor associated to L, given

X = {y2z = x3 − xz2} ⊂ P2

S = k[x, y, z]/(y2z − x3 + xz2)

M = S[1]

L = M̃

We then made a presheaf M̃(U) = {mf : m ∈M,f ∈ S, deg(m) = deg(f), f non-vanishing on U}. Then we

embed L into K = the constant sheaf of k(X) by

ϕ(U) : L(U) → K(U)

[ϕ(U)]
(
m
f

)
= 1

z

(
m
f

)
This clearly works (i.e. nothing gets killed), so ϕ(L) is an invertible subsheaf of K. We now need an open
cover {Ui} of X such that L|Ui

∼= OX |Ui
, that is, L|Ui

= f−1i OX |Ui
for some fi ∈ k(X). First we consider

U1 = {z 6= 0}. Then we have that

M̃(Ui) =
{
m
zn : deg(m) = n in M,m ∈M

}
OX(Ui) =

{
f
zn : deg(f) = n in S, f ∈ S

}
Now we check that M̃(U1) = zOX(U1). This indeed is true, by changing indeces. Hence the associated
Cartier divisor to M̃ is {

(1, U1),
( z
x
, U2

)
,

(
z

y
, U3

)}
because ϕ(zOX(U1)) = z

zOX(U1) = OX(U1), and ϕ(xOX(U2)) = x
zOX(U2), and ϕ(yOX(U3)) = y

zOX(U3).
Now we need a Weil divisor. To make it, we check with each element in the Cartier divisor. On the first,
it is 0 on U1. For the second, it is 0 on U2. From the third, we get 3[0 : 1 : 0], as a line intersects a plane
cubic curve 3 times. This also follow from the fact that x/y, (x− z)/y, and (x+ z)/y are all uniformizers at
[0 : 1 : 0] on X, as

y2z = x(x− z)(x+ z) =⇒ z

y
=
x

y
· x− z

y
· x+ z

y
.
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Therefore ordp(z/y) = 1 + 1 + 1 = 3, and hence from the third element we get 3[0 : 1 : 0], for p = [0 : 1 : 0].
Note that this result depends on the choice of 1/z initially. The result could have been{(

ax+ by + cz

z
, U1

)
,

(
ax+ by + cz

x
, U2

)
,

(
ax+ by + cz

y
, U3

)}
.

Also, if we would have had S[2] initially, then we would have a degree 2 function in z, instead of ax+by+cz.

Also note that M̃ ∼= ψ∗O(1), for ψ : X ↪→ P2.

z Lecture 18 - 21.10.2013

Proposition 1.3.33. A morphism ϕ : X → Pn corresponds to the invertible sheaf ϕ∗O(1) = L with

L(U) = lim−→
V⊃ϕ(U)

[
[O(1)](V )

]
︸ ︷︷ ︸

not a sheaf of Ox-modules

⊗#OX(U)

Here # = [ϕ−1OPn ](U) = lim−→v⊃ϕ(U)
[OPn(V )], which consists of regular functions on Pn pulled back to X

by ϕ. The factor on the left approximates O(1)(ϕ(U)) as close as it can for U open. The main idea is that
ϕ∗O(1) is just linear forms, pre-composed with ϕ to get linear forms on X.

Recall that:

Pic(X) = invertible sheaves wih ⊗ up to isomorphism

Cl(X) = Weil divisors modulo linear equivalence

We already showed that Pic(X) ∼= Cl(X). The question arises: what is Pic(Pn)?

Example 1.3.34. Consider the two following divisors:

[x2 + yz = 0]− 2[x = 0] + [x3 + y3 + z3 = 0] = D

3[x = 0]− 2[z = 0] = D′

By observation, we see that D has degree 2 − 2 + 3 = 3, and D′ has degree 3 − 2 = 1, so they can not be
linearly equivalent. This may be formalized by stating

D −D′ = [x2 + yz = 0]− 5[x = 0] + [x3 + y3 + z3 = 0] + 2[z = 0] =
?

div

(
(x2 + yz)z2(x3 + y3 + z3)

x5

)
As the agument of Div on the right side is not a rational function (the degrees do not match up), the equality
does not hold. However, such an argument does not hold in Pn.

Remark 1.3.35. We know that Pic(Pn) ∼= Cl(Pn) ∼= Z, but we would like an explicit isomorphism. So
define ϕ : Div(Pn)→ Z by ϕ(f = 0) = deg(f) and extend linearly. Then

ϕ
(∑

ni[fi = 0]
)

= 0 =⇒
∑

ni deg(fi) = 0

So let f =
∏
fni
i , which is a well-defined rational function with divisor div(f) =

∑
ni[fi = 0]. Conversely, if

ϕ(div(f)) = 0 for all rational functions f , then ker(ϕ) = (principal divisors). Since ϕ is injective, ϕ induces
an isomorphism Cl(X) ∼= Z since Cl(X) ∼= Div(X)/Rat(X).

Every invertible sheaf on Pn is of the form O(n) for some n, so we now know what all the morphisms
from Pn to Pn are. Although, we already know from earlier that they are a dth Veronese embedding.
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Remark 1.3.36. A sheaf of ideals on X is a sheaf of OX -modules F with F(U) ⊂ OX(U) for all U . So for
every subvariety Y ⊂ X, there is a corresponding sheaf of ideals

IY (U) = {f ∈ OY (U) : f(Y ) = U}

It turns out that IY is invertible iff codim(Y ) = 1, in which case IY ∼= L(−Y ). Here, IY is generated locally
by f , and L(−Y ) is generated locally by 1/f−1.

Definition 1.3.37. An invertible sheaf F on X is generated by global sections iff F ∼= ϕ∗O(1) for some
morphism ϕ : X → Pn.

We say that F is very ample iff ϕ may be chosen to be an embedding.

Remark 1.3.38. Note that if F ,G are generated by global sections, then so is F ⊗G. The same thing goes
for very ample sheaves. Further, F is generated by global sections iff for all f ∈ X, Fp is generated as an
Op-module by [F(X)]p.

The next big question that we will ask, is how do we tell if an invertible sheaf is very ample?

1.4 Differentials

z Lecture 19 - 23.10.2013

Consider: given an invertible sheaf, for which, if any, does it define a morphism to Pn?

Definition 1.4.1. Let A be a k-algebra (i.e. a ring and a k-vector space, with compatible structure). Define
ΩA = H/R, where H =

⊕
a∈AA(da) and

R = submodule of H spanned by
dλ

d(a1 + a2)− da1 − da2
d(a1a2)− a1da2 − a2da1

∀ λ ∈ k, a1a2 ∈ A.

Example 1.4.2. Let A = k[x1, . . . , xn]. Then ΩA = Adx1 ⊕ · · · ⊕Adxn, because

df(x1, . . . , xn) = f1dx1 + · · ·+ fndxn for fi =
∂f

∂xi
.

So ΩA is the module of differentials on A relative to k.

Remark 1.4.3. Let X be a smooth projective variety. Define a presheaf ΩX(U) = ΩOX(U) with restriction
maps

resU→V

(∑
aidbi

)
=
∑

(resU→V ai) d (resU→V dbi) .

Unfortunately, ΩX is not a sheaf, so we sheafify. Then ΩX is called the sheaf of differentials on X.

Example 1.4.4. Consider the following example, which demonstrates why the original ΩX fails the second
sheaf axiom. Let X = {y2z = x3 − xz2}, and consider the regular differential dx/y on zy 6= 0.

· If y = 0, we can be at one of three points: [1 : 0 : 1], [−1 : 0 : 1], [0 : 0 : 1]
· If z = 0, we can be at [0 : 1 : 0]

On z = 1,

2ydy = 3x2dx− dx =⇒ 2ydy = (3x2 − 1)dx =⇒ dx

y
=

2

3x2 − 1
dy

which is regular if 3x2 6= 1 and z 6= 0. So the points where y = 0 are all regular points for this differential.
At [0 : 1 : 0],

dx

y
=
d
(
x
z

)
y
z

= zd
(x
z

)
= z

(
1

z
dx− x

z2
dz

)
= dx− x

z
dz.
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But

dz = 3x2dx− z2dx− 2xzdz =⇒ dz =

(
3x2 − z2

2xz + 1

)
dx,

hence

dx− x

z
dz = dx− x

z

(
3x2 − z2

2xz + 1

)
dx =

(
2xz2 + z − 3x3 + xz2

(2xz + 1)z

)
dx =

3(xz2 − x3) + z

(2xz + 1)z
dx =

−2

2xz + 1
dx,

which is regular at [0 : 1 : 0]. So there exist functions that are regular on points of X, but are not regular
everywhere. Hence ΩX can not be a sheaf.

Remark 1.4.5. It turns out that the stalk (ΩX)P ∼= (OP )dim(X) is generated by dz1, . . . , dzdim(X), where
the zi are local coordinates for X at P . So ΩX is locally free of rank dim(X). If dim(X) = 1, then ΩX is
invertible.

Note that in order to make ΩX , no choice was made. Hence any invariant calculated of ΩX is an invariant
of the variety X.

z Lecture 20 - 25.10.2013

What is ΩP1? It is a locally free sheaf of rank 1, so it is invertible. So ΩP1 = O(n) for some n, but which n?

To find the solution, we construct a Cartier divisor. Let ω = d(xy ). Then if xy 6= 0, ω will generate the stalk

of ΩP1 as an OP1-module because x
y −

x0

y0
is a uniformizer at [x0 : y0] if x0y0 6= 0.

· for x = 0: d(x/y) = d(x/1) = dx, which generates the stalk of ΩP1

· for y = 0: d(x/y) = d(1/y) = −dy/y2, which has order of vanishing −2 at [1 : 0]

So the morphism ϕ : ΩP1 → K could be ϕ(α) = α/ω, which is the unique rational function f such that
α = fω. This morphism is also an embedding.

Local generators for the image are 1 for p ∈ P1−{[1 : 0]}, and −x2/y2 for p ∈ P1−{[0 : 1]}. So the associated
Cartier divisor is {(

1,P1 − {[1 : 0]}
)
,

(
−x

2

y2
,P1 − {[0 : 1]}

)}
Therefore ΩP1 ∼= O(−2).

Remark 1.4.6. The sequence 0 −−→ A
ι−→ B

π−−→ C −−→ C is a short exact sequence iff B/Im(A) ∼= C,
which simplifies to B/A ∼= C if ι is an injection. The isomorphism is induced by π.

Theorem 1.4.7. The following sequence is exact:

0 ΩPn OPn(−1)n+1 OPn 0
ϕ π

where ϕ(d(xj/xi)) = (xi~ej − xj~ei)/x2i and ~ei is the ith standard basis vector in S[−1]n+1 of degree 1, and
π(~ei) = xi (i.e. ~ei = 0⊕ · · · ⊕ 0⊕ 1⊕ 0⊕ · · · ⊕ 0, and the 1 is in the ith position).

Proof: First note that Im(ϕ) ⊂ ker(π), as xixj − xjxi = 0. Next observe that this sequence is induced by

the sequence 0 −−→ ΩS
ϕ−−→ S[−1]n+1 π−−→ S −−→ 0, where S = k[x0, . . . , xn]. The map π is onto except in

degree 0, so the corresponding sheaf map π is surjective in stalks, and thus onto. As π ◦ ϕ = 0 clearly, it
remains to show that ϕ is injective and ker(π) ⊂ Im(ϕ).

We do this calculation on the stalks. Choose P ∈ Pn, with (say) x0(P ) 6= 0. Then (ΩPn)P ∼= d(x1/x0)OP ⊕
· · ·⊕d(xn/x0)OP . Now plug in an arbitrary linear combination of this into ϕ and see what happens. Suppose
that ϕ(f1d(x1/x0) + · · ·+ fnd(xn/x0)) = 0. We would like all the fis to be zero. This expression simplifies:

f1ϕ(d(x1/x0)) + · · ·+ fnϕ(d(xn/x0)) = 0 =⇒ f1
1

x20
(x0~ei − x1~e0) + · · ·+ fn

1

x20
(x0~en − xn~e0) = 0.
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Rearranging this expression gives

(f0x0)~e0 + (f1x0)~e1 + · · ·+ (fnxn)~en = 0,

implying that fi = 0 for all i, as x0 6= 0. So ϕ is injective.

It remains to show that ker(π) ⊂ Im(ϕ). So suppose that π(f0~e0 + · · · + fn~en) = 0. Then
∑
fixi = 0.

Since ker(π) and Im(ϕ) are both rank n locally free OX -modules with Im(ϕ) ⊂ ker(π), it follows that
Im(ϕ) = ker(π). In particular, ϕ(

∑
fid(xi/x0)) =

∑
fi~ei. �

z Lecture 21 - 28.10.2013

Remark 1.4.8. How do we compute ΩX , the sheaf of differentials on X, for X 6= Pn? So let X 6= Pn be a
smooth variety with coordinate ring A, which is a k-algebra, and a subvariety Y , with coordinate ring A/I,
where I is an ideal of A. Consider

I/I2 ΩA ⊗A A/I ΩA/I 0
j q

local coordinates
on variety

local coordinates
normal to variety

Here, j(x) = dx⊗ 1, and q(da⊗ b) = bda, and the above is an exact sequence of (A/I)-modules. Note that
I/I2 is an (A/I)-module as (x+ I2)(a+ I) = ax+aI2 +xI+ I3. The version of the sequence with sheaves is

I/I2 ΩX ⊗OY ΩY 0

Example 1.4.9. Consider a bicuspid cubic with X = A2 and Y = {x2 = y3}, and just in case, we say
char(k) 6= 2, 3. Here, A(X) = k[x, y] and I = (y2 − x3) and A/I = k[x, y]/(y2 − x3). Then 1, x, y are all
k-linearly independent in A/I. Note that I2 = (y2− x3)2 = ((y2− x3)2), so y2− x3, xy2− x3y, y3− x3y are
all k-linearly independent in I/I2. Let us now try the map:

d(y2 − x3)⊗ 1 = (2ydy − 3x2dx)⊗ 1

d(xy2 − x4)⊗ 1 = (y2dx− 2ykdy − 4x3dx)⊗ 1

d(y3 − yx3)⊗ 1 = (3y2 − x3dy − 3x2dx)⊗ 1

This example will be left unfinished. The moral is that the two sequences presented are exact on the left iff
Y is smooth (X is assumed to be smooth throughout).

Remark 1.4.10. The canonical sheaf of a smooth variety X is ωX =
∧dim(X)

ΩX . To see this, let V be a
vector space, for which∧n

V = (V ⊗ · · · ⊗ V )/R, and

R = spani,j {v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn + v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vn} ⊂ V ⊗ · · · ⊗ V.

Elements of
∧n

V are expressed as v1 ∧ · · · ∧ vn. Note that v1 ∧ · · · ∧ vn = 0 iff {v1, . . . , vn} is linearly

dependent. Further, the dimension of
∧n

V is
(
dim(V )
n

)
for n ∈ {0, . . . ,dim(V )}, and 0 otherwise. So if

dim(V ) = n, thon dim(
∧n

V ) = 1.

The above analysis also works for free modules over a ring, but requires slightly more work. For example,
let ΩX |U be free, i.e. ΩX |U ∼= (OX |U )n=dim(X). Then

(
∧n

ΩX)|U ∼=
∧nOX |U where (

∧nOX |U ) (V ) =
∧nOX(V )

with restriction maps induced by res(v1 ∧ · · · ∧ vn) = res(v1) ∧ · · · ∧ res(vn).
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1.5 Canonical sheaves

z Lecture 22 - 01.11.2013

What is ωPn =
∧n

ΩPn? To find the solution, we stick Pn in the constant sheaf, find generators, find Cartier
divisors, find Weil divisors. As this is an invertible sheaf, to construct an invertible embedding into K, let’s
first find a non-zero element in it.

Let α = dX1 ∧ · · · ∧ dXn with coordinates x0, . . . , xn, where Xi = xi

x0
and Yi = xi

x1
. Note that α has no

poles if x0 6= 0. If x0 = 0 then (say) x1 6= 0, so

α = d
1

Y0
∧ dY2

Y0
∧ · · · ∧ dYn

Y0

=
−1

Y 2
0

dY0 ∧
(
−Y2
Y 2
0

dY0 +
1

Y0
dY2

)
∧ · · · ∧

(
−Yn
Y 2
0

dY0 +
1

Y0
dYn

)
=
−1

Y 2
0

dY0 ∧
1

Y0
dY2 ∧ · · · ∧

1

Y0
dY0

=
−1

Y n+1
0

dY0 ∧ dY2 ∧ · · · ∧ dYn

which has a pole of order n + 1 along Y0 = 0, which is x0 = 0. So α is our generator. Hence the Cartier
divisor associated to ωPn is {

(1,Pn, {x0 = 0}) ,
(
−1

Y n+1
0

,Pn − {x1 = 0}
)
, · · ·

}
.

Every point in Pn contains a point that is in at least one of those sets, so we are done. This corresponds to
the Weil divisor (−n − 1)[x0 = 0], because div(Y0) = [x0 = 0]. This Weil divisor cerrosponds to O(−1), so
ωPn ∼= O(−n− 1).

Note that at every step of the process above we preserved isomorphism classes.

What if X 6∼= Pn? How would we compute ωX?

Definition 1.5.1. Let Y ⊂ X be a subvariety for X smooth. The conormal sheaf of Y in X is IY /I2Y . The
normal sheaf of Y in X is the dual, (IY /I2Y )∨ = Hom(IY /I2Y ,OX).

Theorem 1.5.2. Let Y ⊂ X be a smooth variety. Then ωY = ωX ⊗OX

∧codim(Y )NY/X , where NY/X is the
normal sheaf of Y in X. If codim(Y ) = 1, then ωY ∼= ωX ⊗OX

(IY /I2Y )∨.

Proof: The sequence 0→ IY /I2Y → ΩX⊗OX → ΩX → 0 is exact, so
∧dim(X)

ΩX⊗OY ∼=
(∧codim(Y )

(IY /I2Y )
)
⊗(∧dim(Y )

ΩY

)
. This is a general fact about exterior powers and short exact sequences. The proof follows

by choosing bases for the two free modules on each end, building a basis for the free module in the middle
and computing straightforwardly. So

ωX ⊗OY ∼=
(∧codim(Y ) IY /I2Y

)
⊗ ωY

=⇒ ωY ∼= ωX ⊗OY ⊗
(∧codim(Y ) IY /I2Y

)∨
∼= ωX ⊗

∧codim(Y )NY/X .

This completes the proof. �

Remark 1.5.3. Note the corresponding identifications:
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∧n
(V ∨) (

∧n
V )
∨∧n

Hom(V, k) Hom(
∧n

V, k)∑
j fj1 ∧ · · · ∧ fjn

∑
i vi1 ∧ · · · ∧ vin 7→

∑
i,j fj1(vi1) ∧ · · · ∧ fjn(vin)

This works with sheaves and free modules as well, even though this only shows the isomorphisms for vector
spaces V .

Example 1.5.4. What is ωY if Y = {y2z = x3 − xz2} ⊂ P2 = X? Then ωY ∼= ωX ⊗OX
NY/X , where

ωX ∼= O(−3), and NY/X is an invertible sheaf on Y . What will be the Weil divisor?

z Lecture 23 - 04.11.2013

Let us continue where the previous lecture left off.

We had that ωY ∼= ωX⊗OY ⊗
∧codim(Y )NY/X , with NY/X = (IY /I2Y )∨. Note that ωX⊗OY is an invertible

sheaf, and equals i∗ωX , for i : Y ↪→ X the inclusion map. Let us calculate what ωY is, for Y = {x = 0} ⊂ P2.

First of all, ωY ∼= i∗O(−3) ⊗ NY/X , where i∗O(−3) is the set of all rational functions with degree 3 more
in the numerator than in the denominator. Restricting to the line in Pn (i.e. not x = 0) leaves it at
O(−3). Since we know the answer is ωY ∼= O(2), showing NY/X ∼= O(1) will give us the result. That is
because taking the dual of a Weil divisor is multiplying by −1. So let’s find a Weil divisor corresponding to
NY/X = (IY /I2Y )∨. Note that it is enough to get a Weil divisor of IY /I2Y .

We want to take something that is non-zero in IY /I2Y . As OY ∼= OX/IY , consider a+ I2Y , for a ∈ IY . We
want to multiply this by x+ IY ∈ OX/IY : (x+ IY )(a+ I2Y ) = ax+ I2Y .

Remark 1.5.5. Before we continue this example, consider R = k[x, y] and I = 〈x〉, and compute a non-zero
element of I/I2. One such element is x+ I2.

Now observe that x
z + I2Y (z 6= 0) ∈ (IY /I2Y )(z 6= 0) is non-zero, as is xy

z2 + I2Y (z 6= 0). Define a map

ϕ : IY /I2Y → K(Y )
a+ I2Y (U) 7→ az

x ∈ K(Y )
.

If α ∈ I2Y (U), then (a+α)z
x = az

x as elements of K(Y ), the fraction field of Y , because αz
x ∈ IY (U), so it is 0

in k(Y ) = K(O(U)/IY (U)).

Definition 1.5.6. Let X be an integral domain. Then the field of fractions of X is the smallest field
into which X can be embedded. It is denoted by K(X).

Note that if Y is smooth of codimension 1 in X, then IY /I2Y is a locally free module of rank r.

z Lecture 24 - 06.11.2013

Recall the previous lecture’s question - what is ωY if Y = {x = 0} ⊂ P2? In general, we know that
ωY = i∗OP2(−3)⊗ (IY /I2Y )∨, but we would like to simplify this expression. We begin by embedding IY /I2Y
into the constant sheaf K by “dividing” by x

z + I2Y . The local generators are then given by

x

z
+ I2Y on {z 6= 0} and

x

y
+ I2Y on {y 6= 0}

The associated Cartier divisor is then {(1, {z 6= 0}), (yz , {y 6= 0})}. This is well-defined, as the divisor of 1
and of y

z is 0 on {y 6= 0} ∩ {z 6= 0}. This corresponds to the Weil divisor −1 · [0 : 1 : 0], which corresponds
to O(−1). Multiplying by −1, we then get that

ωY = i∗OP2(−3)⊗ (IY /I2Y )∨ ∼= OP1(−3)⊗OP1(1) ∼= OP1(−2)
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Example 1.5.7. Let us consider a more difficult example: Y = {y2z = x3−xz2}. First, we find a non-zero
element in IY /I2Y , say

y2z + xz2 − x3

z3
+ I2Y on {z 6= 0}

The local generators then are

y2z + xz2 − x3

z3
+ I2Y on {z 6= 0} ↔ (1, {z 6= 0}) and

y2z + xz2 − x3

y3
+ I2Y on {y 6= 0} ↔ (y

3

z3 , {y 6= 0})

As Weil divisors, we have that

ωY ∼= −i∗3L+ 9[0 : 1 : 0] ∼= −3(z = 0) + 9[0 : 1 : 0] ∼= −9[0 : 1 : 0] + 9[0 : 1 : 0] = 0

So as sheaves, ωY ∼= OY . Therefore ωY (1) ∼= OY (Y ) ∼= k, meaning that the global differential we found on
Y before is, up to scalars, the only one.

Example 1.5.8. Let Y = {x4 + y4 = z4 + w4} ⊂ P2 = X. Then we have

non-zero element on IY /I2Y :
x4 + y4 − z4 − w4

z4
+ I2Y on {z 6= 0}

local generator:
x4 + y4 − z4 − w4

z4
+ I2Y on {z 6= 0}

local generator:
x4 + y4 − z4 − w4

y4
+ I2Y on {y 6= 0}

The allociated Cartier divisor is {(1, {z 6= 0}), (y
4

z4 , {y 6= 0})}. The associated Weil divisor is −4(z = 0). The
Weil divisor for NY/X is 4(z = 0) and the Weil divisor for i∗OY (−4) is −4(z = 0), so the Weil divisor for
ωY is 0. Therefore ωY ∼= OY .

This gives a general rule:

Proposition 1.5.9. If Y = {f = 0} for deg(f) = d in Pn, then NY/X ∼= i∗O(d) and

ωY ∼= i∗O(−n− 1)⊗ i∗OY (d) ∼= i∗O(d− n− 1)

Now we know what happens on hypersurfaces. Let’s consider something that is not a hypersurface.

Example 1.5.10. Let Y =
{

xy=zw

2x2+y2=z2+w2

}
⊂ P2. We first need to know if Y is smooth. So we consider

the Jacobian and the determinants of the minors of the Jacobian:

J =

(
x y −w −z
4x 3y −2z −2w

)
[det(J ij)]ij =

(
y2 − 2x2 2xw − yz 2xz − yw
yw − xz yz − xw w2 − z2

)
ij

Since the rank is maximal, the variety is smooth.

Theorem 1.5.11. If V = z(f1, . . . , fr) ⊂ Pn, then V is smooth if and only if rank(JV ) = dim(V ) for all
points of V , where

JV =


∂f1
∂x0 · · · ∂f1

∂xn

...
. . .

...
∂fr
∂x0 · · · ∂fr

∂xn


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z Lecture 25 - 08.11.2013

Example 1.5.12. Let’s consider an even more difficult example than last time:

Y =

{
xy = zw

2x2 + y2 = z2 + w2

}
⊂ P3 = X ωY = i∗ωX ⊗

∧2 (IY /I2Y )∨
We get a 2-form because 2 = dim(X)− dim(Y in X) = 3− (3− 2). But now, instead of finding a non-zero
element of IY /I2Y , we define a new variety Z = {xy = zw}, with the maps

Y Z X
j h

i

Then for JY the ideal sheaf of Y in Z and IZ the ideal sheaf of Z, we have

ωZ = h∗ωX ⊗
(
IZ/I2Z

)∨
= h∗O(−2)

ωY = j∗ωZ ⊗
(
JY /J 2

Y

)∨
= j∗h∗O(−2)⊗

(
JY /J 2

Y

)∨
The Weil divisor for j∗h∗O(−2) has degree −8, which comes from intersecting the variety Y with the curve
z = 0, and getting 4 = 2 + 2 points. Then as we are in O(−2), we multiply 4 by −2 to get −8. Further, a
non-zero element in JY /J 2

Y is
2x2 + y2 − z2 − w2

x2
+ J 2

Y

Then local generators for JY /J 2
Y and associated Cartier divisors are

2x2 + y2 − z2 − w2

x2
+ J 2

Y on {x 6= 0} ↔ (1, {x 6= 0})

2x2 + y2 − z2 − w2

y2
+ J 2

Y on {y 6= 0} ↔ ( y
2

x2 , {y 6= 0})

Hence the associated Weil divisor is −2div(X). We can now calculate ωY , as

ωY ↔ −2div(x) + 2div(y) = 0 =⇒ ωY ∼= OY

Remark 1.5.13. A local generator is a non-zero element of the invertible sheaf. That is, it is a generator
at p when every element of the stalk of the sheaf is every element of the stalk times it.

Remark 1.5.14. Note that in the previous example, we did not use the first equation in defining the local
generators. We didn’t use either for the divisors. In general, if Y ⊂ Pn is the smooth intersection of exactly
codim(Y ) = r equations of degrees d1, . . . , dr, then

ωY = i∗O(d1 + · · ·+ dr − n− 1)

where i : Y ↪→ Pn is the inclusion.

Proposition 1.5.15. Whenever we embed a variety in Pn as an intersection, then the canonical sheaf of
that variety is the restriction of O(d) for some d. Moreover, any divisor of degree 0 on an elliptic curve is
linearly equivalent to some point minus some other point.

Example 1.5.16. Consider X = P3 and Y = {xw = yz, y2 = xz, z2 = yw} ⊂ P3. Let’s take a similar
two-step approach that we did earlier. Define a new variety Z = {xw = yz}, for which

ωZ ∼= h∗O(−2)

ωY ∼= j∗h∗O(−2)⊗ (JY /J 2
Y )∨
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A non-zero element in JY /J 2
Y is y2−xz

x2 + J 2
Y on {x 6= 0}. When are xw = yz and y2 = xz enough to define

Y near p? Note that if w 6= 0, then x = yz/w, so y2 = yz2/w. Hence y = 0 or yw = z2.

So long as y 6= 0 or w 6= 0, the expression y2−xz
x2 + J 2

Y is a local generator (it works away from [1 : 0 : 0 : 0])
for JY , and thus also for JY /J 2

Y .

z Lecture 26 - 11.11.2013

Continue with the example from the last lecture. Recall that we had

ωZ ∼= h∗NZ/X ∼= h∗O(−2)

ωY ∼= j∗ωZ ⊗NY/X ∼= j∗h∗O(−2)⊗ (JY /J 2
Y )∨ ∼= i∗O(−2)⊗ (JY /J 2

Y )∨

We also had a non-zero element y2−xz
x2 +J 2

Y in JY /J 2
Y . The next question is, where is this a local generator

for JY /J 2
Y ? This will happen anwhere that z2−yw

x2 is in the ring OZ,p
[
y2−xz
x2

]
. This gives

xw = yz =⇒ w = yz/x =⇒ z2 − yw
x2

=
z2 − y(yz/x)

x2

=
z2x− y2z

x

=
−z(y2 − xz)

x3

=
−z
x

(
y2 − xz
x2

)
So now we have the function that multiplies this non-zero element to get xw = yz. So the local generator

is y2−xz
x2 + J 2

Y on {x 6= 0}. Note that the only point on Y where x = 0 is [0 : 0 : 0 : 1]. As w 6= 0 here, we

consider the element z2−yw
w2 + J 2

Y . Then

x = yz/w =⇒ y2 − xz
w2

=
y2 − (yz/w)z

w2

=
y2w − yz2

w3

=
−y
w

(
z2 − yw
w2

)
Here also we have the function that multiplies this non-zero element to get xw = yz, so the local generator is
z2−yw
w2 +J 2

Y on {w 6= 0}. Now we want a Cartier divisor out of JY /J 2
Y . The first element will be (1, {z 6= 0}),

and the second is calculated below:

z2−yw
w2

y2−xz
x2

=
x2z2 − ywx2

w2y2 − w2xz
=

x2z2 − y
(
yz
x

)
x2(

yz
x

)2
y2 −

(
yz
x

)2
xz

=
x4z2 − y2zx3

y4z2 − y2z3x
=
−x3

y2z

(
y2z − z2x
y2z − z2x

)
=
−x3

y2z

Hence the second element of the Cartier divisor is (−y
2z

x3 , {w 6= 0}) = (−ywx2 , {w 6= 0}). The associated Weil
divisor is then

div(y)− div(x2) = div(y)− 2div(x),

but only away from {w = 0}, or equivalently the point [1 : 0 : 0 : 0]. This divisor is a multiple of [0 : 0 : 0 : 1],
because y = 0 and z = 0, and x = 0 implies y = 0, and [1 : 0 : 0 : 0] is excluded. Next, we are looking for
the tangent line to Y at [0 : 0 : 0 : 1], so we calculate the Jacobian:

J =

−z 2y −x 0
w −z −y x
0 −w 2z −y

 and J[0:0:0:1] =

0 0 0 0
1 0 0 0
0 −1 0 0

 .
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Hence the tangent line is x = y = 0, or rather the solution set of linear systems of equations that correspond
to it. So now we have that both x = 0 and y = 0 contain the tangent line at p = [0 : 0 : 0 : 1], but z = 0
does not, so ordp(z) = 1. Further,

y =
z2

w
=⇒ ordp(y) = 2 and x =

y2

z
=⇒ ordp(x) = 4− 1 = 3

So our Weil divisor is −4[0 : 0 : 0 : 1] for JY /J 2
Y . So ωY ∼= i∗O(−2)⊗ L(4[0 : 0 : 0 : 1]) and

−2(x = 0) + 4[0 : 0 : 0 : 1] = −6[0 : 0 : 0 : 1] + 4[0 : 0 : 0 : 1] = −2[0 : 0 : 0 : 1]

Therefore the Weil divisor for ωY is −2[0 : 0 : 0 : 1]. This completes the example.

Recall that P1 had a similar Weil divisor. So Y ∼= P1.

2 Cohomology

2.1 Some important theorems

z Lecture 27 - 13.11.2013

Our main question this term has been: what are morphisms X → Pn? To any morphism is associated a linear
system, which is associated to a linear equivalence class of divisors (Weil or Cartier), which is associated to
an invertible sheaf.

There are lots of different morphisms corresponding to the same invertible sheaf. However, any morphism
associated to a linear system L is, up to composition with linear maps, equal to the complete morphism
associated to L coming from a basis of L(L).

Remark 2.1.1. How do we make a morphism out of an invertible sheaf F?

· Choose f0, . . . , fn ∈ F(X) and define ϕF (p) = [f0(p) : · · · : fn(p)]

Here, f0(p) is f0 of the stalk at p, i.e. (f0)p. Note that the stalk is a free rank-1 madule over the local ring,
that is, Fp ∼= αOp for some α ∈ Fp. Hence (Fi)p = αri for some ri ∈ Op, and so

ϕ(p) = [αr1(p) : · · · : αrn(p)] = [r0(p) : · · · rn(p)].

This completely defines ϕ. So for any F , there is a best Pn that is the image for a rational map associated
to F . That “best” n is n = dim(F(X))− 1.

Remark 2.1.2. F(X) is a finite-dimensional k-vector space.

The rest of the class will continue on the question of what are the morphisms X → Pn. We begin by
considering O as an irreducible smooth Weil divisor on a smooth projective variety X. We can then construct
a short exact sequence of sheaves:

0 ID OX OD 0

Note that the stalk of OD is zero outside D. Further, ID = L(−D). Taking the tensor product with L(D)
(which preserves exactness, as L(D) is an OX -sheaf), gives

0 L(−D)⊗ L(D) OX ⊗ L(D) OD ⊗ L(D) 0

0 OX L(D) OD ⊗ L(D) 0

0 OX(X) [L(D)](X) [OD ⊗ L(D)](X) 0

≈

≈
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In general, the last map in the last sequence is not surjective, because surjective morphisms of sheaves are
not surjective for every open set. To solve this problem, we turn to cohomology.

Proposition 2.1.3. For any coherent sheaf F on X, for X a smooth projective variety defined over an
algebraically closed field k, there are k-vector spaces Hi(F) such that

· M0(F(X)) ∼= F(X) naturally

· If 0→ F1 → F2 → F3 → 0 is exact, then there is an exact sequence:

0 H0(F1) H0(F2) H0(F3)

H1(F1) H1(F2) H1(F3)

H2(F1) · · ·

Theorem 2.1.4. [Grothendieck]
Hi(F) = 0 if i > dim(X)

Theorem 2.1.5. [Kodaira vanishing]
If F is an ample sheaf, then Hi(F ⊗ ωX) = 0 if i > 1.

Note that F is ample iff F⊗n is very ample (i.e. it corresponds to some embedding) for some n > 0.

Theorem 2.1.6. [Serre duality]
If F is a locally free sheaf, then Hi(F) ∼= Hdim(X)−i(F∨ ⊗ ωX)∗.

In terms of the dimensions hi(X) = dim(Hi(X)), this may be expressed, for D a divisor on a curve X (so
dim(X) = 1), as h1(D) = h0(K −D).

2.2 Riemann–Roch for curves

z Lecture 28 - 15.11.2013

Definition 2.2.1. A divisor D is called effective if all the coefficients in the sum are non-negative. This
is expressed as D > 0.

Example 2.2.2. Suppose that X is a curve and D is a divisor on X. Let L = L(D) be the corresponding
invertible sheaf. What is dimk(L(X))?

If deg(D) < 0, then L(D) = 0, because no non-zero rational function satisfies div(f) +D > 0.

If deg(D) = 0, then L(D) = 1 if D = 0, and 0 if D 6= 0. This follows as if div(f) + D > 0 for deg(D) = 0,
then D = −div(f) = div(1/f).

If deg(D) = 1, then (WLOG) D = p for some point p. This gives a short exact sequence:

0 Ip OX Op 0

0 L(−p) OX k(p) 0≈

Above, k(p) is the skyscraper sheaf on p with value k. Tensor with L(p) to get a new short exact sequence:

0 L(−p)⊗ L(p) OX ⊗ L(p) k(p)⊗ L(p) 0

0 OX L(p) k(p) 0≈
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On X, we get the following longer exact sequence:

0 OX(X) [L(p)](X) [k(p)](X) H1(OX) H1(L(p)) H1(k(p)) 0

Recall that the Euler characteristic of the sheaf F is χ(F) =
∑

(−1)ihi(F). It has to sum to zero, so

h0(OX)− h0(L(p)) + h0(k(p))− h0(OX ⊗ ωX) + h)(L(p)∨ ⊗ ωX)− h1(k(p)) = 0

We leave this example unfinished, because DM says so.

For a general divisor D, with Hi(D) = Hi(L(D)), we have the exact sequence

0 H0(D) H0(D + p) k(p) H1(D) H1(D + p) H1(k(p)) 0

Note that H1(k(p)) = 0, as dim(p) = 0. Taking the alternating sum here, we find that

h0(D)− h0(D + P ) + 1− h0(K −D) + h1(D + p) = 0

⇐⇒ h0(D)− h0(K −D)︸ ︷︷ ︸
χ(L(D))

+1 = h0(D + P )− h0(K − (D + p))︸ ︷︷ ︸
χ(L(D+P ))

for K the Weil divisor corresponding to ωX . Plug in D = 0 for

1− h0(K) + 1 = h0(p)− h0(K − p) =⇒ h0(p) = 2− h0(K) + h0(K − p).

Remark 2.2.3. Consider the following remarks:

· χ(OX) = h0(OX)− h1(OX) = 1− h0(ωX)
· the genus of X is g = dim(H0(ωX))

Hence χ(OX) = 1 − g. If D is effective, then it may be obtained from 0 by ading points, which adds 1 to
the Euler characteristic. So

χ(D) = 1− g + deg(D) =⇒ h0(D)− h0(K −D) = 1− g + deg(D)

This is known as the Riemann–Roch theorem for curves. It holds for general divisors D.

z Lecture 29 - 18.11.2013

Recall the Riemann–Roch theorem for curves: χ(D) = deg(D) + 1 − g, where χ(D) = h0(D) − h1(D) =
h0(D)− h0(K −D), and g = h0(K).

2.3 Worked examples

Example 2.3.1. What are h0(D) and h1(D) for a divisor D on P1?

First, we know that ωp ∼= O(−2), so k = −2p for p some point. For anyD, we get h0(D)−h1(D) = deg(D)+1,
since g = h0(K) = h0(O(−2)) = 0. Using Serre duality, we rewrite this as h0(D)−h0(−2p−D) = deg(D)+1.
This splits into two cases.

· If deg(D) > −1, then h0(−2p−D) = 0 implies that h0(D) = deg(D) + 1
· If deg(D) 6 −2, then h0(D) = 0 implies that h0(−2p−D) = h1(D) = −deg(D)− 1

Now we know what h1 and h0 are for an arbitrary divisor on P1.

Remark 2.3.2. A rational function is exactly a map to P1, no more, no less.
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Remark 2.3.3. What are all the curves of genus g = 0? Let X have g = 0. Ley f ∈ k(X) is a rational
function on X, and ϕ : X → P1 is the corresponding morphism. Consider ϕ−1([0 : 1]). If ϕ is a morphism,
then ϕ−1([0 : 1]) is a single point P . Similarly. ϕ−1([1 : 0]) = Q. Moreover, we must have ϕ∗([0 : 1]) = P
and ϕ∗([1 : 0]) = Q, where ϕ∗ : Cl(P1)→ Cl(X) is the pullback of Weil divisors.

Note that ϕ = [g : h], or f = g/h. What is div(f)? It is P − Q! So h0(P − Q) > 1, as 1/f ∈ L(P − Q).
Further, if g = 0, then

h0(P −Q)− h1(P −Q) = deg(P −Q) + 1 =⇒ h0(P −Q) = 1 + h1(P −Q) > 1.

So there exists an f ∈ k(X) such that div(f) = Q − P , with Q 6= P . Let ϕ : X → P1 be the morphism
corresponding to f . Then ϕ∗([0 : 1]) is a Weil divisor of degree deg(vp). But ϕ∗([0 : 1]) = Q, so deg(ϕ) = 1.

Proposition 2.3.4. [Poincare duality]
Let X be a topological space. Then for k ∈ Z, Hk(X) ∼= Hdim(X)−k)(X).

z Lecture 30 - 20.11.2013

Example 2.3.5. Let X be the curve defined by {yz = x3−xz2} ⊂ P2. Compute h0(nP ) for any fixed point
P on the curve. Let’s first write down what Riemann-Roch says about this curve:

h0(nP )− h1(nP ) = deg(nP ) + 1− g

Since deg(nP ) = n and the genus g = h0(ωX) = h0(OX) = 1, the right side of the equation is just n. The
equation then simplifies to h0(nP )− h0(−nP ) = n. We can divide this into the following situations:

· n > 0: h0(nP ) = n and h1(nP ) = 0
· n < 0: h0(nP ) = 0 and h1(nP ) = −n
· n = 0: h0(nP ) = 1 and h1(nP ) = 1

If P 6= Q, what is h0(P +Q)? Plug this into Riemann–Roch to get

h0(P +Q)− h1(P +Q) = 2 + 1− 1 = 2 =⇒ h0(P +Q)− h0(−P −Q) = 2 =⇒ h0(P +Q) = 2.

Remark 2.3.6. Let D be a divisor on X. Then h0(D)− h0(−D) = deg(D). Consider all possibilites:

· if deg(D) > 0, then h0(D) = deg(D) and h1(D) = 0

· if deg(D) < 0, then h0(D) = 0 because deg(div(f) + D) = deg(D) < 0, so D + div(f) is not
effective

· if deg(D) = 0 and h0(D) > 0, then there is some rational function f such that div(f) + D is
effective. Then D + div(f) = 0, so D = −div(f) = div(1/f), so D ≡ 0. Hence if deg(D) = 0,
then either h0(D) = 0 and h1(D) = 0 or D ≡ 0 and h0(D) = h1(D) = 1.

What are the morphisms in each case? When deg(D) < 0, there are no morphisms. When deg(D) = 0, the
only morphism is the trivial morphism. When deg(D) > 0, the situation is more complicated.

Bofero we consider that, let D = 2P , for which h0(D) = 2, implying H0(D) is 2-dimensional, so it has a
basis {f1, f2}. This allows us to build a rational map ϕ : X → P1 by ϕ(P ) = [f1(P ) : f2(P )]. Since X is
smooth, ϕ is a morphism. We generalize from this example.

Take any divisor D with deg(D) > 0. If h0(D) = 0, then D does not correspond to a morphism. If
h0(D) = deg(D) > 0, then let {f1, . . . , fd} be a basis of H0(D), and define ϕ : X → Pd−1 by ϕ(P ) = [f1(P ) :
· · · : fd(P )]. Since X is smooth, this is a morphism.
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Remark 2.3.7.
· Any morphism of positive degree can be made by the described tactic. However, if the degree is 1, it might
not correspond to D.

· Every divisor of degree 3 corresponds to a morphism of P2 that is an embedding.

· Every divisor of degree 3 or higher on an elliptic curve corresponds to an embedding of the curve in
projective space.

· The above works for any smooth curve of genus 1 in any Pn.

Definition 2.3.8. An elliptic curve is a type of cubic curve constrainde by the equation y2 = x3+ax+b
for some a, b. Its solution set is topologically equivalent to a torus.

z Lecture 31 - 22.11.2013

Remark 2.3.9. Do genus 2 curves exist at all?

If the genus is 2, then h0(K) = 2. Let ϕ : X → P1 be the associated morphism. It is not constant, so it
has degree deg(K) = 2. This follows from Riemann-Roch, as h0(K)− h0(K −K) = deg(K) + 1− g implies
that deg(K) = 2g − 2, where K is any Weil divisor corresponding to the constant sheaf. Such a 2-1 map is
called a hyperelliptic map. Every 2-1 map from this X to P1 is this map up to automorphisms of P1. Let us
analyse such a curve further.

· if deg(D) < 0, then h0(D) = 0

· if deg(D) = 0, then h0(D) = 1 if D ≡ 0 and 0 otherwise. This follows as deg(D) =
h0(D)− h0(K −D) = 1 + 1− 2 = 0.

· if deg(D) > 0, the situation is more complicated

Suppose that deg(D) = 1. If D ≡ pt, then h0(D) < 1, since otherwise X ∼= P1, which is impossible, as g = 2.
In general, either D ≡ pt, in which case h0(D) = 1, or D 6≡ pt, in which case h0(D) = 0.

Suppose that deg(D) = 2. Then by Riemann–Roch h0(D)− h0(K −D) = 2 + 1− 2 = 1, implying that

h0(D) = 1 + h0(K −D) =

{
1 if K −D 6≡ 0

2 if K −D ≡ 0
.

So D corresponds to a morphism iff D ≡ K.

Suppose that deg(D) = 3. Then by Riemann–Roch, h0(D) − h0(K − D) = 3 + 1 − 2 = 2, implying that
h0(D) = 2, as h0(K − D) = 0. For this case, let ψ : X → P1 be the morphism we build out of D. It
is surjective and has degree at least 2, so there are P,Q ∈ X such that ψ(P ) = ψ(Q) (we do not exclude
the case P = Q). So for all f ∈ L(D), f(P ) = f(Q). In other words, h0(D − P ) = h0(D − P − Q). So
h0(D − P ) = h0(D − P −Q) = 1, and D − P −Q = R, and D − R 6≡ K. For all P , there exists a Q such
that this is the case. So if ψ corresponds to D, then D −K 6≡ pt. So D corresponds to a 3-1 map to P1. If
D ≡ K+ pt, then ψ doesn’t correspond to D, so ψ is ϕ.

Suppose that deg(D) = 4. Then h0(D) = 3, and

h0(D − P −Q) =

{
1 if D − P −Q 6≡ K
2 if D − P −Q ≡ K

.

Let ψ be a morphism built from D. If ψ corresponds to D (i.e. ψ∗O(1) ∼= L(D)), then ψ is an embedding iff
h0(D−P ) 6≡ h0(D−P −Q) for all P,Q (including P = Q). But h0(D) 6= h0(D−P ), so ψ does correspond
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to D. Then is it true that for all P,Q ∈ X, h0(D − P ) 6= h0(D − P − Q)? The answer is no. To see this,
choose P,Q so that D −K ≡ P −Q, which is possible because D −K is effective, as h0(D −K) > 1. Note
that if D 6≡ 2K, then ψ almost embeds X in P2 as a singular curve of degree 4, with ψ(P ) = ψ(Q), for P,Q
satisfying D −K ≡ P +Q. If D ≡ 2K, then ψ is a 2-1 map onto a conic in P2.

Suppose that deg(D) = 5. Then we always get an embedding.

3 Schemes

3.1 Definitions

z Lecture 32 - 25.11.2013

Definition 3.1.1. Let A be a commutative ring with identity. Let Spec(A) be the set of prime ideals of A.
We put the Zariski topology on A, by defining the closed sets to be, for any ideal I ⊂ A,

V (A) = {prime ideals containing I}

and finite unions and arbitrary intersections thereof. Note that as usual, the Zariski topology has open sets
exactly the sets whose complements are finite, a type of cofinite topology.

An ideal generated by an element x will be denoted by (x). Recall more definitions from ring theory:

Definition 3.1.2. Let I be a non-trivial ideal of R (i.e. I 6= R) with no ideal J of R with I ( J ( R.
Then I is termed a maximal ideal of R.

Let R be a commutative ring with an ideal I. If for all a, b ∈ R with ab ∈ I either a ∈ I or b ∈ I, then
I is termed a prime ideal of R.

Example 3.1.3. Consider the following examples:

· Let A = C. Then Spec(A) = {0} has one point, and is endowed with the unique topology.
· Let A = C[t]. Then Spec(A) = {(t− a), (0)}, where the first is closed and the second is not closed.

In general, if Z(f1, . . . , fr) ⊂ AnC is an affine variety, then the closed points of Spec(C[t1, . . . , tn])/(f1, . . . , fr)
are in a 1-1 correspondence with the points of Z(f1, . . . , fr). That is, a closed point of Spec(A) is a maximal
ideal of A.

· Let A = C[t]/(t2). Then Spec(A) = {(t)}.
· Let A = C⊕C. Then Spec(A) = {0⊕C,C⊕ 0} with the discrete topology, as all points in it are closed.
· Let A = Z. Then Spec(A) = {(0), (P )} for every positive prime P .
· Let A = Z[x]. Then Spec(A) = {(0), (f(x)), (P ), (P, f(x))} for P as above and every irreducible f .
· Let A = Z[x]/(f(x)) ∼= Z[α] ⊂ C for α a root of f . This is more complicated.

Consider the last example above. We have that (x − a, f(x)) ⊂ Z[x] for some a ∈ Z and f(x) =
a0 + a1x+ · · ·+ anx

n. Suppose that P | a0. Then (f(x)) ⊂ (x, P ). This allows us to draw Spec(A) in a sort
of diagram, which will not be explained:

Spec(Z[x])

2 3 5 7 0

A1
F2

A1
F3

A1
F5

x

x2 + 1

(x− 0)
(x2 + x+ 1)

(x− 1)
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z Lecture 33 - 27.11.2013

Remark 3.1.4. Consider an affine variety Z(I) ⊂ An that is the zero set of some ideal. The coordinate
ring is k[x1, . . . , xn]/I = A. A prime ideal P of A corresponds to an irreducible subvariety Y of Z. And a
point x ∈ Z lies on Y iff I({x}) contains P . So x ∈ Y iff I({x}) ∈ V (P ).

Note that V (P ) consists of all the prime ideals that correspond to irreducible subvarieties of Y . Further,
closed points of Spec(A) correspond to actual points. Open points correspond to subvarieties.

Definition 3.1.5. Let A be a commutative ring and X = Spec(A). Define a sheaf OX on X by OX(X −
V (f)) = A(f) (for f non-zero), which equals A[1/f ] if A is a domain or f is not a zero divisor. Note that
V (f) represents V of the principal ideal generated by f . For the inclusion maps, note that

X − V (g) ⊂ X − V (f) iff V (f) ⊂ V (g)

iff g ∈
√

(f)

iff g = fh for some h,

so res : A(f) → A(g) is the natural inclusion map. In particular, it is functorial, so it plays nice with the
structure of the sheaf. The stalk of OX at P ∈ X is lim−→f 6∈P [A[1/f ]] = AP , which is a local ring. When

P = (0), then AP is the fraction field of A, or X.

Example 3.1.6. Let X = Spec(Z). Then A(P ) = Z?(P ) = {ab : P - b}, and A(0)
∼= Q. So 3/4 would be

a rational function on Spec(Z) with a zero at 3 and a pole of order 2 at 2. Note that 2 is a uniformizer for

the local ring Z2. That is, any a
b ∈ {

a
b : 2 - b} is 2n a

′

b′ , where 2 - a′b′. Then ord(2)(3/4) = −2 because
3
4 = 2−2 3

1 .

Remark 3.1.7. The “value” of a “rational function” on Spec(A) at a point P is an element of the residue
field AP /P . This is an affine structure of the form (Spec(A),OX). Using this we can make an identification
between schemes and manifolds.

z Lecture 34 - 29.11.2013

Let A be a commutative ring with identity and Spec(A) = {P ⊂ A is a prime ideal}. Note that (1) is not
an ideal. Let OX be the sheaf of regular functions on X = Spec(A), and (OX)P = AP , so the stalk of OX
at P is the ring localized at the point P . Recall that

OX(U) = {f : f is a function defined at all P ∈ U} =
⋂
P∈U

AP .

If U = Spec(A) − V (I) (and A is a domain), then OX(U) =
⋂
P 6⊃I AP ⊂ K(A). If I = (f), then OX(U) =⋂

P 63f AP = A[1/f ].

Example 3.1.8. The spaces X = Spec(R) and Y = Spec(Y ) are single points as topological spaces, as they
are both fields, andfields have only 1 prime ideal. But OX 6∼= OY as sheaves on that point, as OX(pt) = R
and OY (pt) = C.

Also, Z = Spec(C[t])/(t2) (essentially describes Taylor series up to order 1) is topologically a single point.

Note that an affine scheme to a scheme is like an n-dimensional ball to an n-dimensional manifold.

Definition 3.1.9. A ringed space is a topological space X with a sheaf of rings OX . A locally ringed space
is a ringed space for which the stalks (OX)P are local rings, for every P ∈ X.

A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f#), where f : X → Y is continuous
and f# : OY → f∗OX is a morphism of sheaves, where (f∗OX)(U) = OX(f−1(U)).

A morphism of locally ringed spaces from (X,OX) to (Y,OY ) is a morphism of ringed spaces (f, f#) such that

the induced map on stalks f#P : (OY )P → (f∗OX)P satisfies (fP# )−1(f∗MP ) = Mf(P ), where M denotes
the maximal ideal.
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Example 3.1.10. The pair (Spec(A),OSpec(A)) is a locally ringed space.

Definition 3.1.11. A locally ringed space (X,OX) is a scheme iff every point P ∈ X has a neighborhood
(U,OX |U ) that is locally isomorphic to (Spec(A),OSpec(A)) for some ring A. Note that A does not have to
be the same for all P ∈ X.

3.2 Fundamental construction of schemes

z Lecture 35 - 2.12.2013

Remark 3.2.1. Recall some definitions:

Spec(A) = {P ⊂ A prime ideals} ←→ affine sheaves ←→ affine varieties

Proj(A) = {P ⊂ A homogeneous prime ideals, A 6⊂ P} ←→ projective schemes ←→ projective varieties

The ring A is a graded ring, so A = A0⊕A1⊕· · · for abelian groups Ai with AiAj ⊂ Ai+j . An element α ∈ A
is homogeneous iff α ∈ Ai for some i. An ideal I ⊂ A is homogeneous iff it is generated by homogeneous
elements.

The ideal A+ = A1 ⊕ · · · is the irrelevant ideal. It does not correspond to a subset of projective space. Let
V (I) = {P ∈ Proj(A) : I ⊂ P}. The Zariski topology on Proj(A) is the one for which {V (I)} is the set of
closed sets.

Definition 3.2.2. To make Proj(A) a scheme, we needOX , a sheaf of rings. Let P ∈ Proj(A). Define A(P ) to

be the degree-0 piece of the homogeneous localization of A at P . If A is a domain, then A(P ) = { fg : f, g ∈ Ai
for some i, g 6∈ P}. Say U ⊂ X is open, and U 6= ∅. Then define

OX(U) =

{
f : U →

⊔
P∈U

A(P ) : f(P ) ∈ A(P ), f is locally a quotient

}
.

The map f is locally a quotient iff for every P ∈ U there is some neighborhood V of P with V ⊂ U and
a, b ∈ A homogeneous of the same degree such that for all Q ∈ V , b 6∈ Q and f(Q) = a

b ∈ A(Q).

The above is a very general construction of a sheaf. The stalks are A(P ). Note that X with such a sheaf
construction is a locally ringed space.

Definition 3.2.3. In order to show Proj(A) is coherent, every point must have a neighborhood that is
locally isomorphic to Spec(A). So let f ∈ A be non-zero and homogeneous. Define

D+(f) = {P ∈ Proj(A) : f 6∈ P}.

Note that D+(f) ∼= Spec(A(f)), where A(f) is the degree-0 piece of the homogeneous localization of A at
(f), which is A[1/f ].

Example 3.2.4. Note that P1 = Proj(k[t, u]) so

k[t, u] = k ⊕ (kt+ ku)⊕ (kt2 + ktu+ ku2)⊕ · · ·
and k[t, u](t) = k ⊕ k(u/t)⊕ k(u/t)2 ⊕ · · ·

= k[u/t].

These are all related to O(1).

Example 3.2.5. There are also examples related to O(2), for example

k[x, y, z]/(xy − z2) = k ⊕ (kx+ ky + kz)⊕ (kx2 + ky2 + kz2 + kxz + kyz)⊕ · · ·
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4 Exercises

4.1 Exercise 1

Question

Let C be the curve y2z = x3 − xz2 in P2
C, and let p = [0 : 0 : 1] ∈ C. Find a morphism from C to projective

space corresponding to the rational divisor 2p. Remember to prove that it’s a morphism, and not just a
rational map.

Answer

First, since a divisor has codimension 1, the morphism will be to P1, where the subvarieties of codimension
1 are points. Therefore we are looking for homogeneous polynomials f, g such that ϕ : [x : y : z] 7→ [f : g] is
our map.

Next, we note that p is on the curve C, and the tangent line to C at P will have multiplicity (at least) 2 at
p, so we use that. We dehomogenize at p to get y2− x2 + x = 0, and the tangent line is the degree-one part,
so the tangent line to C at p is x = 0, denoted as the curve C ′.

By Bezout’s theorem, C ′ and C intersect at 1 · 3 = 3 places, and at least 2 of them are at p (because of the
tangency). We note that for C, if x = 0, then y = 0 or z = 0, so C ′ intersects C also at [0 : 1 : 0] = q.
Therefore the divisor D′ of C ′ is given by D′ = 2p+ q.

Let us try the map for which f is x and g is z, so ϕ : [x : y : z] 7→ [x : z]. We choose x to be the first
coordinate, because that will give us the divisor 2p. The second coordinate is z because that vanishes at q
once. It remains to check that it is a morphism. Observe that this presentation is fine on P2 − [0 : 1 : 0], or
all points on C except [0 : 1 : 0], where [x : z] is not defined. We rearrange the equation for C to get

x

z
=

y2

x2 − z2
,

so ϕ : [x : y : z] 7→ [y2 : x2 − z2] on P2 − {y = 0} is an expression that is defined on [0 : 1 : 0] and is
compatible with [x : z] everywhere else, exactly because of the rearrangement.

What is the divisor of ϕ? In the first representation, the first coordinate is zero twice at p. In the second
representation, the first coordinate does not vanish.

Note that the divisor changes if we pick a different representation. However, the divisor class is independent
of the representation, so the “different” representations will all be linearly equivalent. So the map ϕ is a
morphism with divisor 2p. �
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4.2 Exercise 2

Question

Prove that Pic(Pn) is isomorphic to Z for n > 1, and for each element of Pic(Pn) that corresponds to a
morphism, find a corresponding morphism.

Answer

To prove that the two spaces are isomorphic, we construct an appropriate isomorphism. First we define
formally the Picard group of Pn as

Pic(Pn) = (divisors of Pn)
/

(principal divisors of Pn).

Note that a divisor in Pn may be expressed as a finite sum
∑

(integer) ·(irreducible divisor) =
∑
aiDi, where

deg(Di) = di. Further, there is some homogeneous polynomial pi of degree di such that div(pi) = Di. So
for the subvariety x0 = 0 with divisor D′, we have that

Di − diH = div

(
pi

xdi0

)

This means that Di is linearly equivalent to diH. So consider the map ϕ from Div(Pn) to Z given by

ϕ : (divisors of Pn) → Z∑
aiDi 7→

∑
aidi

.

This map is a homomorphism - surjectivity is given by a map with a divisor that’s just a point, since Z is
1-dimensional. Hence Im(ϕ) ∼= Z.

Now recall that a principal divisor of Pn is one that is a divisor of a rational function. Rational divisors
have homogeneous polynomials of the same degree in the numerator and the denominator, so the sum of the
coefficients of the terms in the divisor add up to zero (i.e. such functions have the same number of zeros as
poles). Therefore if f is a principal divisor of Pn, then it is in the kernel of ϕ.

For the other direction, some more work needs to be done to show ker(ϕ) ⊂ Prin(Pn). Now the kernel
of ϕ is exactly the principal divisors of Pn. Then the first isomorphism theorem gives us the second-last
isomorphism below:

Pic(Pn) = Div(Pn)/Prin(Pn) ∼= Div(Pn)/ ker(ϕ) ∼= Im(ϕ) ∼= Z

Therefore ϕ is an isomorphism between Pic(Pn) and Z. �
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4.3 Exercise 3

Question

Let S be the graded ring k[x, y, z]/(y2z − x3 + xz2), and let M be the graded S-module S[1]. Prove that
the sheaf M̃ on the curve X given by y2z = x3 − xz2 associated to M is an invertible sheaf, and find a Weil
divisor D that is associated to M̃ .

Answer

Let M̃ be the sheaf associated to M , and M ′ the presheaf associated to M . Then

M ′(U) =
{m
s

: m ∈M, s ∈ S,deg(m) = deg(s), s is non-vanishing on U
}
.

For any point p on the curve X, if the stalk M̃p is a free rank-one module over the local ring Op, then M̃

will be invertible, by definition of invertibility. As the stalks of M̃ and M ′ are identical, we have that

M̃p = M ′p =
{m
s

: m ∈M, s ∈ S,deg(m) = deg(s), s(p) 6= 0
}

=
{m
s

: m, s ∈ S, deg(m) = deg(s) + 1, s(p) 6= 0
}
.

For p 6= [0 : 1 : 0], note that zOp ⊆ M̃p, as a ∈ zOp implies a = zf/g, for f, g ∈ S of the same degree. Then

deg(zf) = deg(g) + 1, so a ∈ M̃p. Further, M̃p ⊆ zOp, as b ∈ M̃p implies b = h/k, for deg(h) = deg(k) + 1.

Then b = zh/zk = z(h/zk) ∈ zOp, with deg(zh) = deg(zk) + 1. If p = [0 : 1 : 0], we have that yOp = M̃p,

proved in the same manner. Hence M̃p = zOp, so M̃ is invertible.

It remains to find a Weil divisor associated to M̃ . We let the map ϕ that embeds M̃ in the constant sheaf be
“division” by z, as z is a local generator OR IS IT? WHY Z?. As mentioned above, z will not work at the
point [0 : 1 : 0] (note that z vanishes only at [0 : 1 : 0]), so there we take the generator y, also as mentioned.
Hence we have the Cartier divisor{

(1, X − [0 : 1 : 0]),

(
z

y
,X − {y = 0}

)}
.

Since z/y has a zero at [0 : 1 : 0], the corresponding Weil divisor is d[0 : 1 : 0], where d is the order of
vanishing of z/y at [0 : 1 : 0]. Note that the tangent line to X at [0 : 1 : 0] is z = 0 (by dehomogenizing the
curve at [0 : 1 : 0] and taking the linear part), so neither x = 0, nor x+ z = 0 nor x− z = 0 are tangent to
X at p. As

z

y
=
x

y
· x− z

y
· x+ z

y
,

it follows that z/y vanishes to order 3 at [0 : 1 : 0], so d = 3. We had to break up the expression z/y into
factors, since z/y is not defined at [0 : 1 : 0]. Hence the Weil divisor of M̃ is 3[0 : 1 : 0]. �
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4.4 Exercise 4

Question

Compute the canonical sheaf of P1.

Answer

Let P1 be given in x, y, and its canonical sheaf by
∧1

ΩP1 = ΩP1 . Consider the differential ω = d(x/y). We
use ω to embed ΩP1 into the constant sheaf, by the map

ϕ : ΩP1 → K
α 7→ f

where f is the unique function such that α = fω. As ΩP1 is an invertible sheaf, any two non-zero elements
are related by a rational function, so f exists and is unique. Now find local generators for ΩP1 . Note the
whole space may be covered by two open sets on which y 6= 0 and x 6= 0, respectively. For ϕ acting on α,

· on {y 6= 0}: d(x/y) = d(x/1) = dx, so ω generates the stalk OP1 at α
· on {x 6= 0}: dy generates the stalk OP1 at α

Note that the only point where y = 0 is [1 : 0].

Then if xy 6= 0, ω will generate the stalk of ΩP1 as an OP1 -module because x
y −

x0

y0
= xy0−yx0

yy0
is a uniformizer

at [x0 : y0] if x0y0 6= 0. That is, it vanishes to order one at [x0 : y0]. We may immediately generate the
associated Cartier divisor.

· on {y 6= 0}:
(
dx

ω

)−1
=

(
dx

d(x/1)

)−1
=

(
dx

dx

)−1
= 1

· on {x 6= 0}:
(
dy

ω

)−1
=

(
dy

d(1/y)

)−1
=

(
dy

−dy/y2

)−1
=
(
−y2

)−1
= − 1

y2

So the Cartier divisor is given by {(
1,P1 − [1 : 0]

)
,

(
− 1

y2
,P1 − [0 : 1]

)}
The associated Weil divisor is then clear: 1 has no zeros or poles, and −1/y2 vanishes to order −2 at [1 : 0].
Hence the associated Weil divisor is D = −2[1 : 0]. Since deg(D) = −2, it follows that ΩP1 ∼= O(−2). �
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4.5 Exercise 5

Question

Find a Weil divisor corresponding to the canonical sheaf for the twisted cubic curve Y in P3, given as the
solution set of the equations xz = y2, xw = yz, yw = z2. [You may assume that the canonical sheaf of a
smooth subvariety of Pn defined by a single equation of degree d is isomorphic to i∗O(d− n− 1), where i is
the inclusion map.]

Answer

The Weil divisor is given by

ωY ∼= i∗(IY /I2Y )∨ where ωZ ∼= h∗ωX ⊗ (IZ/I2Z)∨

∼= j∗ωZ ⊗ (JY /J 2
Y )∨ ∼= h∗O(−2).

∼= j∗h∗ωX ⊗ (JY /J 2
Y )∨

∼= j∗h∗O(−2)⊗ (JY /J 2
Y )∨

The variety Z is the solution set of the equation xw = yz. Note that ωZ ∼= h∗O(−2) from the previous
question. The relations among the maps i, j, h is as below.

Y Z X
j h

i

We look for a non-zero element in JY /J 2
Y . Such an element is y2−xz

x2 + J 2
Y on {x 6= 0}. Therefore, our map

ϕ : JY /J 2
Y → K will be “division” by this element.

When are xw = yz and y2 = xz enough to define Y near p? That is, where is this a local generator for

JY /J 2
Y ? Well, this will happen anwhere that z2−yw

x2 is in the ring OZ,p
[
y2−xz
x2

]
. This gives

xw = yz =⇒ w = yz/x =⇒ z2 − yw
x2

=
z2 − y(yz/x)

x2

=
z2x− y2z

x

=
−z(y2 − xz)

x3

=
−z
x

(
y2 − xz
x2

)
So now we have the function that multiplies this non-zero element to get xw = yz. So the local generator

is y2−xz
x2 + J 2

Y on {x 6= 0}. Note that the only point on Y where x = 0 is [0 : 0 : 0 : 1]. As w 6= 0 here, we

consider the element z2−yw
w2 + J 2

Y . Then

x = yz/w =⇒ y2 − xz
w2

=
y2 − (yz/w)z

w2

=
y2w − yz2

w3

=
−y
w

(
z2 − yw
w2

)
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Here also we have the function that multiplies this non-zero element to get xw = yz, so the local generator

is z2−yw
w2 + J 2

Y on {w 6= 0}. To find where ϕ maps this element, we divide by the first element:

z2−yw
w2

y2−xz
x2

=
x2z2 − ywx2

w2y2 − w2xz
=

x2z2 − y
(
yz
x

)
x2(

yz
x

)2
y2 −

(
yz
x

)2
xz

=
x4z2 − y2zx3

y4z2 − y2z3x
=
−x3

y2z

(
y2z − z2x
y2z − z2x

)
=
−x3

y2z
=
−x2

yw

Hence the desired Cartier divisor is {
(1, {x 6= 0}),

(
−yw
x2

, {w 6= 0}
)}

and the associated Weil divisor is

div(y)− div(x2) = div(y)− 2div(x).

As w 6= 0, the Weil divisor will be some multiple of the point [0 : 0 : 0 : 1]. We calculate the tangent line to
Y at [0 : 0 : 0 : 1] by finding the Jacobian:

J =

−z 2y −x 0
w −z −y x
0 −w 2z −y

 and J[0:0:0:1] =

0 0 0 0
1 0 0 0
0 −1 0 0

 .

Hence both x = 0 and y = 0 contain the tangent line at p = [0 : 0 : 0 : 1], but z = 0 does not, so ordp(z) = 1.
This allows us to calculate the orders at p:

y =
z2

w
=⇒ ordp(y) = 2 and x =

y2

z
=⇒ ordp(x) = 4− 1 = 3.

So our Weil divisor is −4[0 : 0 : 0 : 1] for JY /J 2
Y . So ωY ∼= i∗O(−2)⊗ L(4[0 : 0 : 0 : 1]) and

−2(x = 0) + 4[0 : 0 : 0 : 1] = −6[0 : 0 : 0 : 1] + 4[0 : 0 : 0 : 1] = −2[0 : 0 : 0 : 1]

Therefore the Weil divisor for ωY is −2[0 : 0 : 0 : 1]. �
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4.6 Exercise 6

Question

Assuming the Serre duality theorem and general theory of cohomology of sheaves, prove the Riemann-Roch
Theorem for curves. That is, prove that for an arbitrary Weil divisor D on a smooth projective curve X, we
have h0(D) − h0(K −D) = deg(D) + 1 − g, where K is any Weil divisor representing the canonical sheaf,
and g = h0(K) is the genus of the curve.

Answer

This question will be done by induction on D. Start with D = 0, for which

h0(D) = dim(H0(L(D))) = dim({f ∈ k(X)∗ : div(f)+D > 0}∪{0}) = dim({f ∈ k(X)∗ : div(f) > 0}∪{0}) = dim(k) = 1.

As deg(D) = 0, the desired equation then reduces to h0(K) = g, which is true by definition of g, so the
base case is complete. Now let D be a non-zero Weil divisor on X. Let p be a point in X, and consider the
sequence

0 Ip OX Op 0
ι π

where π : OX(U) → Op(U) is defined by (f : OX(U) → k) 7→ f(p) if p ∈ U and 0 if p 6∈ U . This map is
surjective because Op is the skyscraper sheaf, or simply k, at p, and there is at least one non-zero function
f at p. The sequence would then be exact if in place of Ip we had ker(π), by letting ι be the standard
inclusion. However, note the following two cases:

p 6∈ U : (ker(π))(U) = {g ∈ OX(U) : πU (g) = 0} = OX(U)

Ip(U) = OX(U)

p ∈ U : (ker(π))(U) = {g ∈ OX(U) : πU (g) = 0}
= {g ∈ OX(U) : g(p) = 0}

Ip(U) = {g ∈ OX(U) : g(p) = 0}

Hence ker(ψ) = Ip, so ι is injective, and the sequence is indeed short exact. By the above and by noting
that Ip ∼= L(−p) by definition, this sequence simplifies to

0 L(−p) OX k(p) 0

Tensor the sequence with L(D) to get a new sequence:

0 L(−p)⊗ L(D) OX ⊗ L(D) k(p)⊗ L(D) 0

This sequence is still exact because it is exact at the stalks. The stalks of L(D) are isomorphic to the stalks
of OX , as L(D) is an invertible sheaf. Note that L(−p)⊗L(D) ∼= L(D− p) and OX ⊗L(D) ∼= L(D) by the
nature of OX . Further, k(p)⊗L(D) ∼= k(p) as we can make the sets U small enough so that L(D) looks like
OX on them, and use the aforementioned nature of OX as the structure sheaf. Hence we get equivalently:

0 L(D − p) L(D) k(p) 0

Now use the zig-zag lemma to get an exact sequence:

0 H0(D − p) H0(D) H0(k(p)) H1(D − p) H1(D) H1(k(p)) 0
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Since the alternating sum of the dimensions of the spaces in an exact sequences is zero, We have that

h0(D − p)− h0(D) + h0(k(p))− h1(D − p) + h1(D)− h1(k(p)) = 0

Note that h0(k(p)) = dim(k) = 1 and h1(k(p)) = 0 since the support of k(p) is a p, a 0-dimensional variety.
Hence the above simplifies to the following:

h0(D − p)− h1(D − p) = h0(D)− h1(D)− 1

Now suppose that Riemann–Roch holds for D. Add the above to RR:

h0(D)− h1(D) + (h0(D − p)− h1(D − p)) = deg(D) + 1− g + (h0(D)− h1(D)− 1)

⇐⇒ h0(D − p)− h1(D − p) = (deg(D)− 1) + 1− g
⇐⇒ h0(D − p)− h1(D − p) = deg(D − p) + 1− g

So RR holds for D − p. Now suppose RR holds for D − p, and subtract the same equation:

h0(D − p)− h1(D − p)− (h0(D − p)− h1(D − p)) = deg(D − p) + 1− g − (h0(D)− h1(D)− 1)

⇐⇒ h0(D)− h1(D) = (deg(D − p) + 1) + 1− g
⇐⇒ h0(D)− h1(D) = deg(D) + 1− g

Hence RR holds for D. Since every Weil divisor is a finite sum of points, by induction RR holds for all Weil
divisors D of curves. �
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4.7 Exercise 7

Question

For any divisor D on a smooth projective curve X of genus one, compute h0(D) and h1(D).

Answer

Since X is a genus 1 curve, g = 1. To make the calculations easier, consider first Riemann–Roch for D = K:

h0(K)︸ ︷︷ ︸
=1

−h0(K −K)︸ ︷︷ ︸
=h0(0)=1

= deg(K) + 1− 1 =⇒ deg(K) = 0

This follows as h0(K) = g by definition. Since the degree of the constant sheaf is 0, we must have that
K = 0. Then by Serre duality, specialized to curves, we have that h0(D) = h1(−D). So we only need to
compute h0(D). There are three cases to do, one each for deg(D) < 0,= 0, > 0.

If deg(D) > 0, then by Riemann-Roch we have that

h0(D)− h0(K −D)︸ ︷︷ ︸
=0

= deg(K) + 1− g︸ ︷︷ ︸
=0

=⇒ H0(D) = deg(D)

by Kodaira vanishing.

If deg(D) < 0, then by Kodaira vanishing (h1(−D) = 0) and Serre duality (h0(D) = h1(−D)), h0(D) = 0.

If deg(D) = 0 and D ≡ 0, then by Riemann–Roch, h0(D)−h0(K) = deg(D)+1−g, or h0(D) = 1. If D 6≡ 0,
then as H0(D) = {f ∈ k(X)∗ : div(f) +D > 0}, a function f ∈ H0(D) is rational, so

deg(div(f) +D)) = deg(div(f)) + deg(D) = 0 + 0 = 0.

So since div(f) +D =
∑
app is degree zero with ap > 0, we must have that ap = 0 for all ap. Therefore

div(f) +D = 0 ⇐⇒ D = −div(f) ⇐⇒ D = div(1/f)

which implies that D is linearly equivalent to 0, as 1/f ∈ k(X)∗. Since this contradicts the assumption, no
such f exists, hence H0(D) is empty, or H0(D) = 0. This completes the answer. �
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