Compact course notes PURE MATH 800 (SECTION 2) WINTER 2014 Riemann surfaces

Contents

1	Foundations 1.1 Definitions and notation 1.2 Atlases and lattices 1.3 Algebraic curves Holomorphic mappings on Biemann surfaces	 		•	2 2 3 5 7
4	2.1 Subsection 1				7
	2.1 Subsection 1	• •	•	•	9
	2.3 Meromorphic functions on Riemann surfaces	•••	•	•	12
3	Branched and unbranched coverings				13
	3.1 Definitions			•	13
	3.2 Covering maps		•	•	14
	3.3 Proper holomorphic mappings		•	•	15
4	Sheaves and analytic continuation				17
	4.1 Sheaves		•	•	17
	4.2 Stalks		•	•	19
	4.3 The Riemann surface of a holomorphic function	• •	•	•	20
	4.4 Analytic continuation	• •	•	•	24
5	Section 5				25
	5.1 Calculus on Riemann surfaces		•		25
	5.2 Exterior differentiation \ldots				28
	5.3 de Rham and Dolbeault cohomology		•	•	29
	5.4 Integration of 1-forms and primitives		•	•	31
	5.5 Integration of 2-forms		•	•	33
	5.6 Cauchy integral formula		•	•	34
	5.7 The exact cohomology sequence		•	•	34
In	dex				35

1 Foundations

What is a Riemann surface? We first need to define what a topological surface is.

1.1 Definitions and notation

Definition 1.1.1. A topological space X is *Hausdorff* if its topology separates points. That is, for all $p, q \in X$ with $p \neq q$, there exist open sets $U_p \ni p, U_q \ni q$ such that $U_p \cap U_q = \emptyset$.

Example 1.1.2. Consider the following examples of topological spaces:

· \mathbf{R}^n with the metric topology is Hausdorff. To see this, take d to be the distance between $p, q \in \mathbf{R}^n$, and let $U_p = B_p(d/3)$ and $U_q = B_q(d/3)$.

· \mathbf{R}^n with the cofinite topology is not Hausdorff. In the cofinite topology all open sets are of the form $\mathbf{R}^n \setminus \{p_1, \ldots, p_m\}$ for $m \in \mathbf{N}$ and $p_i \in \mathbf{R}^n$.

Definition 1.1.3. A (topological) surface X is a Hausdorff topological space that is locally homeomorphic to C (or \mathbb{R}^2). That is, for all $p \in X$, there exist open sets $U \ni p, V \subset \mathbb{C}$, and a homeomorphism $\varphi : U \to V$.

Remark 1.1.4. The topology on \mathbf{C} (or \mathbf{R}^2) is always assumed to be the metric topology. Also note that topological surfaces may be considered as topological 2-manifolds.

Example 1.1.5. Consider the following examples of topological surfaces:

· $\mathbf{C} \cong \mathbf{R}^2$ is a topological surface. For all $p \in \mathbf{C}$, pick $U = V = \mathbf{C}$ and $\varphi = \mathrm{id}$.

 $\cdot \ U \subset {\mathbf C}$ open is a topological surface, as above.

• the graph of a continuous function $f: W \to \mathbb{C}$ for $W \subset \mathbb{C}$ open is a topological surface. The graph is $G = \{(z, w) \in \mathbb{C}^2 : w = f(z)\}$. For all $p \in G$, pick U = G and V = W with $\varphi(z, f(z)) = z$. This projection is a homeomorphism.

· The Riemann sphere $\mathbf{S}^2 \cong \mathbf{C} \cup \{\infty\} := \mathbf{P}^1$ is a topological surface by using stereographic projection. Place it as below and let N = (0, 0, 1) be the north pole.

The map φ is a homeomorphism.

Definition 1.1.6. A homeomorphism $\varphi : U \to V$ for $U \subset X$ open and $V \subset \mathbf{C}$ open is a *(complex) chart.* Two charts $\varphi_i : U_i \to V_i$ are *holomorphically compatible* if the map $\varphi_2 \circ \varphi_1^{-1} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ is biholomorphic (i.e. is holomorphic with a holomorphic inverse).

Note that $\varphi_1(U_1 \cap U_2)$ and $\varphi_2(U_1 \cap U_2)$ are components in **C**, since they are the images of $U_1 \cap U_2$ under homeomorphisms. So, $\varphi_2 \circ \varphi_1^{-1}$ is biholomorphic if it is holomorphic from **C** to **C** in the usual sense.

Example 1.1.7. Consider $\mathbf{P}^1 = \mathbf{C} \cup \{\infty\} = \mathbf{S}^2$. The topology on \mathbf{P}^1 is given as follows: Let $U \subset \mathbf{P}^1$. If $U \subset \mathbf{C}$, then U is open iff it is open in the metric topology on C. Otherwise, U is open if it can be described as $U = (\mathbf{C} \setminus K) \cup \{\infty\}$ for some compact subset $K \subset \mathbf{C}$ (with respect to the metric topology).

Now let us describe some complex charts on \mathbf{P}^1 . For $p \in \mathbf{P}^1$, if $p \in \mathbf{C}$, pick $U = \mathbf{C}$ and $\varphi = \mathrm{id} : \mathbf{C} \to \mathbf{C}$. If $p = \infty$, then $U = \mathbf{C}^* \cup \{\infty\} = (\mathbf{C} \setminus \{0\}) \cup \{\infty\}$ and

Now φ and ψ are complex charts on X that contain every point. Also, $U_1 = \mathbf{C} \cap U_2 = \mathbf{C}^* \cup \{\infty\} = \mathbf{C}^*$ and $\varphi(U_1 \cap U_2) \cap \psi(U_1 \cap U_2) = \mathbf{C}^*$. Moreover $\varphi \circ \varphi^{-1} : \mathbf{C}^* \to \mathbf{C}^*$ by $z \mapsto 1/z$ is biholomorphic. Hence the charts φ and ψ are holomorphically equivalent (note that we should have checked that X is Hausdorff).

1.2 Atlases and lattices

Definition 1.2.1. An atlas on X is a collection $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ of charts $\varphi_{\alpha} : U_{\alpha} \subset X \to \varphi_{\alpha}(U_{\alpha}) \subset \mathbf{C}$ that cover X, i.e. $X = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. An atlas \mathcal{U} on X is called *complex* (or *holomorphic*) if any 2 charts in \mathcal{U} are holomorphically compatible.

Example 1.2.2. Let $X = U \subset \mathbf{C}$ be open. Then for all $p \in U$, the map $\varphi = \mathrm{id} : U \to U$ is a chart containing p. Since we only need one chart in this case, and $\varphi \circ \varphi^{-1} = \mathrm{id}_U$ is biholomorphic, we have that $\mathcal{U} = \{(U, \mathrm{id}_U)\}$ is a holomorphic atlas on X that contains only one chart.

Remark 1.2.3.

· If a topological surface X can be covered by an atlas that contains only one chart (for example, $U \subset \mathbf{C}$ open on the graph G of a continuous function $f: U \subset \mathbf{C} \to \mathbf{C}$), then U is a holomorphic atlas.

 \cdot A topological surface X admits many distinct atlases, which may contain an infinite number of charts.

• The space $\mathbf{P}^1 = \mathbf{C} \cup \{\infty\}$ admits the following holomrphic atlas: $\mathcal{U} = \{(U_1, \varphi), (U_2, \psi)\}$ as described above. Note that any atlas of \mathbf{P}^1 must contain at least 2 charts, otherwise there exists a homeomorphism $\varphi : \mathbf{P}^1 \to V \subset \mathbf{C}$ for V open, which is impossible, as $\mathbf{P}^1 \cong \mathbf{S}^2$ is compact, whereas V is not.

Definition 1.2.4. Two holomorphic atlases \mathcal{U} and \mathcal{U}' on X are called *analytically equivalent* if every chart in \mathcal{U} is holomorphically compatible with every chart in \mathcal{U}' . Since the composition of any 2 biholomorphic maps is biholomorphic, analytic equivalence is an equivalence relation.

A complex structure Σ on X is an equivalence class of analytically equivalent atlases.

Note that any complex structure can be given by a choice of holomorphic atlas (by taking the equivalence class of that atlas). Moreover, every complex structure Σ contains a maximal atlas \mathcal{U}^* , where maximality is with respect to inclusion.

Definition 1.2.5. A *Riemann surface* is a pair (X, Σ) , where X is a connected surface and Σ is a complex structure on X. Note that not all authors require X to be connected.

Example 1.2.6. With \mathcal{U} as above, for each example respectively, each of $(\mathbf{C}, [\mathcal{U}]), (\mathcal{U}, [\mathcal{U}])$ for any $\mathcal{U} \subset \mathbf{C}$ open, and $(\mathbf{P}^1, [\mathcal{U}])$ is a Riemann surface.

Example 1.2.7. Consider the torus, described as $X = \mathbf{C}/\Gamma$, where $\Gamma = \{m\omega_1 + n\omega_2 : m, n \in \mathbf{Z}\}$ is a *lattice* for some fixed, linearly independent (over \mathbf{R}) $\omega_1, \omega_2 \in \mathbf{C}$. So in \mathbf{C}/Γ , $z_1 \sim z_2$ iff $z_1 = z_2 + \omega$ for $\omega \in \Gamma$. We would like to show that X is a Riemann surface and give it a topology.

We may express X as $X = \{[z] : z \in \mathbf{C}\}$ where $[z] = \{z' \in \mathbf{C} : z' = z + \omega, \omega \in \Gamma\}$. Next we need a topology on X. We are going to use the quotient topology. Consider the projection map $\pi : \mathbf{C} \to \mathbf{C}/\Gamma = X$, so $U \subset X$ is open iff $\pi^{-1}(U)$ is open in **C**. By definition, π is continuous. So X is connected since it is the continuous image of **C**, which is connected. Further, X is compact since it is the continuous image of a compact set.

To prove that the quotient topology is Hausdorff, we use the fact that π is an open map. Indeed, for all open sets $U \subset \mathbf{C}$, $\pi(U)$ is open because $\pi^{-1}(\pi(U)) = \bigcup_{\omega \in \Gamma} (U + \omega)$, each of which is open in \mathbf{C} , so $\pi^{-1}(\pi(U))$ is open in \mathbf{C} . Now choose $p, q \in X$ distinct points, We need to find open neighborhoods $V_p \ni p$, $V_q \ni q$ such that $V_p \cap V_q = \emptyset$. Let \tilde{p}, \tilde{q} be the the associated points to p, q, respectively, on the fundamental parallelogram, so $\pi(\tilde{p}) = p$ and $\pi(\tilde{q}) = q$. We do a proof by picture for each case, for D the fundamental parallelogram.

The indicated area around each point is its neighborhood. From the pictures, it is clear that we can always pick a small enough neighborhood, so X is Hausdorff. It remains to find a complex atlas on X.

For all $p \in X$, find an open set $U_p \subset X$ containing p and a homeomorphism $\varphi : U_p \to \varphi(U_p) \subset \mathbb{C}$. As before, pick the point \tilde{p} in the fundamental parallelogram mapping to p under π , and an open disk D centered at \tilde{p} that's small enough so that $\pi : D \subset \mathbb{C} \to \pi(D) \subset X$ is a homeomorphism. Set $U_p = \pi(D)$ which is open, and $\varphi_p = \pi^{-1}|_{U_p} : U_p \to D$. Now (U_p, φ_p) is a chart containing p. Since $\bigcup_{p \in X} U_p = X$, we get an atlas $\mathcal{U} = \{ (U_p, \varphi_p) : p \in X \}.$

The last thing is to check that for any 2 charts (U_p, φ_p) , (U_q, φ_q) we have $\psi = \varphi_p \circ \varphi_q^{-1} : \varphi_q(U_p \cap U_q) \to \varphi_p(U_p \cap U_q)$ is a biholomorphic morphism. So let $z \in \varphi_q(U_p \cap U_q)$, so

$$\pi(\psi(z)) = \pi((\varphi_p \varphi_q^{-1})(z)) = \varphi_q^{-1}(z) = \pi(z),$$

and $\pi(\psi(z)) = \pi(z)$ iff $\psi(z) - z \in \Gamma$. Now we have that $h(z) = \psi(z) - z$ is constant on the connected components of $\varphi_q(U_p \cap U_q)$, implying that $\psi(z) = z + c$ for c some constant on any connected component of $\varphi_q(U_p \cap U_q)$. Then ψ is biholomorphic, and \mathcal{U} is a complex structure on X.

Definition 1.2.8. For $\Gamma = \{m\omega_1 + n\omega_2 : m, n \in \mathbf{Z}\}$ a lattice in \mathbf{C} , an *elliptic function* relative to the lattice Γ is a doubly-periodic meromorphic function $f : \mathbf{C} \to \mathbf{C}$. That is, for all $z \in \mathbf{C}$,

$$f(z+\omega_1) = f(z+\omega_2) = f(z).$$

1.3 Algebraic curves

Definition 1.3.1. Let p(z, w) be a non-constant polynomial in 2 complex variables. Then $C = \{(z, w) \in \mathbb{C}^2 : p(z, w) = 0\}$ is called the *algebraic curve* defined by p. Further, C is *smooth* at (z_0, w_0) if

$$\nabla p(z_0, w_0) = \left(\frac{\partial p}{\partial z}(z_0, w_0), \frac{\partial p}{\partial w}(z_0, w_0)\right) \neq (0, 0),$$

otherwise it is singular. The space $C \setminus \{\text{singular points of } C\}$ is a Riemann surface.

Example 1.3.2. Consider the following examples of algebraic curves.

 $p(z,w) = w^2 - z$, then $\nabla p = (-1, 2w) \neq (0,0)$, so $C = \{(z,w) : z = w^2\}$ is smooth at every point.

 $p(z,w) = w^2 - z^3$, then $\nabla p = (-3z^2, 2w) = (0,0)$ iff (z,w) = (0,0), so $C = \{(z,w) : z^3 = w^2\}$ is smooth everywhere except at (0,0)

Proposition 1.3.3. Let C be an algebraic curve. Each connected component of $S = C \setminus \{\text{singular points of } C\}$ admits a natural complex structure, making it into a Riemann surface.

Proof: Follows directly from the implicit function theorem.

Remark 1.3.4. Recall that a complex function f(z) on 1 variable is holomorphic at z_0 if one of the following equivalent properties holds:

- \cdot f is complex differentiable at z_0 and in a neighborhood of z_0
- \cdot f admits a convergent power series expansion at z_0
- · the Cauchy–Riemann equations hold at (x_0, y_0) , where $z_0 = x_0 + iy_0$
- · f is continuous at z_0 and $\partial f/\partial \bar{z}(z_0) = 0$, where $f(z) = f(z, \bar{z})$

Example 1.3.5. Differentiating by \bar{z} is exactly the same as differentiating by a different variable. For example,

$$\frac{\partial z^2}{\partial \bar{z}} = 0$$
 and $\frac{\partial \bar{z}}{\partial \bar{z}} = 1$

So the first function is everywhere holomorphic, and the second is nowhere holomorphic.

Theorem 1.3.6. [IMPLICIT FUNCTION THEOREM]

Let p(z, w) be a non-constant holomorphic function of 2 variables, and consider $C = \{(z, w) : p(z, w) = 0\} \subset \mathbb{C}^2$. Suppose that $(z_0, w_0) \in C$ is such that $\frac{\partial p}{\partial w}(z_0, w_0) \neq (0, 0)$. Then there exists a disk $D_1 \subset \mathbb{C}$ centered at z_0 and a disc $D_2 \subset \mathbb{C}$ centered at w_0 , and a holomorphic function $\varphi : D_1 \subset \mathbb{C} \to D_2 \subset \mathbb{C}$ with $\varphi(z_0) = w_0$ and $C \cap (D_1 \times D_2) = \{(z, p(z)) : z \in D_1\}$.

That is, $C \cap (D_1 \times D_2)$ is the graph of φ . Note that if $\frac{\partial p}{\partial z}(z_0, w_0) \neq (0, 0)$, then there exists $\psi = \psi(w)$ such that $C \cap (D_1 \times D_2) = \{(\psi(w), w) : w \in D_2\}.$

<u>Proof:</u> We will need the following claim: Let g be a holomorphic function of 1 variable on an open set containing a disk D such that g does not vanish on ∂D . Then

$$\frac{1}{2\pi i} \int_{\partial D} \frac{g'(w)}{g(w)} dw = \left(\begin{array}{c} \# \text{ of zeros of } g \text{ inside} \\ D \text{ counting multiplicities} \end{array}\right)$$

Moreover, if g has only 1 zero inside D (say w_1), and that zero has multiplicity 1, then

$$w_1 = \frac{1}{2\pi i} \int_{\partial D} \frac{wg'(w)}{g(w)} dw.$$

Both follow from the residue theorem, so we will not prove them. Now consider the following family of functions of the variable w: $f_z(w) = p(z, w)$ for all z (here z is considered a parameter). At $z = z_0$, we have $f'_{z_0}(w_0) = \frac{\partial p}{\partial w_0}(z_0, w_0) \neq (0, 0)$. This implies that f_{z_0} is 1-1 in an open neighborhood of w_0 in **C**. Let D_2 be a disk centered at w_0 such that the closure $\overline{D_2}$ is contained in this neighborhood. This means in particular that f_{z_0} is 1-1 on $\overline{D_2}$. But $f_{z_0}(w_0) = p(z_0, w_0) = 0$ (since $(z_0, w_0) \in C$), so w_0 is the only zero of f_{z_0} on $\overline{D_2}$, and f_{z_0} does not vanish on ∂D_2 .

Note that $|f_{z_0}|$ is a continuous function of w on ∂D_2 , since f_{z_0} is holomorphic. Therefore, by the EVT, since ∂D_2 is compact, $|f_{z_0}|$ addains a minimum value on ∂D_2 , which must be > 0. So there exists $\delta > 0$ with $|f_{z_0}| > \delta$ on ∂D_2 . By the continuity of p(z, w) on z, we must also have that $|f_z| > \delta'$ on ∂D_2 for some $\delta' > 0$. Then by the claim,

$$N(z) = \frac{1}{2\pi i} \int_{\partial D_2} \frac{f \mathbf{1}_z(w)}{f_z(w)} dw = \left(\begin{array}{c} \# \text{ of zeros of } f_z \text{ in } D_2 \\ \text{ counting multiplicities } \end{array}\right) = \frac{1}{2\pi i} \int_{\partial D_2} \frac{\frac{\partial p}{\partial w}(z,w)}{p(z,w)} dw,$$

so N(z) is continuous in z. But N(z) takes values in $\mathbb{Z}_{\geq 0}$ and $N(z_0) = 1$, so by continuity of N(z) in D_1 , we must have that N(z) = 1 for all $z \in D_1$. For every $z \in D_1$, set $\varphi(z) =$ (unique zero of $f_z(w)$ in D_2). Then φ is a complex function defined on D_1 such that $p(z, \varphi(z)) = 0$, Moreover, by the claim

$$\varphi(z) = \frac{1}{2\pi i} \int_{\partial D_2} \frac{w f_z'(w)}{f_z(w)} dw = \frac{1}{2\pi i} \int_{\partial D_2} \frac{w \frac{\partial p}{\partial w}(z,w)}{p(z,w)} dw$$

which is holomorphic in z since p(z, w) and $\frac{\partial p}{\partial w}(z, w)$ are. Hence $\varphi(z)$ is holomorphic on D_1 .

Proposition 1.3.7. Let p(z, w) be a polynomial in 2 complex variables, and $C = \{(z, w) : p(z, w) = 0\}$. Then, every connected component of $S = C \setminus \{\text{singular points of } C\}$ is a Riemann surface.

Proof: For simplicity, we assume that S is connected. Let $(z_0, w_0) \in S$. Since C is smooth at (z_0, w_0) ,

$$\nabla p(z_0, w_0) = \left(\frac{\partial p}{\partial w}(z, w_0), \frac{\partial p}{\partial z}(z_0, w_0)\right) \neq (0, 0).$$

If $\frac{\partial p}{\partial z}(z_0, w_0) \neq 0$, then S is locally the graph of a holomorphic function $\psi(w) = \{(\psi(w), w) : w \in U_2\}$ for U_2 open. Similarly, if $\frac{\partial p}{\partial w}(z_0, w_0) \neq 0$, then S is locally the graph of a holomorphic function $\varphi(z) = \{(z, \varphi(z)) : z \in U_1\}$ by the IFT. This gives corresponding charts for the two maps, namely

The union of all such charts, for all $(z_0, w_0) \in S$ over S gives us an atlas. The only thing left to check is that every two charts are holomorphically compatible. If we pick $\theta, \tilde{\theta}$ charts both of the form φ_1 or φ_2 , then $\theta \circ \tilde{\theta}^{-1} = id$, which is biholomprinc, so $\theta, \tilde{\theta}$ are holomorphically compatible. If θ is of the type φ_1 and $\tilde{\theta}$ is of the type φ_2 , then

$$\varphi_1 \circ \varphi_2^{-1}(w) = \varphi_1(\psi(w), w) = \psi(w)$$

and
$$\varphi_2 \circ \varphi_1^{-1}(z) = \varphi_2(z, \varphi(z)) = \varphi(z),$$

which are both holomorphic. Hence θ , $\tilde{\theta}$ are holomorphically compatible. As for Hausdorffness, we note that S is Hausdorff because we are endowing it with the induced metric topology on \mathbb{C}^2 , which is Hausdorff.

2 Holomorphic mappings on Riemann surfaces

From now on, the topology on \mathbb{C}^n is always assumed to be the metric topology, and any subset of \mathbb{C}^n to be endowed with the induced metric topology.

2.1 Subsection 1

Definition 2.1.1. Let X be a Riemann surface and $Y \subset X$ any open subset of X. A complex form $f: Y \to \mathbb{C}$ is called *holomorphic* if for all charts $\psi: U \subset X \to V \subset \mathbb{C}$ on X, the map $f \circ \psi^{-1}: \psi(Y \cap U) \to \mathbb{C}$ is holomorphic in the usual sense on the open set $\psi(Y \cap U) \subset \mathbb{C}$.

The set of all holomorphic functions on Y is denoted by $\mathcal{O}(Y)$.

Remark 2.1.2. Consider the following:

a. Constant functions are holomorphic.

b. For all $f, g \in \mathcal{O}(Y)$ and $\alpha \in \mathbb{C}$, $\alpha f + g \in \mathcal{O}(Y)$ and $fg \in \mathcal{O}(Y)$, hence $\mathcal{O}(Y)$ is a **C**-algebra, i.e. a **C**-vector space.

c. It is enough to verify the condition of the definition of any family of charts covering Y. Indeed, we let $\varphi : \tilde{U} \subset X \to \tilde{V} \subset \mathbf{C}$ be any chart in the maximal atlas of Y and $\psi : U \subset X \to V \subset \mathbf{C}$ be a chart in such a family. Since ψ is in the maximal atlas, it is holomorphically comaptible with φ , so that $\psi \otimes \varphi^{-1}$ is biholomorphic. Then $f \circ \varphi^{-1} = (f \circ \psi^{-1}) \circ (\psi \circ \varphi^{-1})$, hence $f \circ \varphi^{-1}$ is holomorphic.

d. Every chart $\psi : U \subset X \to U \subset \mathbf{C}$ on X is trivially holomorphic with respect to the complex structure on X, since $\psi \circ \varphi^{-1}$ is biholomorphic for any chart $\varphi : \tilde{U} \subset X \to \tilde{V} \subset \mathbf{C}$ in the maximal atlas. One also calls ψ a *local coordinate* or *uniformization parameter*, and (U, ψ) a *coordinate neighborhood* of any point in U. In this context, we also write $z = \psi$.

Example 2.1.3. Let $U \subset X$ be open. Then any holomorphic function $f: U \to \mathbb{C}$ is also holomorphic as a function thought of on a Riemann surface.

Proposition 2.1.4. Let $f : \mathbf{P}^1 \to \mathbf{C}$ be holomorphic. Then f is constant.

Proof: We use two charts, namely

$$\begin{aligned} \varphi : \quad U = \mathbf{C} &\to \mathbf{C} \\ z &\mapsto z \end{aligned} \quad \text{and} \qquad \begin{aligned} \psi : \quad U' = \mathbf{C}^* \cup \{\infty\} &\to \mathbf{C} \\ z &\mapsto z \end{aligned} \quad \text{and} \qquad \begin{aligned} z &\mapsto \begin{cases} 1/z & \text{if } z \neq \infty \\ 0 & \text{if } z = \infty \end{cases}. \end{aligned}$$

Since $f: \mathbf{P}^1 \to \mathbf{C}$ is holomorphic, we have $f \circ \varphi^{-1}: \mathbf{C} \to \mathbf{C}$ and $f \circ \psi^{-1}: \mathbf{C} \to \mathbf{C}$ are holomorphic. Then we can write $f \circ \varphi^{-1} = \sum_{n=0}^{\infty} a_n z^n$ on $\varphi(U)$, and $f \circ \psi^{-1}(w) = \sum_{n=0}^{\infty} b_n w_n$ on $\psi(U)$. But on $\varphi(U \cap U') = \mathbf{C}^*$,

we have that

$$f \circ \psi^{-1}(w) = (f \circ \varphi^{-1}) \circ (\varphi \circ \psi^{-1})(w) = (f \circ \varphi^{-1})(1/w) = \sum_{n=0}^{\infty} a_n (1/w)^n = \sum_{n=0}^{\infty} a_n w^{-n}.$$

But Laurent series expansions on \mathbb{C}^* are unique, forcing $a_n = b_n = 0$ if n > 0, and $a_0 = b_0$. Hence $f = a_o = b_0$ is constant.

Note the above result is not surprising, as \mathbf{P}^1 is compact, and functions on compact subsets of \mathbf{C} are bounded.

Theorem 2.1.5. [REMOVABLE SINGULARITIES THEOREM - RIEMANN]

Let U be an open subset of a Riemann surface and $a \in U$. Suppose that $f \in \mathcal{O}(U \setminus \{0\})$ is bounded in some neighborhood of a. Then f can be extended uniquely to a function $\tilde{f} \in \mathcal{O}(U)$.

Proof: This follows from Riemann's removable singularities theorem on **C**.

Definition 2.1.6. Let X, Y be Riemann surfaces. A continuous mapping $f : X \to Y$ is *holomorphic* if for all pairs of charts

$$\psi_1: U_1 \subset \mathbf{C} \to V_1 \subset \mathbf{C}$$
 and $\psi_2: U_2 \subset \mathbf{C} \to V_2 \subset \mathbf{C}$

the mapping $\psi_2 \circ f \circ \psi_1^{-1} : V_1 \to V_2$ is holomorphic in the usual sense. The mapping f is called *biholomorphic* if it is bijective and both $f : X \to Y$ and $f^{-1} : Y \to X$ are holomorphic.

Further, two Riemann surfaces are *isomorphic* if there exists a biholomorphic map $f: X \to Y$. If X = Y and $f: X \to X$ is biholomorphic, then f is called an *automorphism*.

Example 2.1.7.

a. Any holomorphic function $f: X \to \mathbf{C}$ is a holomorphic mapping from X to **C** considered as a Riemann surface

b. If X, Y, Z are Riemann surfaces and $f : X \to Y, g : Y \to Z$ are holomorphic mappings, then so is $g \circ f : X \to Z$.

c. Given two tori $X = \mathbf{C}/\Gamma$ and $X' = \mathbf{C}/\Gamma'$, for Γ generated by ω_1, ω_2 and Γ' generated by ω'_1 and ω'_2 , X is isomorphic to X' iff $\alpha \Gamma = \Gamma'$ for some $\alpha \in \mathbf{C}^*$.

d. The following map is an examples of a non-trivial holomorphic map between two Riemann surfaces:

$$\begin{array}{rrrr} \mathbf{P}^1 & \to & \mathbf{P}^1 \\ & z & \mapsto & \begin{cases} \frac{az+b}{cz+d} & \text{if } z \neq \infty \\ \frac{a}{c} & \text{if } z = \infty \end{cases}, \end{array}$$

with $ad - bc \neq 0$. This is the extension of the Möbius transformation $z \mapsto \frac{az+b}{cz+d}$ to \mathbf{P}^1 . Thus f is an automorphism.

Theorem 2.1.8. [IDENTITY THEOREM IN C]

Let D be a domain on C and suppose that f, g are holomorphic functions on D such that f = g on a subset $A \subset D$ that has a limit point $a \in D$. Then f = g on D.

Recall that $a \in D$ is a limit point if for any open neighborhood W of a in D, $(A \setminus \{a\}) \cap W \neq \emptyset$.

Corollary 2.1.9. If f = g on an open subset $W \subset D$, then f = g on D.

f

<u>Proof</u>: Note that since f, g are holomorphic on D, they are constant on D, and so is f-g. Moreover, f-g=0 on \overline{W} , so f-g=0 on \overline{W} , where \overline{W} is the closure of W in D, by continuity of f-g. Hence f=g on \overline{W} , where \overline{W} has a limit point in D since it is closed. This implies that f=g on D by the identity theorem.

Theorem 2.1.10. [IDENTITY THEOREM]

Suppose X, Y are Riemann surfaces, and $f, g: X \to Y$ are holomorphic maps. If f and g coincide on a set $A \subset X$ that has a limit point at $a \in X$, then f = g on X.

<u>Proof</u>: We begin with assumption that $Y = \mathbb{C}$. Let $G = \{x \in X : f|_{W_x} = g|_{W_x}$ for some open neighborhood $\overline{W_x}$ of x in X}. The idea is to prove that G is open, closed, and non-empty, which will force G = X since X is connected.

· G is open: Observe that $G = \bigcup_{x \in G} W_x$ since $W_x \subset G$ for all $x \in G$. So G is open since W_x is open.

• *G* is closed: We will do this by showing that $\partial G \subset G$. Let $b \in \partial G$. We want to show that there exists an open neighborhood W_b of *b* in *X* such that $f|_{W_b} = g|_{W_b}$. Let us first remark that f(b) = f(g). Since f, g are holomorphic, they are continuous on *X* atherefore so is f - g. Thus $(f - g)^{-1}(\{0\})$ is closed in *X*. But, by definition, $G \subset (f - g)^{-1}(\{0\})$, implying that $\partial G \subset \overline{G} \subset (f - g)(\{0\})$ since $(f - g)^{-1}(\{0\})$ is closed. Hence f(b) = g(b). Now let *U* be a connected open neighborhood of *b* in *X* and $\varphi : U \to V \subset \mathbf{C}$ be a homeomorphism (so that (U, φ) is a chart containing *b*). Since we are assuming f, g to be holomorphic, we have that $f \circ \varphi^{-1}, g \circ \varphi^{-1} : \varphi(U) \subset \mathbf{C} \to \mathbf{C}$ are holomorphic functions. But $b \in \partial G$ and *U* is an open neighborhood of *b*, so $G \cap U \neq \emptyset$, implying $f|_W = g|_W$ for some open set $(W \cap U) \subset U$ (by the definition of *g*). Hence

 $f \circ \varphi^{-1} \big|_{\varphi(W \cap U)} = g \circ \varphi^{-1} \big|_{\varphi(W \cap U)} \qquad \text{on the open set} \qquad \varphi(W \cap U) \subset \varphi(U),$

implying that $f \circ \varphi^{-1} = g \circ \varphi^{-1}$ on $\varphi(U)$ by the identity theorem in **C**. Hence $f|_U = g|_U$ with $b \in U$. Hence $b \in G$, so $\partial G \subset G$, and G is closed.

· G is non-empty: As before, one can show that $\overline{A} \subset (f-g)^{-1}(\{0\})$, forcing f(a) = g(a), as $a \in \partial A$. We gan then find a neighborhood of a on which f, g agree, so $a \in G$.

2.2 Meromorphic functions

Definition 2.2.1. Let X be a Remann surface and $Y \subset X$ be open. A meromorphic function f on Y is a holomorphic function $f|_{Y'} = f' : Y' \to \mathbb{C}$ such that $Y' \subset Y$ is open, $Y \setminus Y'$ contains only isolated points, and for all $p \in Y \setminus Y'$ we have $\lim_{x \to p} [|f(x)|] = \infty$. The points of $Y \setminus Y'$ are called the *poles* of f. The set of all meromorphic functions on Y is denoted by $\mathcal{M}(Y)$.

Example 2.2.2. Consider the map

where $ad - bc \neq 0$. Then f is holomorphic for $z \neq -d/c$, and has a pole at z = -d/c. Hence $f \in \mathcal{M}(\mathbf{P}^1)$.

f

Consider a polynomial $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ with $a_i \in \mathbf{C}$ for all *i*. Then *p* is a holomorphic function from \mathbf{C} to \mathbf{C} . Extend *f* to \mathbf{P}^1 by setting $p(\infty) = \infty$. Then

$$\begin{array}{rccc} p: & \mathbf{P}^1 & \to & \mathbf{C} \\ & z & \mapsto & \begin{cases} p(z) & \text{if } z \neq \infty \\ \infty & \text{if } z = \infty \end{cases}$$

is meromorphic on \mathbf{P}^1 since $\lim_{z\to\infty} [|p(z)|] = \infty$.

Definition 2.2.3. Let $S \subset X$ be a subset and $x \in S$. Then x is an *isolated point* of S if there exists an open neighborhood W of x in X such that $(S \setminus \{x\}) \cap W = \emptyset$. Otherwise, x is a *limit point* of S.

Example 2.2.4. Consider the map

$$\begin{array}{rrrr} f: & \mathbf{C} & \to & \mathbf{C} \\ & z & \mapsto & e^{1/z} \end{array},$$

for which z = 0 is an isolated singularity of f. However, 0 is not a pole, because it does not satisfy the limit condition, as

$$\left| e^{1/z} \right| = \left| e^{(x-iy)/(x^2+y^2)} \right| = \left| e^{x/(x^2+y^2)} \right| \left| e^{i(-y/(x^2+y^2))} \right| = e^{x/(x^2+y^2)}$$

Hence

$$\lim_{\substack{x \to 0^+ \\ y=0}} \left[|f(z)| \right] = \infty \quad \text{and} \quad \lim_{\substack{x \to 0^- \\ y=0}} \left[|f(z)| \right] = 0 \quad \text{implying} \quad \lim_{z \to 0} \left[|f(z)| \right] \neq \infty$$

Therefore z = 0 is not a pole and is an essential singularity. This example shows that the limit condition is necessary to ensure that the point in $Y \setminus Y'$ is indeed a pole.

Theorem 2.2.5. Suppose that X is a Riemann surface and $f \in \mathcal{M}(X)$. Then for each pole of f, define $f(p) = \infty$. Then $f : X \to \mathbf{P}^1$ is a holomorphic mapping. Conversely, if $f : X \to \mathbf{P}^1$ is a holomorphic mapping, then f is either identically ∞ on X or else $f^{-1}(\infty)$ consists of isolated points and $f : X \setminus f^{-1}(\infty) \to \mathbf{C}$ is a meromorphic function on X.

<u>Proof:</u> Let $f \in \mathcal{M}(X)$. Then there exists $X' \subset X$ open with $f: X' \to \mathbb{C}$ holomorphic, and $X \setminus X'$ satisfying the conditions above. Set $f: X \to \mathbb{P}^1$

$$\begin{array}{rccc} X & \to & \mathbf{P}^{1} \\ z & \mapsto & \begin{cases} f(z) & \text{if } z \in X' \\ \infty & \text{if } z \in X \setminus X' \end{cases} \end{array}$$

Then by the conditions above, for all $p \in X \setminus X'$,

$$\lim_{z \to p} [|f(z)|] = \infty \quad \Longleftrightarrow \quad \lim_{z \to p} [f(z)] = \infty.$$

We now need to check that $f: X \to \mathbf{P}^1$ is in fact holomorphic. To do this, pick two charts $\varphi: U \subset X \to V \subset \mathbf{C}$ and $\psi: U' \subset \mathbf{P}^1 \to V' \subset \mathbf{C}$ of X and \mathbf{P}^1 with $f(U) \subset U'$. Now we check that $g = \psi \circ f \circ \varphi^{-1} : V \subset \mathbf{C} \to V' \subset \mathbf{C}$ is holomorphic. Let $P = X \setminus X'$ be the set of poles of f. Since f is holomorphic on $X' = X \setminus P$, then g is holomorphic on $V \setminus \varphi(P)$. Let $p \in P$. If $\varphi(p) \notin P$, then we're fine. If $\varphi(p) \in V$, then

$$g(\varphi(p)) = \psi \circ f(p) = \psi(\infty) \subset V' \subset \mathbf{C}.$$

This tells us that there exists an open neighborhood W of $\varphi(p)$ on \mathbb{C} such that $g \in \mathcal{O}(W \setminus \varphi(p))$ and g is bounded on W. Hence by Riemann's removable singularity theorem, $g \in \mathcal{O}(W)$. Therefore f is holomorphic at p, so f is holomorphic on V, finally implying that $f: X \to \mathbb{P}^1$ is holomorphic.

Conversely, suppose that $f: X \to \mathbf{P}^1$ is a holomorphic mapping. Then by the identity theorem, if $f^{-1}(\infty)$ does not consist of isolated points, then $f = \infty$ on all of X, because $f^{-1}(\infty)$ must contain a limit point. Hence either $f = \infty$ on X or $f: X \setminus f^{-1}(\infty) \to \mathbf{C}$ is a meromorphic function on X.

From now on, we identify meromorphic functions on X with their corresponding holomorphic mappings $f: X \to \mathbf{P}^1$.

Theorem 2.2.6. [LOCAL BEHAVIOR OF HOLOMORPHIC MAPPINGS]

Suppose that X, Y are Riemann surfaces and $f: X \to Y$ is a non-constant holomorphic mapping. Suppose that $a \in X$ and b = f(a). Then there exists an integer $k \ge 1$ and charts $\varphi : U \subset X \to V \subset \mathbf{C}$, $\psi: U' \subset Y \to V' \subset \mathbf{C}$ such that

- **1.** $a \in U$ with $\varphi(a) = 0$ and $b \in U'$ with $\psi(b) = 0$,
- **2.** $f(U) \subset U'$, and
- **3.** the map $f: \psi \circ f \circ \varphi^{-1}: V \subset \mathbf{C} \to V' \subset \mathbf{C}$ is given by $f(z) = z^k$ for all $z \in V$.

<u>Proof:</u> Let $\varphi_1 : U_1 \subset X \to V_1 \subset \mathbf{C}$ be a chart of X with $a \in U_1$, and $\psi_1 : U' \subset Y \to V' \subset \mathbf{C}$ be a chart of Y with $b \in U'$. If $\varphi(a) \neq 0$, replace φ by $\varphi_1 : U_1 \subset X \to (V_1 \setminus \varphi_1(a)) \subset \mathbf{C}$ so we may assume that $\varphi_1(a) = 0$.

Similarly, we may assume that $\psi(b) = 0$. We also need $f(U_1) \subset U'$. If $f(U_1) \not\subset U'$, replace (U_1, φ_1) by $(U_1 \cap f^{-1}(U'), \varphi_1|_{U_1 \cap f^{-1}(U')})$. The set $U_1 \cap f^{-1}(U')$ is open since f is holomorphic and so continuous. Hence we may assume that $f(U_1) \subset U'$. Next consider $f_1 = \psi \circ f \circ \varphi_1^{-1} : V_1 \subset \mathbf{C} \to V' \subset \mathbf{C}$. Since f is holomorphic and non-constant, we have that f_1 is a non-constant holomorphic function on \mathbf{C} . Then

$$f_1(0) = \psi \circ f(\varphi_1^{-1}(0)) = \psi(f(a)) = \psi(b) = 0,$$

so we may write $f_1(w) = w^k g(w)$ for some integer $k \ge 1$ and $g \in \mathcal{O}(V_1)$ with $g(0) \ne 0$. Since $g(0) \ne 0$, we can find a neighborhood W of 0 and $h \in \mathcal{O}(M)$ such that $h^k = g$ on W. Hence

$$f_1(w) = (wh(w))^k = (\alpha(w))^k \quad \forall \ w \in W \qquad \text{for} \qquad \begin{array}{ccc} \alpha : & W \subset \mathbf{C} & \to & \mathbf{C} \\ & w & \mapsto & wh(w) \end{array}$$

Note that α is holomorphic at $\alpha'(w) = h(w) + wh'(w)$, meaning that $\alpha(0) = h(0) \neq 0$, as $(h(0))^k = g(0) \neq 0$. So by the inverse function theorem, α is invertible with a holomorphic inverse in some neighborhood $V_2 \subset V_1$ of 0. Finally, define the objects

$$U = \varphi_1^{-1}(V_2)$$
 which is open,
 $V = \alpha(V_2)$ which is open since α is biholomorphic, and
 $\varphi = \alpha \circ (\varphi_1|_U) : U \subset X \to V \subset \mathbf{C}.$

Then (U_1, φ) and (U', ψ) satisfy conditions 1. and 2. For 3., note that

$$f(z) = \psi \circ f \circ \varphi^{-1}(z)$$

= $(\psi \circ f \circ \varphi_1^{-1})(\alpha^{-1}(z))$
= $f_1(\alpha^{-1}(z))$
= $\alpha(\alpha^{-1}(z))$
= z^k .

This completes the proof.

Remark 2.2.7. The above theorem tells us that for all $y \in U'$, $|f^{-1}(y) \cap U| = k$. We call k the *multiplicity* with which f takes the value at a.

Remark 2.2.8. Let X be a Riemann surface and $Y \subset X$ an open subset. Let $f \in M(Y)$. Then f can be identified with a holomorphic mapping $f : Y \to \mathbf{P}^1$. By the identity theorem, $f^{-1}(U)$ is an isolated set of points unless f = 0, so $1/f \in \mathcal{M}(Y)$. Further, p is a pole of f iff p is an isolated vero of multiplicity k where k is the integer appearing in the theorem. Hence the definition of poles coincides with the usual definition of poles of cemplex functions on **C**. This means that in particular meromorphic functions admit laurent series expansions after composing them with a chart. Let (U, φ) be a chart of Y containing a pole p of $f \in \mathcal{M}(Y)$. Then if $\varphi(p) = 0$, on $\varphi(U)$ we can write

$$f \circ \varphi^{-1}(z) = \sum_{j=-k}^{\infty} c_j z^j$$

Thus, for all $f, g \in \mathcal{M}(Y)$, $fg, f + g, 1/f \in \mathcal{M}(Y)$, so $\mathcal{M}(Y)$ is a field.

Theorem 2.2.9. [OPEN MAPPING THEOREM]

Let X, Y be Riemann surfaces and $f : X \to Y$ a non-constant holomrphic mapping. Then f is open (i.e. $f(U) \subset Y$ is open for all $U \subset X$ open).

Proof: Left as an exercise.

Corollary 2.2.10. Let X, Y be Riemann surfaces with X compact. If $f : X \to Y$ is a non-constant holomrphic mapping, then Y is compact and f is surjective.

<u>Proof:</u> Since f is open, f(X) is open in Y. Also, f(X) is compact in Y since f is continuous. Hence f(X) is closed in Y since Y is Hausdorff. So $f(X) \neq 0$, is open and closed in Y, which is connected. Therefore F(X) = Y and Y is compact.

Corollary 2.2.11. Every holomrphic function on a compact Riemann surface is constant.

Proof: Let $f: X \to \mathbf{C}$ be holomorphic. If f is not constant, then **C** is compact, a contradiction.

Corollary 2.2.12. [FUNDAMENTAL THEOREM OF ALGEBRA] If $f(z) = a_0 + a_1 z + \dots + a_n z^n$, then f has at least 1 zero.

<u>*Proof:*</u> Extend f to a holomorphic mapping $\mathbf{P}^1 \to \mathbf{P}^1$ by setting $f(\infty) = \infty$. Then $f : \mathbf{P}^1 \to \mathbf{P}^1$ is surjective since \mathbf{P}^1 is compact.

2.3 Meromorphic functions on Riemann surfaces

Proposition 2.3.1. Let $f \in \mathcal{M}(\mathbf{P}^1)$. Then f is rational (i.e. can be expressed as a quotient of polynomials).

<u>Proof:</u> Let $f \in \mathcal{M}(\mathbf{P}^1)$ and let's identify it with the corresponding holomrphic function $f : \mathbf{P}^1 \to \mathbf{P}^1$. Then \overline{f} can only have a finite number of poles (otherwise $f^{-1}(\infty)$ would be an infinite subset of \mathbf{P}^1 and so would have a limit point since \mathbf{P}^1 being compact implies $f = \infty$ by the identity theorem). Note that we can assume that none of the poles of f is ∞ (i.e. $\infty \notin f^{-1}(\infty)$), otherwise we just work with 1/f so that ∞ is now a zero. Let $a_1, \ldots, a_m \in \mathbf{C}$ be the poles of f. Then f admits a Laurent series expansion about each a_i which has principal part

$$h_i(z) = \sum_{j=-k_i}^{-1} (z - a_i)^j.$$

Then $g = f - (h_1 + \dots + h_m)$ is holomrphic on \mathbf{P}^1 , so g is constant since \mathbf{P}^1 is compact. Hence $f = c + (h - 1 + \dots + h_m)$ for all h_i rational. So f is rational.

Let $\Gamma = \{m\omega_1 + n\omega_2 : n, m \in \mathbb{Z}\}$ be a lattice in C. Let us describe meromorphic functions on the torus $X = \mathbb{C}/\Gamma$.

Definition 2.3.2. A meromorphic function $f : \mathbf{C} \to \mathbf{P}^1$ is called *doubly-periodic* with respect to Γ if $f(z + \omega) = f(z)$ for all $\omega \in \Gamma$.

Let $\pi : \mathbf{C} \to \mathbf{C}/\Gamma = X$ be the canonical map. Then if $f : \mathbf{C} \to \mathbf{P}^1$ is doubly-periodic with respect to Γ , it descends to the function $F : X \to \mathbf{P}^1$, where $f = F \circ \pi$. Then $F \in \mathcal{M}(X)$. Conversely, given any $F \in \mathcal{M}(X)$, $f := F \circ \pi$ is doubly-periodic with respect to Γ . The main point is making the identification

$$\mathcal{M}(\mathbf{C}/\Gamma) \quad \longleftrightarrow \quad \left(\begin{array}{c} \text{doubly periodic} \\ \text{functions wrt } \Gamma \end{array}\right)$$

Theorem 2.3.3.

1. Every holomrphic doubly-periodic $f : \mathbf{C} \to \mathbf{C}$ is constant.

2. Every non-constant doubly-periodic $f : \mathbf{C} \to \mathbf{P}^1$ is surjective.

<u>Proof:</u> 1. The map f corresponds to a holomorphic mapping $f : X = \mathbf{C}/\Gamma \to \mathbf{C}$ ond X is compact. 2. The map f corresponds to a non-constant holomorphic mapping $f : X \to \mathbf{P}^1$ with X compact.

3 Branched and unbranched coverings

3.1 Definitions

Definition 3.1.1. Let X, Y, Z be topological spaces and $p: Y \to X$ a continuous map. For all $x \in X$, $p^{-1}(x)$ is called the *fiber* of p over x. If $y \in p^{-1}(x)$, then y lies over x. If $p: Y \to X$ and $q: Z \to X$ are continuous, a continuous map $f: Y \to Z$ is *fiber-preserving* if $p = q \circ f$. That is, if for all $x \in X$, $f(p^{-1}(x)) \subset q^{-1}(x)$.

Recall that a subset $A \subset Y$ is called *discrete* if for all $a \in A$, there exists an open neighborhood V of a with $V \cap A = \{a\}$. Then $p: Y \to X$ is called *discrete* if every fiber $p^{-1}(x)$ is discrete in Y.

Theorem 3.1.2. Let X, Y be riemann surfaces and $p: Y \to X$ a non-constant holomorphic mapping. Then p is open and discrete.

<u>Proof:</u> The map p is open by the open mapping theorem. Also, suppose that p has a fiber $p^{-1}(x)$ that is not discrete. Then there exists $a \in A = f^{-1}(z)$ such that $V \cap (A \setminus \{a\}) \neq \emptyset$ for all open neighborhoods V of a. Hence a is a limit point of A, so f(y) = f(a) = x for all $y \in Y$ by the identity theorem.

Corollary 3.1.3. If Y is compact, then every fiber of $p: Y \to X$ is finite.

Proof: This follows as $p^{-1}(x)$ is discrete in Y and Y is compact.

Definition 3.1.4. Let X, Y be Riemann surfaces, and $p : X \to Y$ a non-constant holomorphic map. A point $y \in Y$ is called a *branch point* or *ramification point* of p if there does not exist an open neighborhood V of p with $p|_V$ injective. Also, p is *unbranched* if p has no branch points, and *branched at* y if y is a branch point.

The middle point above is a branch point.

Remark 3.1.5. Consider the map $\mathbf{C} \to \mathbf{C}$ given by $z \mapsto z^2$. This is branched at z = 0.

However, the map $p : \mathbf{C}^* \to \mathbf{C}^*$ with $z \mapsto z^2$ is unbranched, since $p'(z) = 2z \neq 0$ on \mathbf{C}^* . Hence p is locally invertible at every point on \mathbf{C}^* , so p is locally injective on \mathbf{C}^* . In general, $p : \mathbf{C} \to \mathbf{C}$ with $z \mapsto z^k$, for $k \ge 2$ is branched at z = 0 but unbranched away from z = 0. When k = 1, the map is unbranched everywhere on \mathbf{C} .

Example 3.1.6. The map exp : $\mathbf{C} \to \mathbf{C}^*$ is unbranched on \mathbf{C} , since $\exp'(z) = \exp(z) \neq 0$ on \mathbf{C} .

The map $\pi : \mathbf{C} \to \mathbf{C}/\Gamma$, where Γ is a lattice in \mathbf{C} , is also unbranched.

In general, let $p: Y \to X$ be any non-constant holomorphic map between Riemann surfaces X, Y. Then for all $y \in Y$, there exist charts (U, φ) of Y containing y and (U', ψ) of X containing p(y) such that $\psi \circ p \circ \varphi^{-1}(z) = z^k$. So y is a branch point iff $k \ge 2$.

Theorem 3.1.7. Let X, Y be Riemann surfaces and $p: X \to Y$ a non-constant holomorphic map. Then p is unbranched iff p is a local homeomorphism (i.e. for all $y \in Y$ there exists an open neighborhood V of y such that $p|_V: V \to p(V)$ is a homeomorphism).

<u>Proof</u>: Suppose that p is unbranched. Then for all $y \in Y$, there exists an open neighborhood V of y such that $p|_V : V \to p(V)$ is injective, so we have a well-defined inverse $(p|_V)^{-1} : p(V) \to V$. Now, $p|_V$ is continuous since p is holomorphic. Also, p is open by the open mapping theorem. So p(V) is open and for all $U \subset V$ open, $((p|_V)^{-1})^{-1}(U) = (p|_V)(U)$ is open since p is open. So $p|_V$ and $(p|_V)^{-1}$ are continuous, meaning that $p|_V$ is a homeomorphism. This implies that p is a local homeomorphism.

If p is a local homeomorphism, then p is locally injective, so p is unbranched.

3.2 Covering maps

Definition 3.2.1. Let X, Y be topological spaces. A mapping $p: X \to Y$ is called a *covering map* if for all $x \in X$ there exists an open neighborhood $U \subset X$ of x such that $p^{-1}(U) = \bigcup_{i \in J} V_i$, where

 $\cdot V_j \subset Y$ is open for all $j \in J$,

 $V_j \cap V_i = \emptyset$ if $j \neq i$, and

 $\cdot p|_{V_i}: V_j \to U$ is a homeomorphism for all $j \in J$.

In particular, p is a local homeomorphism. This is because for all $y \in Y$, if x = p(y), then $y \in V_j$ for some $j \in J$.

Example 3.2.2. The map $p: \mathbb{C}^* \to \mathbb{C}^*$ given by $z \mapsto z^k$ is a covering map. To see this, let $a \in \mathbb{C}^*$ and choose $b \in \mathbb{C}^*$ such that $b^k = a$. Let ω be a primitive root of unity. Then $p^{-1}(a) = \{b, b\omega, \dots, b\omega^{k-1}\}$, which are the k roots of $z^k - a$. But p is locally invertible, so we can find an open neighborhood V_0 of b in \mathbb{C}^* such that $p|_{V_0}: V_0 \to p(V_0)$ is biholomorphic. Set $V_j = \omega^j V_0 = \{\omega^j w : w \in V_0\} \subset \mathbb{C}$. Then $b\omega^j \in V_j$ for all j, and $p|_{V_j}: V_j \to p(V_0)$ is a homeomorphism for all j. Moreover, $a \in p(V_0)$ and $V_j \cap V_i = \emptyset$ if $i \neq j$, since $\omega^i \neq \omega^j$.

Note that $p(V_0) = U$ is open since p is an open map. Hence if we set $U = p(V_0)$, then U is an open neighborhood of a satisfying all the conditions of a covering map.

Example 3.2.3. The map exp : $\mathbf{C} \to \mathbf{C}^*$ is a covering map. To see this, choose $a \in \mathbf{C}^*$ and $b \in \mathbf{C}$ with $\exp(b) = a$. Since exp is locally invertible, there exists an open neighborhood V_0 of b such that $p|_{V_0} : V_0 \to p(V_0)$ is o homeomorphism. Then, set $V_m = V_0 + 2\pi i m$ for all $m \in \mathbf{Z}$, and $U = p(V_0)$. So $a \in p(V_0)$ is open and $p^{-1}(U) = \bigcup_{m \in \mathbb{Z}} V_m$ with $V_m \cap V_n = \emptyset$ if $m \neq n$, and $p|_{V_m} : V_m \to U$ is a homeomorphism.

The map $\pi : \mathbf{C} \to \mathbf{C}/\Gamma$ is also a covering map.

Remark 3.2.4. Although covering maps are local homeomorphisms. not every local homeomorphism is a covering map. For example, let $D = \{z \in \mathbb{C} : |z| = 1\} \subset \mathbb{C}$ and $i : D \hookrightarrow \mathbb{C}$ the inclusion map. This is not a covering map. To see this, let $a \in \mathbb{C}$. Then U = D and $p^{-1}(U) = D$ on D. If $n \notin \overline{D}$, then $p^{-1}(A) = \emptyset$.

But if $a \in \partial D$, then any open neighborhood U of a is such that $p^{-1}(U) \not\subset D$, so we cannot describe $p^{-1}(U)$ as a union of open sets U_j in D. Similarly, the map

For a small open neighborhood U of 1 in \mathbf{S}^1 , $\exp^{-1}(U)$ is the union of open sets in (0, 2), but some of these open sets map homeomorphically onto open sots in \mathbf{S}^1 that do not contain 1. Nonetheless, since $\exp'(z) \neq 0$ on (0, 2), exp is a local homeomorphism and is surjective. But it is not a covering map.

Theorem 3.2.5. Suppose X, Y are topological spaces with X connected. Let $p : X \to Y$ be a covering map. Then for all $x_0, x_1 \in X$, the fibers $p^{-1}(x_0)$ and $p^{-1}(x_1)$ have the same cardinality. In particular, if $y \neq \emptyset$, then p is surjective.

Before we begin the proof, let us define cardinality and look at some examples.

Definition 3.2.6. The cardinality of $p^{-1}(x)$ is the *number of sheets* of the covering map, and may be either finite or infinite.

Example 3.2.7. Consider the following map, which has infinitely many sheets.

Consider this map, which has k sheets.

$$p: \mathbf{C}^* \to \mathbf{C}^*$$

$$z \mapsto z^k$$

$$\vdots$$

p

<u>Proof:</u> (of Theorem 3.2.5) Let $x_0 \in X$. Then there exists an open neighborhood U of x_0 in X such that $p^{-1}(U) = \bigcup_{j \in J} V_j$ with $V_j \subset Y$ open, $V_i \cap V_j = \emptyset$ if $i \neq j$, and $p|_{V_j} : V_j \to U$ a homeomorphism for all $j \in J$. Then for all $x \in U$, there exists a unique $y_j \in V_j$ such that $p(y_j) = x$ with $y_j \neq y_i$ if $j \neq i$, as $V_i \cap V_j = \emptyset$. Therefore $|p^{-1}(x)| = |J|$ for all $x \in U$.

Let us now show that $|p^{-1}(x)| = |J|$ for all $x \in X$. Set $A = \{x \in X : |p^{-1}(x)| = |J|\}$. Then $A \neq \emptyset$ since $x_0 \in A$. Also, A is open. Indeed, for all $\tilde{x} \in A$, there exists an open neighborhood \tilde{U} of \tilde{x} in X such that $p^{-1}(\tilde{U}) = \bigcup_{j \in \tilde{J}} \tilde{V}_j$, with the \tilde{V}_j s satisfying the conditions of a covering map. Then $|p^{-1}(x)| = |\tilde{J}|$, implying that $|\tilde{J}| = |J|$. And as before, for all $x \in \tilde{U}$, $|p^{-1}(x)| = |\tilde{J}| = |J|$, implying that $\tilde{U} \subset A$, so A is open. Finally, $X = \bigcup U_{\tilde{J}}A_{\tilde{J}}$, where $A_{\tilde{J}} = \{x \in X : |p^{-1}(x)| = |\tilde{J}|\}$ with each $A_{\tilde{J}}$ open. Hence X = A since A is connected.

3.3 Proper holomorphic mappings

Definition 3.3.1. Let X, Y be Riemann surfaces. A holomorphic mapping $p : X \to Y$ is proper if $p^{-1}(K)$ is compact for all $K \subset X$ compact.

Example 3.3.2. Consider a map $p: Y \to X$ with Y compact. Then p is proper because for all $K \subset X$ compact, K is closed, so $p^{-1}(K)$ is closed in Y, hence compact, so $p^{-1}(K)$ is compact.

Consider the map $f : \mathbf{C} \to \mathbf{C}$ with $z \mapsto a$ for $a \in \mathbf{C}$. This map is not proper.

Proposition 3.3.3. Let X, Y be Riemann surfaces and $p: Y \to X$ a non-constant holomorphic mapping. Then

1. the set A of branch points of p is closed and discrete in Y.

Moreover, if p is proper, then

2. $p^{-1}(x)$ is finite for all $x \in X$,

3. p(D) is closed and discrete in X for any discrete closed set $D \subset Y$. In particular, B = p(A) is closed and discrete in X. And

4. if p is unbranched (so that $A = \emptyset$), then p is a covering map.

<u>Proof:</u> 1. Let $W = \{y \in Y : y \text{ is not a branch point of } p\}$. Then W is open. Indeed, if $y \in Y$, then there exists an open neighborhood V of y in Y such that $p|_V$ is injective. Hence p is not branched at any $y \in V$, so $V \subset W$. Therefore the set A of all branch points of p is $Y \setminus W$, which is closed. To see that A is discrete, recall that p is locally looks like $z \mapsto z^k$ with $k \ge 1$ (since p is non-constant). And the map $z \mapsto z^k$ has an isolated branch point, namely z = 0.

2. We have already seen that $p^{-1}(x)$ is a discrete subset of Y for all $x \in X$. But, $\{x\}$ is a compact subset of X, so $p^{-1}(x)$ is a compact, discrete subset by the preperness of p. Hence $p^{-1}(x)$ is finite.

3. Since p is open, p(D) is closed in X. Now, to prove that p(D) is discrete in X, it is enough to show that for all compact sets $K \subset X$, $p(D) \cap K$ is finite (otherwise $p(D) \cap K$ would have a limit point, since it would be an infinite subset of K, which is compact). But $p(D) \cap K = p(D \cap p^{-1}(K))$ and $p^{-1}(K)$ is compact by the properness of p. So $D \cap p^{-1}(K)$ is finite because D is discrete, and hence $p(D) \cap K = p(D \cap p^{-1}(K))$ is finite.

4. Suppose p is a proper and unbranched non-constant holomorphic map. We need to show that there exists an open neighborhood U of x in X such that $p^{-1}(U) = \bigcup_{j \in J} V_j$ with the V_j s satisfying the properties of a covering map. Before we proceed, we need a lemma.

Lemma 3.3.4. If $V \subset Y$ is an open neighborhood of $p^{-1}(x)$, then there exists an open neighborhood U of x in X such that $p^{-1}(U) \subset V$.

<u>Proof:</u> Since p is open, $p(Y \setminus V)$ is closed in X because $Y \setminus V$ is closed in Y. Set $U = X \setminus p(Y \setminus V)$. Then $x \in U$ since $x \notin p(Y \setminus V)$ (because $p^{-1}(x) \subset V$). Also, $p^{-1}(U) \subset V$ by definition of U.

Note that although p is open, so that p(V) is an open neighborhood of x in X, we may not have $p^{-1}(p(V)) \subset V$. We now return to the unfinished proof.

<u>Proof:</u> (of Proposition 3.3.3, 4. continued) First note that since p is proper, the fiber $p^{-1}(x)$ is finite. So $p^{-1}(x) = \{y_1, \ldots, y_n\}$ with $y_i \neq y_j$ if $i \neq j$. Since p is unbranched, it is a local homeomorphism, so there exists an open neighborhood W_j of y_j in Y such that

$$p|_{W_j}: W_j \xrightarrow{homeom.} p(W_j) = U_j$$

Note that $x = p(y_j) \in U_j$ for all j. Moreover, since Y is Hausdorff and the W_j s are open neighborhoods of the y_j s, which are pairwise distinct, we may assume that $W_i \cap W_j = \emptyset$ if $i \neq j$. Let $W = \bigcup_i W_i$, which is open, and $p^{-1}(x) = \{y_1, \ldots, y_n\} \subset W$. Note that although $x \in \bigcap_i U_i$, which is open in X, we may not have $p^{-1}(\bigcap_i U_i) \subset W$. But, by the lemma, there exists an open neighborhood U of x in X such that $p^{-1}(U) \subset W$. Set $V_j = p^{-1}(U) \cap W_j$. Then

 $\cdot V_j$ is open for all j,

 $V_{j} \cap V_{i} = \emptyset$ if $j \neq i$ because $W_{i} \cap W_{j} = \emptyset$, and

 $|v_{V_j} : V_j \to U$ is a homeomorphism because we assume that $p|_{W_j}$ is a homeomorphism. Hence p is a covering map. **Example 3.3.5.** Consider the map $\exp : \mathbf{C} \to \mathbf{C}^*$ given by $z \mapsto e^{2\pi i z}$. This is not a proper non-constant holomorphic map, because the fibers of exp are not finite. For example, $p^{-1}(1) = \mathbf{Z}$.

Definition 3.3.6. Let $p: Y \to X$ be a proper non-constant holomorphic map. Let A be the set of branch points of p in Y, and set $B = p(A) \subset X$, which is called the set of critical values.

Remark 3.3.7. Note that A and B are closed and discrete subsets of X and Y, respectively, by the proposition. Moreover, $p: Y' = Y \setminus A \to X \setminus B = X'$ is an unbranched non-constant holomorphic map. Then $p: Y' \to X'$ is a covering map by the proposition, and therefore has a well-defined finite number of sheets, say n. For every $y \in Y$, set v(p, y) = k, the multiplicity that p takes at y, so that k is a positive integer and p looks like $z \mapsto z^k$ in a neighborhood of y centered at y. Then, for all $c \in X$, set

The following theorem shows that $m_c = n$ for all $c \in X$.

Theorem 3.3.8. Let $p: Y \to X$ be a proper non-constant holomorphic map. Then there exists $n \in \mathbb{N}$ such that p takes every value $c \in X$, counting multiplicity, n times.

<u>Proof:</u> Let n be the number of sheets of the unbranched non-constant holomorphic map; $Y' \to X'$. Suppose that $b \in B \subset X$ is a critical value of p with $p^{-1}(b) = \{y_1, \ldots, y_r\}$, and $k_j = v(p, y_j)$. Then there exist open neighborhoods V_j of y_j in Y that are pairwise disjoint and are such that p looks like z^{k_j} an V_j . Then $p^{-1}(b) \subset V = \bigcap_i V_i$. Then by the lemma above, there exists an open neighborhood U of b in X such that $p^{-1}(U) \subset V$. Let $c \in U \cap Y'$. Then $p^{-1}(c) = \bigcup_i (p^{-1}(c) \cap V_j)$ with $p^{-1}(c) \cap V_i$ and $p^{-1}(c) \cap V_j$ disjoint if $i \neq j$. Then

$$|p^{-1}(c)| = \sum_{j=1}^{r} |p^{-1}(c) \cap V_j|$$
 and $|p^{-1}(c) \cap V_j| = k_j$,

since $y_j \notin (p^{-1}(c) \cap V_j)$ and $p|_{V_j}$ looks like $z \mapsto z^{k_j}$. Hence $k_1 + \cdots + k_r = |p^{-1}(c)| = n$, since $c \in Y'$.

Corollary 3.3.9. Let X be a compact Riemann surface. If $f \in M(X)$, then f has the same number of zeros as poles, counting multiplicities.

The above corolarry follows from properness.

Corollary 3.3.10. Let X be a compact Riemann surface. If there exists $f \in M(X)$ such that f has only one pole, and that pole has multiplicity 1, then $X \cong \mathbf{P}^1$.

4 Sheaves and analytic continuation

4.1 Sheaves

Definition 4.1.1. Let (X, τ) be a topological space. A *presheaf* of abelian groups on X is a pair (\mathcal{F}, ρ) consisting of

1. a family $\mathcal{F} = \{\mathcal{F}(U)\}_{U \in \tau}$ of abelian groups, and

2. a family $\rho = \{\rho_V^U\}_{U,V \in \tau, V \subset U}$ of group homomorphisms $\rho_V^U : \mathcal{F}(U) \to \mathcal{F}(V)$ such that $\rho_U^U = \operatorname{id}_{\mathcal{F}(U)}$ for all $U \in \tau$, and $\rho_W^V \circ \rho_V^U = \rho_W^U$ for all $U, V, W \in \tau$ and $W \subset V \subset U$.

Remark 4.1.2. One usually writes \mathcal{F} instead of (\mathcal{F}, ρ) . Further, the group homomorphisms ρ_V^U are called *restriction homomorphisms*. Instead of $\rho_V^U(f)$ for $f \in \mathcal{F}(U)$, we write $f|_V$. The elements of $\mathcal{F}(U)$ are called the *sections* of \mathcal{F} over U. If U = X, then \mathcal{F} is a global section of \mathcal{F} . Usually, we also set $\mathcal{F}(\emptyset) = \{0\}$.

Finally, we do not need to use abelian groups; we may also define presheaves of sets, rings, modules, etc.

Example 4.1.3. Consider the following examples of sheaves.

1. Let X be a topological space. Set $\mathcal{F}(U) = \{$ continuous functions on U for all open $U \subset X \}$. Set ρ_V^U to be the usual setriction functions, i.e. $\rho_V^U(f) = f|_V$.

2. Suppose X is a Riemann surface. Consider $\mathcal{O}(U)$, the holomorphic functions on U and ρ_V^U the usual restriction maps. Then \mathcal{O} is the presheaf of holomorphic functions on X. Similarly, we have \mathcal{O}^* the presheaf of nowhere-vanishing holomorphic functions on X, and $\mathcal{M}(U)$ and $\mathcal{M}^*(U)$.

Definition 4.1.4. Let \mathcal{F} be a presheaf on X. Then \mathcal{F} is called a *sheaf* of X if it satisfies the following properties for all open $U \subset X$ and open open cover $\{U_i\}_{i \in I}$:

1. Locality: If $f, g \in \mathcal{F}(U)$ are such that $f|_{U_i} = g|_{U_i}$ for all $i \in I$, then f = g.

2. Gluing: If $f_i \in \mathcal{F}(U_i)$ for all $i \in I$ such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, then there exists $f \in \mathcal{F}(U)$ such that $f|_{U_i} = f_i$ for all $i \in I$.

Note that the function f whose existence is assured by **2**. is uniquely determined by **1**.

Example 4.1.5. Consider the following examples of sheaves.

a. The presheaf of continuous functions on a topological space is a sheaf.

b. If X is a Riemann surface, then $\mathcal{O}, \mathcal{O}^*, \mathcal{M}, \mathcal{M}^*$ are sheaves.

c. Let X be a Riemann surface and $p \in X$. We define $\mathbf{C}_p(U) = \begin{cases} \mathbf{C} \ p \in U \\ 0 \ p \notin U \end{cases}$ to be the *skyscraper sheaf*. The restriction maps are the usual ones.

Remark 4.1.6. Note that not every presheaf is a sheaf. Take $X = \{x, y\}$ with the discrete topology. The open sets in X are $\emptyset, \{x\}, \{y\}, X$. We define the presheaf \mathcal{F} as follows:

Then \mathcal{F} is not a sheaf because axiom **1.** fails. Indeed, consider $U = X = \{x\} \cup \{y\} = U_1 \cup U_2$ and pick f = (a, b, c) and f' = (a, b, c') with $c \neq c'$, so $f \neq f'$. Then

$$f|_{\{x\}} = a = f'|_{\{x\}}$$
 and $f|_{\{y\}} = b = f'|_{\{y\}}$

but $f \neq f'$.

Example 4.1.7. For another example, consider $X = \mathbf{R}^1$ with the usual topology. Set $\mathcal{F}(U)$ to be the bounded continuous functions on U, and ρ_V^U the usual restriction functions. Then, although \mathcal{F} is a presheaf, it fails to satisfy axiom **2**. Indeed, taking $X = \bigcup_{i \in N} (-i, i) = U_i$ and $f_i(x) = x$, f_i is clearly bounded and contuous on U_i for all *i*. However, there does not exist $f \in \mathcal{F}(X)$ with $f|_{U_i} = f_i$, since the only function f such that $f|_{U_i} = f_i$ is f(x) = x, which is unbounded on $X = \mathbf{R}^1$.

4.2 Stalks

Definition 4.2.1. Let \mathcal{F} be a presheaf on a topological space $X \ni a$. Consider the formal disjoint union $\bigcup_{a \in U} \mathcal{F}(U)$, where the union is taken over every open neighborhood U of a. Introduce an equivalence relation on this disjoint union by letting, for U, V open neighborhoods of a with $f \in \mathcal{F}(U)$ and $g \in \mathcal{F}(V)$, $f \sim_a g$ iff there exists an open neighborhood W of a such that $W \subset (U \cap V)$ and $f|_W = g|_W$. Set the *stalk* of \mathcal{F} at a to be

$$\mathcal{F}_a = \left(\bigcup_{a \in U} \mathcal{F}(U)\right) / \sim_a .$$

Further, let $\rho_a: \mathcal{F}(U) \to \mathcal{F}_a$, given by $f \mapsto [f]$ for any open neighborhood U of a, be the germ of f at a.

Example 4.2.2. Consider the following examples.

a. If $\mathcal{F} = \mathcal{O}$ on a Riemann surface X, then $\mathcal{O}_a = \{\text{germs of holomorphic functions on X at } a\}$, for all $a \in X$. The same thing happens if we consider the sheaf of continuous, or C^{∞} , or $\mathcal{M}(X)$.

b. For $\mathcal{F} = \mathbf{C}_p$ the skyscraper sheaf, $(\mathbf{C}_p)_a = \begin{cases} \mathbf{C} & a = p \\ 0 & a \neq p \end{cases}$.

Note that by definition, if $\varphi \in \mathcal{F}_a$, then $\varphi = \rho_a(f)$ for some $f \in \mathcal{F}(U)$ with U an open neighborhood of a.

Definition 4.2.3. Let \mathcal{F} be a presheaf on X. Set $|\mathcal{F}| = \bigsqcup_{x \in X} \mathcal{F}_x$, the disjoint union of all the stalks, with map $p : |\mathcal{F}| \to X$ given by $\varphi \in \mathcal{F}_x \mapsto x$. We endow $|\mathcal{F}|$ with a topology as follows: for all $U \subset X$ open and $f \in \mathcal{F}(U)$, let $[U, f] = \{\rho_x(f) : x \in U\} \subset |\mathcal{F}|$ be open. Then note that

- $\cdot p([U, f]) = U$, and in fact $p|_{[U, f]} : [U, f] \to U$ is a bijection.
- \cdot if $[V,g] \subset [U,f]$ for $V \subset X$ open and $g \in \mathcal{F}(V)$, then $V \subset U$, as $V = p([V,g]) \subset p([V,f]) = U$.
- \cdot if $\varphi \in [U, f]$, then $\varphi = \rho_x(f)$ with $p(\varphi) = x \in U$.

Theorem 4.2.4. Let $B = \{[U, f] : U \subset X \text{ open and } f \in \mathcal{F}(U)\}$. Then

1. B is the basis of a topology on $|\mathcal{F}|$, and

2. $p: |\mathcal{F}| \to X$ is a local homeomorphism.

<u>Proof:</u> 1. We need to show that for all $\varphi \in |\mathcal{F}|$, there exists $[U, f] \in B$ with $\varphi \in [U, f]$. To see this, note that if $\varphi \in \mathcal{F}_x$, then there exists an open neighborhood U of x and $f \in \mathcal{F}(U)$ such that $\varphi = \rho_x(f) \in [U, f]$.

We also need to check that if $\varphi \in [U-f] \cap [V,g]$, then there exists $[W,h] \in B$ with $\varphi \in [W,h] \subset ([U,f] \cap [V,g])$. To see this, note that if $\varphi \in ([U,f] \cap [V,g])$, then $\varphi = \rho_x(f) = \rho_x(g)$ ot $x = p(\varphi)$. This means in particular that $x \in U \cap V$. We then have $\rho_x(f) = \rho_x(g)$, implying that $f \sim_a g$, so there exists an open neighborhood W of x such that $f|_W = g|_W = h$. Hence $\varphi = \rho_x(h) \in [W,h]$ and $\rho_y(h) = \rho_y(f) = \rho_y(g)$ for all $y \in W$, meaning that $[W,h] \subset ([U,f] \cap [V,g])$ Therefore B is the basis of a topology on $|\mathcal{F}|$.

2. Let us first check that $p : |\mathcal{F}| \to X$ is continuous. Let $U \subset X$ be open and pick $\varphi \in p^{-1}(U)$. Then $\varphi = \rho_x(f)$ for some $f \in \mathcal{F}(V)$, with V an open neighborhood of $x = p(\varphi) \in U$. Therefore $x \in (U \cap V)$ and $\varphi \in [U \cap V, f|_{U \cap V}]$. This is contained in $p^{-1}(U)$ since $p([U \cap V, f|_{U \cap V}]) = (U \cap V) \subset U$. Hence $p^{-1}(U)$ is open, so p is continuous.

To show that p is a local homeomorphism, let $\varphi \in |\mathcal{F}|$, and find an open neighborhood \tilde{U} of φ such that $p|_{\tilde{U}}$ is a homeomorphism. As before, $\varphi = \rho_x(f)$ for some $f \in \mathcal{F}(U)$ with U an open neighborhood of $x = p(\varphi)$. Then $\varphi \in [U, f]$ and $p|_{[U,f]} : [U, f] \to U$ is a continuous bijection. Also, $(p|_{[U,f]})^{-1} : U \to [U, f]$ is continuous, since for any $[V,g] \subset [U,f]$, we have that $((p|_{[U,f]})^{-1})^{-1}([V,g]) = p([V,g]) = V \subset U$, which is open in U.

Remark 4.2.5. If $f \in \mathcal{F}(U)$, then the map

$$\hat{f}: \begin{array}{ccc} U & \to & \mathcal{F} \\ & x & \mapsto & \rho_x(f) \end{array}$$

is continuous, with $p \circ \hat{f} = \mathrm{id}_U$. It is called a *section* of f over U.

Theorem 4.2.6. Let X be a Riemann surface. Then $|\mathcal{O}(X)| = |\mathcal{O}|$ is Hausdorff.

<u>Proof:</u> Let $\varphi_1, \varphi_2 \in |\mathcal{O}|$ be such that $\varphi_1 \neq \varphi_2$. Suppose that $p(\varphi_1) = x_1 \neq x_2 = p(\varphi_2)$, so $x_1, x_2 \in X$. So there exist disjoint open neighborhoods $U_1, U_2 \subset X$ of x_1, x_2 , respectively. Then $\varphi_i \in p^{-1}(U_i)$ for i = 1, 2 by continuity of $p : |\mathcal{O}| \to X$. But $p^{-1}(U_1) \cap p^{-1}(U_2) = \emptyset$, since $U_1 \cap U_2 = \emptyset$. Hence we can separate φ_1 and φ_2 .

If that case does not hold, we may suppose that $p(\varphi_1) = p(\varphi_2) = x$. Then there exist open neighborhoods U_i of x and $f_i \in \mathcal{O}(U_i)$ with $\varphi_i = \rho_x(f_1)$ for i = 1, 2. Then $\varphi_i \in [U_i, f_i]$ and $x \in U_1 \cap U_2$. Let U be the connected component of $U_1 \cap U_2$ containing x. Then $\varphi_i \in [U, f_i|_U] \in B$ for i = 1, 2. So the $[U, f_i|_U]$ are open neighborhoods of the φ_i s. Suppose that we do not have $[U, f_1|_U] \cap [U, f_2|_U] \neq \emptyset$. Then $\rho_y(f_1) = \rho_y(f_2)$ for some $y \in U$. Thus $f_1 \sim_y f_2$, implying that there exists an open neighborhood W of y such that $W \subset U$ and $f_1|_W = f_2|_W$. Then by the identity theorem, $f_1 = f_2$ on U, since U is connected (and therefore a Riemann surface). Hence $\varphi_1 = \rho_x(f_1) = \rho_x(f_2) = \varphi_2$, a contradiction. So the intersection is indeed empty. Therefore we can separate φ_1 and φ_2 , so the space is Hausdorff.

Theorem 4.2.7. Let X be a Riemann surface, Y a Hausdorff topological space, and $p: Y \to X$ a local homeomorphism. Then there exists a unique complex structure on Y such that p is holomorphic.

Corollary 4.2.8. Let X be a Riemann surface. Then there exists a unique complex structure on $|\mathcal{O}|$ such that $p : |\mathcal{O}| \to X$ is holomorphic. In fact, if Y is any connected component of $|\mathcal{O}|$, then Y is a Riemann surface and $p|_Y : Y \to X$ is an unbranched holomorphic mapping.

<u>Proof:</u> Let $y_0 \in Y$. Then there exists an open neighborhood $\tilde{U} \subset Y$ of y_0 such that $p|_{\tilde{U}} : \tilde{U} \to p(\tilde{U})$ is a homeomorphism. Now, $p(y_0) \in p(\tilde{U}) \subset X$, for $p(\tilde{U})$ open in X. Let $(\tilde{U}_1, \tilde{\varphi}_1)$ be a chart of X with $p(y_0) \in \tilde{U}_1$. Now set

$$\begin{aligned} U_1 &= U_1 \cap p(U) \subset X, \\ V &= \tilde{\varphi}_1(U_1) \subset \mathbf{C}, \\ \varphi_1 &= \tilde{\varphi}_1|_{U_1} : U_1 \subset X \to V \subset \mathbf{C}. \end{aligned}$$

Then (U_1, φ_1) is a chart of X with $p(y_0) \in U_1$. Set $U = p^{-1}(U_1)$. Then $p|_U : U \to U_1$ is a homeomorphism. Now, $\varphi = \varphi_1 \circ p : U \subset Y \to V \subset \mathbf{C}$ is a homeomorphism with $y_0 \in U$. Hence (U, φ) is a chart of Y with $y_0 \in U$. Given two such charts $(U, \varphi = \varphi_1 \circ p)$ and $(U', \psi = \psi_1 \circ p), \psi \circ \varphi^{-1} = (\psi_1 \circ p) \circ (p^{-1} \circ \varphi_1^{-1}) = \psi_1 \circ \varphi_1^{-1}$ is holomorphic. Hence $\{(U, \varphi)\}$ is a complex structure on Y.

Uniqueness is left as an exercise.

4.3 The Riemann surface of a holomorphic function

Suppose that f is a holomorphic function on an open set $U \subset \mathbf{C}$. What is the biggest subset of **C** in which f exists? In other words, what is the biggest subset $W \subset \mathbf{C}$ in which f can be extended holomorphically?

Remark 4.3.1. If W is a domain containing U, then such an extension must be unique by the identity theorem. Indeed, if f_1 and f_2 are extensions of f to W, then $f_1|_U = f = f_2|_U$, so $f_1 = f_2$, because U is connected. Then problem with such an extension is that it may lead to multivalued functions.

Example 4.3.2. Consider $f(z) = \sqrt{z}$ and pick the analytic branches. For $z = re^{i\theta}$,

$$f_1(z) = \sqrt{r}e^{i\theta/2}, \ \theta \in (-\pi, \pi)$$
 and $f_2(z) = \sqrt{r}e^{i\theta/2}, \ \theta \in (0, 2\pi).$

Note that $f_1(z)$ is not continuous along the negative x-axis, and $f_2(z)$ is not continuous along the positive x-axis. So we cannot piece them together to get an analytic function on \mathbf{C}^* because we will get a multivalued function. To reconcile this, we replace the complex plane by a potential domain of f by its graph. Let $w = \sqrt{z}$. Then set

$$S = \{(z,w) : z = w^2\} = \{(z,w) : p(z,w) = z - w^2 = 0\} \subset \mathbf{C}$$

with $\nabla p \neq 0$ on S. Then S is a Riemann surface, and f may be thought of as a projection of S onto the w-axis, $(z, w) \mapsto w$, which is single-valued.

Definition 4.3.3. Let X be a Riemann surface, and $u : [0,1] \to X$ a curve in X, with a = u(0) and b = u(1) (we assume u to be continuous). The holomorphic germ $\psi \in \mathcal{O}_b$ is said to be the result of an *analytic* continuation along the curve u of the holomorphic germ $\varphi \in \mathcal{O}_a$, if there exist:

- a partition $0 = t_0 < \cdots < t_n = 1$ of [0, 1],
- · connected open sets $U_i \subset X$ with $u([t_{i-1}, t_i]) \subset U_i$,
- $f_i \in \mathcal{O}(U_i)$ such that $\varphi = \rho_a(f_1), \ \psi = \rho_b(f_n)$, and $f_i|_{V_i} = f_{i+1}|_{V_i}$, where V_i is the connected component of $U_i \cap U_{i+1}$ containing $u(t_i)$

for all i, as in the diagram below.

Lemma 4.3.4. Let X be a Riemann surface and $u : [0,1] \to X$ a curve with a = u(0) and b = u(1). Then $\psi \in \mathcal{O}_b$ is the analytic continuation of $\varphi \in \mathcal{O}_a$ along u iff there exists a curve $\hat{u} : [0,1] \to |\mathcal{O}|$ such that $\hat{u}(0) = \varphi, \hat{u}(1) = \psi$, and $p \circ \hat{u} = u$ (that is, \hat{u} is a lifting of U to $p : |\mathcal{O}| \to X$).

 $\begin{array}{l} \underline{Proof:} \ (\Rightarrow) \ \text{Suppose that} \ \psi \in \mathcal{O}_b \ \text{is an analytic continuation of} \ \varphi \in \mathcal{O}_a \ \text{along} \ u. \ \text{Set} \ \hat{u}(t) = \rho_{u(t)}(f_i) \ \text{if} \\ \hline u(t_{i-1},t_i]) \subset U_i \ (\text{that is,} \ t \in [t_{i-1}t_i]). \ \text{Then} \ \hat{u} \ \text{is well-defined, since} \ f_i|_{V_i} = f_{i+1}|_{V_i} \ \text{for all} \ i. \ \text{Also,} \ \hat{u} \ \text{is continuous.} \ \text{It is enough to show that} \ \hat{u}^{-1}([U,f]) \subset [0,1] \ \text{is open for any} \ [U,f] \in B, \ \text{where} \ B \ \text{is the basis of} \ \text{the topology on} \ |\mathcal{O}|. \ \text{Let} \ t \in \hat{u}^{-1}([U,f]). \ \text{Then} \ \hat{u}(1) \in [U,f], \ \text{so} \ \rho_{u(t)}(f_i) = \hat{u}(t) \in [U,f]. \ \text{This implies that} \ \rho_{u(t)}(f_i) = \rho_{u(t)}(f) \ \text{with} \ u(t) \in U \ \text{(and} \ u(t) \in U_i), \ \text{so} \ f_i \sim_{u(t)} f. \ \text{Hence there exists an open neighborhood} \ W \ \text{of} \ u(t) \ \text{such that} \ W \subset (U_i \cap U) \ \text{and} \ f_i|_W = f|_W. \ \text{Therefore} \end{array}$

$$\rho_{u(s)}(f_i) = \rho_{u(s)}(f) \quad \forall \ s \in u^{-1}(W).$$
(1)

But, by continuity of $u, u^{-1}(W) \subset [0,1]$ is open. Then by (1), we have that $u^{-1}(W) \subset \hat{u}^{-1}([U,f])$ with $u^{-1}(W)$ an open neighborhood of t. Therefore $\hat{u}^{-1}([U,f])$ is open, so \hat{u} is continuous.

 (\Leftarrow) Suppose that $\hat{u}: [0,1] \to |\mathcal{O}|$ is a lifting of u, so that $\hat{u}(0) = \varphi$, $\hat{u}(1) = \psi$, and $p \circ \hat{u} = u$. Then for

all $t \in [0,1]$, we have that $\hat{u}(t) = \rho_{u(t)}(f_t)$ for some $f_t \in \mathcal{O}(U_t)$, with U_t an open neighborhood of u(t), so $\hat{u}(t) \in [U_t, f_t]$ for all $t \in [0,1]$. Hence $\{[U_t, f_t] : t \in [0,1]\}$ is an open cover of $\hat{u}([0,1]) \subset |\mathcal{O}|$. However, $\hat{u}([0,1])$ is compact since it is the continuous image of a compact set. Thus there exists a finite subcover $\{[U_i, f_i] : i = 1, \ldots, n\}$ of $\hat{u}([0,1])$, and a portition $0 = t_0 < \cdots < t_n = 1$ of [0,1] that satisfies the condition of analytic continuation along u. The rest of the details are left as an exercise.

Remark 4.3.5. The lemma tells us that there is a 1-1 correspondence between analytic continuation on S along curves in X, and curves in $|\mathcal{O}|$.

Theorem 4.3.6. [MONODROMY THEOREM]

Let X be a Riemann surface and $u_0, u_1 : [0,1] \to X$ holomorphic curves from a to b, such that there exists a continuous map : $[0,1] \times [0,1] \to X$ with $A(t,0) = u_0(t)$ and $A(t,1) = u_1(t)$ for all t, with fixed endpoints A(0,s) = a and A(1,s) = b. Set $u_s(t) = A(t,s)$, so it is a deformation retract of u_0 onto u_1 .

Suppose that $\varphi \in \mathcal{O}_a$ admits an analytic continuation along every curve u_s . Then the analytic continuations of φ along u_0 and u_1 yield the same germ $\psi \in \mathcal{O}_b$.

<u>Proof</u>: By the lemma, the analytic continuation of φ along u_s corresponds to the lift $\hat{u}_s : [0,1] \to |\mathcal{O}|$ with $\hat{u}_s(0) = \varphi$ and $p \circ \hat{u}_s = u_s$. Also, $\hat{u}_s(1) \in \mathcal{O}_b$, implying that $\hat{u}_s(1) \in p^{-1}(\{b\})$. Note that each \hat{u}_s lives in the connected component of $|\mathcal{O}|$ containing φ (since $\hat{u}_s(0) = \varphi$ for all s). Let Y be the connected component of $|\mathcal{O}|$ containing φ . Then Y is a Riemann surface and $p = p|_Y : Y \to X$ is an unbranched holomorphic map. Hence $\hat{u}_s(a) \in p^{-1}(\{b\})$ for all $s \in [0,1]$, and $p^{-1}(\{b\})$ is discrete. Therefore $A(\{1\} \times [0,1]) \subset p^{-1}(\{b\})$. But $A(\{1\} \times [0,1])$ is the continuous image of the connected set $\{1\} \times [0,1]$, so $A(\{1\} \times [0,1])$ is connected. Therefore $A(\{1\} \times [0,1]) = \{\psi\}$ for some $\psi \in \mathcal{O}_b$, since $p^{-1}(\{b\})$ is discrete. Therefore $\hat{u}_s(1) = \psi$ for all $s \in [0,1]$. ■

Definition 4.3.7. A topological space X is called *simply connected* if any two curves in X with the same initial point and the same endpoint are homotopic.

Example 4.3.8. Consider the following spaces:

C is simply connected,

 $\mathbf{P}^1 \cong S^2$ is simply connected,

 \mathbf{C}^* is not simply connected.

Corollary 4.3.9. Let $X \ni a$ be a simply connected Riemann surface and $\varphi \in \mathcal{O}_a$ a germ that admits an analytic continuation along any curve starting at a. Then there exists a globally-defined holomorphic function $f \in \mathcal{O}_{\ell}X$ such that $\rho_a(f) = \varphi$.

<u>Proof:</u> Since X is simply connected, any two curves in X with the same endpoints are homotopic. Therefore the analytic contuation of φ along the curves will yield the same germ $\psi_x \in \mathcal{O}_x$ (that is, analytic continuation is path independent) by the monodromy theorem. Set $f(x) = \psi_x(x)$, so $\psi_x = [g]$ for some holomorphic

function $g \in \mathcal{O}(U)$, with U an open neighborhood of x. Then $\psi_x(x) = g(x)$ is well-defined, becaues if $g \sim_x g'$ for some $g' \in \mathcal{O}(U')$, with U' and open neighborhood of x, then there exists an open neighborhood W or x with $W \subset (U \cap U')$ and $g|_W = g'|_W$, meaning that g(x) = g'(x).

So we have that f is holomorphic at x. Let us check that f is holomorphic at any $x \in X$. So $f(x) = \psi_x(x)$ with ψ_x the analytic continuation of φ along a curve $u : [0, 1] \to X$ from a to x. This analytic continuation is given by a partition $0 = t_0 < \cdots < t_n = 1$ of [0, 1], connected open sets $U_i \subset X$ and $f_i \in \mathcal{O}(U_i)$. Note that we have $\psi_x = \rho_x(f_n)$.

Next, we claim that $\psi_{x'} = \rho_{x'}(f_n)$ for all $x' \in U_n$, f is given by f_n in U_n , and so f is holomorphic on U_n and at x. To see this, for all $x' \in U_n$ consider the curve

$$\begin{aligned} \hat{u}: & [0,1] \to X \\ t & \mapsto \begin{cases} u(t) & \text{if } t \in [0, t_{n-1}] \\ v(t) & \text{if } t \in [t_{n-1}, t_n] \end{cases} . \end{aligned}$$

So the partition $0 = t_0 < \cdots < t_n = 1$, the connected open sets $U_i \subset X$, and the $f_i \in \mathcal{O}(U_i)$ will determine the analytic continuation of φ along \hat{u} , which must be ψ_x , since analytic continuation is path independent in X. This proves the claim and the theorem.

Note that in general, if X is not simply connected, then analytic continuation along two curves with the same initial point and the same endpoint may yield non-identical germs.

Example 4.3.10. Consider the function $f(z) = \sqrt{z}$. Near 1, we can analytically continue

Along γ_1 , using U_1 and U_2 as indicated, we gut

$$f_1(z) = r^{1/2} e^{i\theta/2}, \ \theta \in (-\pi, \pi)$$
 and $f_2(z) = r^{1/2} e^{i\theta/2}, \ \theta \in (0, 2\pi)$

meaning that $\psi = (-1)^{1/2} = i$. However, along γ_2 , using the indicated U_1 and U_2 , while we get the same f_1 , for f_2 we have $f_2 = r^{1/2} e^{i\theta/2}$ for $\theta \in (-2\pi, 0)$, meaning that $\psi = (-1)^{1/2} = -i$. Thus, if we consider all the germs obtained by analytic continuation, we get a multivalued function.

Remark 4.3.11. Recall that if $p: Y \to X$ is an unbranched holomorphic map between Riemann surfaces, then for all $s \in Y$, there exists an open neighborhood V of y such that $p' = p|_V : V \to p(V) \subset X$ is biholomorphic. We define

which are well-defined isomorphisms. Note that by definition, $p^*([y]) = [u \circ p]$, which can be written as $p^*(\rho_{p(y)}(g)) = \rho_y(g \circ p) = \rho_y(p^*(g))$. Similarly, $p_*([h]) = [h \circ (p|_V)^{-1}]$ can be written as $p_*(\rho_y(h)) = \rho_{p(y)}((p^{-1})^*(h))$.

4.4 Analytic continuation

Definition 4.4.1. Let $X \ni a$ be a Riemann surface and $\varphi \in \mathcal{O}_a$. A 4-tuple (Y, p, F, b) is called an *analytic* continuation of φ if

i. Y is a Riemann surface and $p: Y \to X$ is an unbranched holomorphic map,

- **ii.** F is a holomorphic function on Y, and
- iii. $b \in Y$ is such that p(b) = a and $p_*(\rho_b(F)) = \varphi$.

Theorem 4.4.2. Analytic continuations always exist.

<u>Proof</u>: Take Y to be the connected component of $|\mathcal{O}|$ containing φ and $p = p|_Y : Y \to X$ given by $\varphi \in \mathcal{O}_x \mapsto x = p(\varphi)$. For η a germ, set

$$F: Y \subset |\mathcal{O}| \to \mathbf{C}$$

 $\eta \mapsto \eta(p(\eta))$

We claim that F is holomorphic. Let $(U, \varphi = \varphi_1 \circ p|_U)$ be a chart on Y, where $(p(U), \varphi_1)$ is a chart on X. We want to show that $F \circ \varphi^{-1} : \varphi(U) \subset \mathbf{C} \to \mathbf{C}$ is holomorphic. So let $\eta \in U$. Then there exists $[V, f] \in B$ (the basis of topology on a set of germs $|\mathcal{O}|$) with $\eta \in [V, f] = \{\rho_x(f) : x \in V\}$. Then $[V, f] \subset U$ WLOG, since U is generated by X. Then for al $\alpha \in [V, f], \alpha = \rho_{p(\alpha)}(f)$ and $\alpha(p(\alpha)) = f(p(\alpha))$. Hence $F(\alpha) = f \circ p(\alpha)$, so $F = p^*(f)$ on [V, f], telling us that $f = (p^{-1})^*(F)$ on V. Then

$$F \circ \varphi^{-1} = F \circ (\varphi_1 \circ p)^{-1} = (F \circ p^{-1}) \circ \varphi_1^{-1} = (p^{-1})^* (F) \circ \varphi_1^{-1} = f \circ \varphi_1^{-1},$$

which is holomorphic, since $f \in \mathcal{O}(V)$. This proves the claim. Finally, set $b = \varphi$. Then (Y, p, F, b) is an analytic continuation of φ because $p_*(\rho_b(F)) = \rho_{p(b)}((p^{-1})^*(F)) = \rho_a(f) = \varphi$.

Example 4.4.3. The elements in the diagram

describe an analytic continuation of the germ of $f(z) = \sqrt{z}$ at any point.

Lemma 4.4.4. Let $X \ni a$ be a Riemann surface with $\varphi \in \mathcal{O}_a$ and (Y, p, F, b) an analytic continuation of φ . If $v : [0,1] \to Y$ is any curve with v(0) = b, v(1) = y, then $\psi = p_*(\rho_y(F)) \in \mathcal{O}_{p(y)}$ is an analytic continuation of φ along $u = p \circ v$.

<u>Proof:</u> We have u(t) = p(v(t)) for all $t \in [0, 1]$. For every $t \in [0, 1]$, let $\hat{u}(t) = p_*(\rho_{v(t)}(F)) \in \mathcal{O}_{p(v(t))} = \mathcal{O}_{v(t)}$. Then $\hat{u}(0) = p_*(\rho_{v(0)}(F)) = p_*(\rho_b(F)) = \varphi$, by the definition of (Y, p, F, b), and $\hat{u}(1) = p_*(\rho_{v(1)}(F)) = \psi$. One can check that \hat{u} is continuous (as in the previous lemma). And $p \circ \hat{u} = u$, so \hat{u} is a lift of u, meaning that ψ corresponds to analytic continuation of φ along u.

Remark 4.4.5. The lemma tells us that we recover the notion of analytic continuation along a curve from the definition of analytic continuation.

Definition 4.4.6. An analytic continuation (Y, p, F, b) is called *maximal* if it has the following universal property: if (Z, q, G, c) is any other analytic continuation of φ , then there exists a fiber-preserving holomorphic map $\alpha : Z \to Y$ such that $\alpha(c) = b$, $\alpha^*(F) = G$, and the diagram below commutes.

Theorem 4.4.7. Maximal analytic continuations always exist. They are in fact given by the 4-tuple (Y, p, F, b) where Y is the connected component of $|\mathcal{O}|$ containing φ , and the rest of the conditions as in the previous theorem.

Example 4.4.8. The diagram

describes an analytic continuation of the germ of f at any point $a \in \mathbb{C}^*$. Note that we have the diagram

commuting.

5 Section 5

5.1 Calculus on Riemann surfaces

Definition 5.1.1. On C, let $U \subset C$ be open. We identify C with \mathbb{R}^2 by writing z = x + iy, where (x, y) are the coordinates of \mathbb{R}^2 . Define

$$\mathcal{E}(U) = \{ f : U \to \mathbf{C} : f \text{ is } \infty \text{-differentiable with respect to } x, y \}.$$

Then $\mathcal{E}(U)$ is a **C**-algebra, and also, in particular, an abelian group. Set $\mathcal{E} = (\mathcal{E}(U), \rho)$, where ρ is the natural restriction of functions. Then \mathcal{E} is a sheaf, called the *sheaf of differentiable functions* on **C**. Here

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$

Further, $\mathcal{O}(U) = \ker(\frac{\partial}{\partial z} : \mathcal{E}(U) \to \mathcal{E}(U))$. In fact, \mathcal{O} is the kernel of the map of sheaves $\frac{\partial}{\partial z} : \mathcal{E} \to \mathcal{E}$. Now we can extend these differential operators to any Riemann surface via charts.

Definition 5.1.2. Let X be a Riemann surface and $Y \subset X$ an open subset. A function $f: Y \to \mathbf{C}$ is said to be *differentiable* on Y if for all charts $\varphi: U \subset Y \to V \subset \mathbf{C}$ on X, $f \circ \varphi^{-1}: V \to \mathbf{C}$ is in $\mathcal{E}(U)$. Note that U, V are open.

Remark 5.1.3. Note that:

- · Holomorphic functions are differentiable, since $\mathcal{O}(V) \subset \mathcal{E}(V)$.
- The sum, product, and composition of differentiable functions is differentiable.
- · We only need to check is f is differentiable on a set of charts $\{(U_{\alpha}, \varphi_{\alpha})\}$ such that $X = \bigcup_{\alpha} U_{\alpha}$. Indeed, if

 (U, φ) is another chart, then $U \cap U_{\alpha} \neq \emptyset$ for some α and $\varphi_{\alpha} \circ \varphi^{-1}$ is holomorphic on U, so $\varphi_{\alpha} \circ \varphi^{-1} \in \mathcal{E}(\varphi(U))$. Hence

$$f \circ \varphi^{-1} = \underbrace{\left(f \circ \varphi_{\alpha}^{-1}\right)}_{\in \mathcal{E}(\varphi_{\alpha}(U_{\alpha}))} \circ \underbrace{\left(\varphi_{\alpha} \circ \varphi_{\alpha}\right)}_{\in \mathcal{E}(\varphi(U))}$$

so $f \circ \varphi^{-1} \in \mathcal{E}(\varphi(U))$. Let (U, φ) be a chart on X and $f \in \mathcal{E}(U)$. Suppose that $\varphi = z = x + iy$, where $x = \operatorname{Re}(\varphi)$ and $y = \operatorname{Im}(\varphi)$, since $\varphi : U \to \mathbb{C}$.

Definition 5.1.4. Define $\frac{\partial f}{\partial x}$ as below, and similarly define $\frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial \overline{z}}$

$$\frac{\partial f}{\partial x} = \varphi^* \left(\frac{\partial}{\partial x} (f \circ \varphi^{-1}) \right).$$

Note that as on **C**, the differential operators $\frac{\partial}{\partial x}$, etc, are **C**-linear and admit the usual product and chain rules. Further, let $a \in X$. Then

 $\mathcal{E}_a = \{ \text{germs of differentiable functions on } X \text{ at } a \},\$

$$m_a = \{ \eta \in \mathcal{E}_a : \eta \text{ is the germ of a differentiable function that vanishes at } a \},$$
$$m_a^2 = \left\{ \eta \in m_a : \eta = [f] \text{ with } \frac{\partial f}{\partial x} a = \frac{\partial f}{\partial y}(a) = 0 \text{ in any chart } (U \ni a, \varphi = x + iy) \right\}$$

 $= \{ \text{germs of differentiable functions that vanish to 2nd order at } a \}.$

Note that \mathcal{E}_a , m_a , and m_a^2 are C-vector spaces with m_a a subspace of \mathcal{E}_a and m_a^2 a subspace of m_a .

Proposition 5.1.5. The definition of m_a^2 is independent of the representative f of η and of the chart $(U \ni a, \varphi)$.

<u>Proof:</u> Suppose that $\eta = [f] = [g]$ with $f \in \mathcal{O}(U)$ and $g \in \mathcal{O}(V)$, where U, V are open sets containing a. Then $f \sim_a g$, implying that there exists an open set $W \subset U \cap V$ with $a \in W$ such that $f|_W = g|_W$. Then $(\partial f/\partial x)(a) = (\partial g/\partial x)(a)$ (and similarly for y). If $(U', \varphi' = z' = x' + iy')$ is another chart with $a \in U'$, then

$$\frac{\partial f}{\partial x'}(a) = \frac{\partial f}{\partial x}(a)\frac{\partial f}{\partial x'}(a) + \frac{\partial f}{\partial y}(a)\frac{\partial f}{\partial y'}(a) = 0.$$

Definition 5.1.6. The quotient vector space $T_a^{(1)} = m_a/m_a^2$ is called the *cotangent space* of X at a, and the elements of $T_a^{(1)}$ are called *cotangent vectors* to X at a. Also, if U is an open neighborhood of a and $f \in \mathcal{E}(U)$, then the differential of f at a is the element

 $d_a f = [f - f(a)] \mod m_a^2.$

Note that $[f - f(a)] \in m_a$ since (f - f(a))(a) = 0.

Theorem 5.1.7. Let $(U, \varphi = z = x + iy)$ be a chart with $a \in U$. Then $\{d_a x, d_a y\}$ is a basis of $T_a^{(1)}$, and so is $\{d_a z, d_a \overline{z}\}$. Moreover, if $f \in \mathcal{E}(U)$, then

$$d_a f = \frac{\partial f}{\partial x}(a)d_a x + \frac{\partial f}{\partial y}(a)d_a y$$
 and $d_a f = \frac{\partial f}{\partial z}(a)d_a z + \frac{\partial f}{\partial \overline{z}}(a)d_a \overline{z}.$

<u>Proof:</u> So we first show that $T_a^{(1)} = \operatorname{span}_{\mathbf{C}} \{ d_a x, d_a y \}$. Let $t \in T_a^{(1)}$, and suppose that $t = \varphi \mod m_a^2$ for some $\varphi \in m_a$. Also, $\varphi = [f]$ with $f \in \mathcal{E}(U)$ and f(a) = 0. Then by Taylor around a,

$$\varphi = [f]$$

$$= \underbrace{[c_1(x - x(a)) + c_2(y - y(a))]}_{\in m_a} + \underbrace{(\text{higher order terms})}_{\in m_a^2}$$

$$= [c_1(x - x(a)) + c_2(y - y(a))] \mod m_a^2,$$

with $c_1, c_2 \in \mathbb{C}$. Hence $t = c_1 d_a x + c_2 d_a y$. Now we need to show that $d_a x$ and $d_a y$ are linearly independent. Suppose that $c_1, c_2 \in \mathbb{C}$ are such that $c_1 d_a x + c_2 d_a y = 0$. Set $f = c_1(x - x(a)) + c_2(y - y(a))$. Then f(a) = 0, and $(\partial f/\partial x)(a) = c_1$ and $(\partial f/\partial y)(a) = c_2$. So $f \in m_a^2$ iff $c_1 = c_2 = 0$, but $f \in m_a^2$ iff $c_1 d_a x + c_2 d_a y = 0$. Hence $d_a x, d_a y$ are linearly independent. Next, note that if $f \in \mathcal{E}(U)$ then

$$[f - f(a)] = \left[\frac{\partial f}{\partial x}(a)(x - x(a)) + \frac{\partial f}{\partial y}(a)(y - y(a))\right] + (\text{higher order terms}),$$

 \mathbf{so}

$$d_a f = \frac{\partial f}{\partial x}(a)[x - x(a)] + \frac{\partial f}{\partial y}(a)[y - y(a)] \mod m_a^2 = \frac{\partial f}{\partial x}(a)d_a x + \frac{\partial f}{\partial y}(a)d_a y.$$

The proof is similar for $d_a z$ and $d_a \overline{z}$.

Remark 5.1.8. If we think of X as a 2-dimensional real manifold, then $T_a^{(1)} = (T_a^*X) \otimes \mathbf{C}$. That is, $T_a^{(1)}$ is the complexification of $T_a^*X = \operatorname{span}_{\mathbf{R}}\{d_a x, d_a y\}$.

Definition 5.1.9. Suppose that $(U, \varphi = z)$ is local chart with $a \in U$. By the above theorem, we have that $T_a^{(1)} = \operatorname{span}_{\mathbf{C}} \{ d_a z, d_a \overline{z} \}$. Set

$$T_a^{1,0} = \operatorname{span}_{\mathbf{C}} \{ d_a z \} = \text{ cotangent vectors of type } (1,0), \text{ and}$$
$$T_a^{0,1} = \operatorname{span}_{\mathbf{C}} \{ d_a \overline{z} \} = \text{ cotangent vectors of type } (0,1),$$

with $T_a^{(1)} = T_a^{1,0} \oplus T_a^{0,1}$. Note that this definition is independent of the local chart (U,φ) . Indeed, let $(U',\varphi'=z')$ be another chart with $a \in U'$. Then $d_a z' = (\partial z'/\partial z)(a)d_a z + (\partial z'/\partial \overline{z})(a)d_a \overline{z}$, but

$$\frac{\partial z'}{\partial \overline{z}} = \varphi^* \left(\frac{\partial (z' \circ \varphi^{-1})}{\partial z} \right) = \varphi^* \left(\frac{\partial (\varphi' \circ \varphi^{-1})}{\partial z} \right) = \varphi^*(0)$$

since $\varphi' \circ \varphi^{-1}$ is holomorphic. So $\partial z'/\partial \overline{z} = \varphi^*(z) = 0$. Therefore $\alpha = (\partial z'/\partial z)(a) \in \mathbf{C}$, implying that $T_a^{1,0} = \operatorname{span}_{\mathbf{C}} \{ d_a z' \}$. Similarly, $T_a^{0,1} = \operatorname{span}_{\mathbf{C}} \{ d_a \overline{z'} \}$.

Definition 5.1.10. Suppose that Y is an open subset of a Riemann surface X. A differential form of degree 1 (or a 1-form) on Y is a mapping $\omega: Y \to \bigcup_{a \in Y} T_a^{(1)}$, with $\omega(a) \in T_a^{(1)}$ for all $a \in Y$. If $\omega(a) \in T_a^{1,0}$ for all $y \in Y$, then ω is a 1-form of type (1,0) or a (1,0)-form. Similarly if $\omega(a) \in T_a^{0,1}$ for all $y \in Y$.

Remark 5.1.11. Note that any 1-form ω on Y may be written as $\omega = fdx + gdy$, where $f, g: Y \to \mathbb{C}$ are defined as $f(a) = c_1$ and $g(a) = c_2$, if $\omega(a) = c_1 d_a x + c_2 d_a y$. However, f, g may not ever be continuous.

Definition 5.1.12. A 1-form on Y is called *differentiable* (resp. holomorphic) if, with respect to any chart $(U, \varphi = z)$, ω may be written as $\omega/fdz + gd\overline{z}$ on $U \cap Y$, with $f, g \in \mathcal{E}(U \cap Y)$ (resp. $\omega = fdz$ on $U \cap Y$ with $f \in \mathcal{O}(U \cap Y)$). We introduce the following notation:

 $\mathcal{E}^{(1)}(Y) = \{ \text{differentiable 1-forms on } Y \}, \\ \mathcal{E}^{1,0}(Y) = \{ \text{differentiable } (1,0)\text{-forms on } Y \}, \\ \mathcal{E}^{0,1}(Y) = \{ \text{differentiable } (0,1)\text{-forms on } Y \}, \\ \Omega(Y) = \{ \text{holomorphic 1-forms on } Y \}.$

These sets, with the natural restriction of functions, gives sheaves $\mathcal{E}^{(1)}$, $\mathcal{E}^{1,0}$, $\mathcal{E}^{0,1}$, Ω .

Example 5.1.13. Consider the following examples of forms on C:

$$\omega = z\overline{z}dz - 3d\overline{z} \in \mathcal{E}^{(1)}(\mathbf{C}),$$

$$\omega = z\overline{z}dz \in \mathcal{E}^{1,0}(\mathbf{C}) \setminus \Omega(\mathbf{C}),$$

$$\omega = zdz \in \Omega(\mathbf{C}).$$

If $f \in \mathcal{E}(Y)$, then for $df(a) = d_a f$,

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}} \in \mathcal{E}^{(1)}(Y).$$

5.2 Exterior differentiation

Definition 5.2.1. Let V be a vector space over **C**. Then $\bigwedge^2 V$ is a vector space over **C** whose elements are finito sums of elements of the forms $v_1 \land v_2$, for $v_1, v_2 \in V$ satisfying the following rules, for all $v_1, v_2, v_3 \in V$ and $\lambda \in \mathbf{C}$:

$$(v_1 + v_2) \wedge v_3 = v_1 \wedge v_2 + v_3 \wedge v_3$$
$$(\lambda v_1) \wedge v_2 = \lambda(v_1 \wedge v_2) = v_1 \wedge (\lambda v_2)$$
$$v_1 \wedge v_2 = -v_2 \wedge v_1$$

Remark 5.2.2. By the 3rd property above, $v \wedge v = -v \wedge v$, so $v \wedge v = 0$ for all $v \in V$. Next, suppose that $\dim(V) = 2$ and $V = \operatorname{span}_{\mathbb{C}}\{e_1, e_2\}$. Then for all $v, v' \in V$, $v = a_1e_1 + a_2e_2$ and $v' = a'_1e_1 + a'_2e_2$, with $a_i, a'_i \in \mathbb{C}$, meaning that

$$v \wedge v' = (a_1e_1 + a_2e_2) \wedge (a'_1e_1 + a'_2e_2) = (a_1a'_2 - a_2a'_1)e_1 \wedge e_2.$$

Therefore $\bigwedge^2 V = \operatorname{span}_{\mathbf{C}} \{ e_1 \wedge e_2 \}$ and $\dim_{\mathbf{C}} (\bigwedge^2 V) = 1$.

Now let us consider $V = T_a^{(1)}$, the cotangent space of a Riemann surface X at $a \in X$. We set $T_a^{(2)} = \bigwedge^2 T_a^{(1)}$. Let $(U, \varphi = z = x + iy)$ be a chart with $a \in U$. Then

$$T_a^{(2)} = \operatorname{span}_{\mathbf{C}} \{ d_a x \wedge d_a y \} = \operatorname{span}_{\mathbf{C}} \{ d_a z \wedge d_a \overline{z} \}.$$

Note that $d_a z \wedge d_a \overline{z} = -2id_a x \wedge d_a y$, since $d_a z = d_a (x + iy) = d_a x + id_a y$ and $d_a \overline{z} = d_a (x - iy) = d_a x - id_a y$.

Definition 5.2.3. Suppose that Y is an open subset of a Riemann surface X. A differential of degree 2, or a 2-form on Y, is a map $\omega : Y \to \bigcup_{a \in Y} T_a^{(2)}$, with $\omega(a) \in T_a^{(2)}$ for all $a \in Y$. Further, if $(U, \varphi = z)$ is a local chart on X, then ω may be written as $\omega = fdz \wedge d\overline{z}$, where $\omega(a) = f(a)d_az \wedge d_a\overline{z}$ for all $a \in U \cap Y$ (so $f : U \cap Y \to \mathbf{C}$). If $f \in \mathcal{E}(U \cap Y)$, then ω is called a differentiable 2-form on $U \cap Y$. We set

 $\mathcal{E}^{(2)}(Y) = \{ \text{differentiable 2-forms on } Y \},\$

and get a corresponding sheaf $\mathcal{E}^{(2)}$.

Example 5.2.4. Consider the following examples of 2-forms.

· On **C**, $\omega = 2z\overline{z}dz \wedge d\overline{z} \in \mathcal{E}^{(2)}(\mathbf{C}).$

If $\omega_1, \omega_2 \in \mathcal{E}^{(1)}(Y)$, then $\omega_1 \wedge \omega_2$ is a differentiable 2-form on Y, defined as $(\omega_1 \wedge \omega_2)(a) = \omega_1(a) \wedge \omega_2(a)$, for all $a \in Y$. For example, on **C**, if $\omega_1 = 2\overline{z}dz$ and $\omega_2 = \sin(\overline{z})dz - 3e^z d\overline{z}$, then

$$\omega_1 \wedge \omega_2 = -(2\overline{z})(3e^z)dz \wedge d\overline{z}.$$

Similarly, for $x = r \cos(\theta)$ and $y = r \sin(\theta)$, we have that

$$dx = dr(\cos(\theta)) + r(-\sin(\theta))d\theta = \cos(\theta)dr - r\sin(\theta)d\theta$$
$$dy = dr(\sin(\theta)) + r\cos(\theta) = \sin(\theta)dr + r\cos(\theta)d\theta.$$

So $dx \wedge dy = rdr \wedge d\theta$.

Definition 5.2.5. Let $Y \subset X$ be an open subset of a Riemann surface X. We have seen the following maps:

We can extend these differential operators to $\mathcal{E}^{(1)}(Y)$ as follows. Let $(U, \varphi = z = x + iy)$ be a chart. Set $\omega = f dx + g dy = a dz + b d\overline{z}$, so then

$$d\omega = df \wedge dx + dg \wedge dy = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy = \left(\frac{\partial a}{\partial x} - \frac{\partial b}{\partial y}\right) dz \wedge d\overline{z},$$

$$\partial\omega = \partial a \wedge dz + \partial b \wedge d\overline{z} = \frac{\partial b}{\partial z} dz \wedge d\overline{z},$$

$$\overline{\partial}\omega = \overline{\partial}a \wedge dz + \overline{\partial}b \wedge d\overline{z} = -\frac{\partial a}{\partial z} dz \wedge d\overline{z}.$$

Proposition 5.2.6. For $f \in \mathcal{E}(Y)$ and $\omega \in \mathcal{E}^{(1)}(Y)$, we have that

$$d(df) = \partial(\partial f) = \overline{\partial}(\overline{\partial}f) = 0,$$

$$d\omega = \partial\omega + \overline{\partial}\omega,$$

$$d(f\omega) = df \wedge \omega + f d\omega.$$

Definition 5.2.7. A differentiable function $\omega \in \mathcal{E}^{(1)}(Y)$ is called *d*-closed (resp. $\overline{\partial}$ -closed) if $d\omega = 0$ (resp. $\overline{\partial}\omega = 0$). Further, ω is called *d*-exact (resp. $\overline{\partial}$ -exact) if $\omega = df$ (resp. $\omega = \overline{\partial}f$) for some $f \in \mathcal{E}(Y)$.

Note that if ω is *d*-exact, then $d\omega = 0$ since $\omega = df$ for some $f \in \mathcal{E}(Y)$, and $d\omega = d(df) = 0$. Similarly, if ω is $\overline{\partial}$ -exact, then $\overline{\partial}\omega = 0$.

5.3 de Rham and Dolbeault cohomology

Definition 5.3.1. Set $Z_{dR}^k = \{d\text{-closed }k\text{-forms}\}$ and $B_{dR}^k = \{d\text{-exact }k\text{-forms}\}$, noting that $B_{dR}^k \subset Z_{dR}^k$ for all k. Define the kth de Rham cohomology group of X to be

$$\begin{aligned} H^k_{dR}(X) &= Z^k_{dR}/B^k_{dR} \\ &= \ker(d: \mathcal{E}^{(k)}(X) \to \mathcal{E}^{(k+1)}(X))/\operatorname{Im}(d: \mathcal{E}^{(k-1)}(X) \to \mathcal{E}^{(k)}(X)). \end{aligned}$$

Note that H_{dR}^i is a **C**-vector space uvder scalar multiplication and addition of forms. Further, $H_{dR}^1(X)$ measures the extent to which an *i*-form ω with $d\omega = 0$ fails to be of the form $\omega = d\alpha$ with α an (i-1)-form (where $\mathcal{E}(X)$ is the set of 0-forms). Finally, note that

$$H^0_{dR}(X) = \left\{ f \in \mathcal{E}(X) : \frac{\partial f}{\partial z} = \frac{\partial f}{\partial \overline{z}} = 0 \text{ everywhere} \right\} \cong \mathbf{C}$$

Also, note that H^i_{dR} is a homotopy invariant, so X homotopic to Y implies $H^i_{dR}(X) \cong H^i_{dR}(Y)$ for all i.

Proposition 5.3.2. [POINCARE LEMMA] $H^1_{dR}(\mathbf{C}) \cong H^2_{dR}(\mathbf{C}).$

Proposition 5.3.3. $H^1_{dR}(\mathbf{C}^*) \neq 0.$

Proof: Consider $\alpha = \frac{dz}{z} \in \mathcal{E}^{(1)}(\mathbf{C}^*)$. Then

$$d\alpha = \frac{\partial}{\partial z} \left(\frac{1}{z}\right) dz \wedge dz + \frac{\partial}{\partial \overline{z}} \left(\frac{1}{z}\right) d\overline{z} \wedge dz = 0.$$

If α is exact, then there exists $f \in \mathcal{E}(\mathbf{C}^*)$ such that $\alpha = df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z}$, hence $\frac{\partial f}{\partial z} = \frac{1}{z}$ and $\frac{\partial f}{\partial \overline{z}} = 0$. Therefore $f'(z) = \frac{1}{z}$ and $f \in \mathcal{O}(\mathbf{C}^*)$, which is a contradiction, since $\frac{1}{z}$ does not have an antiderivative on all of \mathbf{C}^* . So α is not exact, meaning than $[\alpha] \neq 0$ in $H^1_{dR}(\mathbf{C})$, so $H^1_{dR}(\mathbf{C}^*) = 0$.

One can even show that $H^1_{dR}(\mathbf{C}^*) \cong \mathbf{C}$ and $H^2_{dR}(\mathbf{C}^*) = 0$.

Proposition 5.3.4. Let X be a compact Riemann surface. Then $H^1_{dR}(X) \cong \mathbb{C}^{2g}$, where g is the genus of X, and $H^2_{dR}(X) = 0$.

<u>Proof:</u> Consider $\mathbf{P}^1 = \mathbf{C} \cup (\mathbf{C}^* \cup \{\infty\}) = U \cup U'$, and let $\alpha \in \mathcal{E}^{(1)}(\mathbf{P}^1)$ be such that $d\alpha = 0$, so $d(\alpha|_U) = 0$ and $d(\alpha|_{U'}) = 0$. Since $U \cong \mathbf{C}$ and $U' \cong \mathbf{C}$, by Poincare there exists $f \in \mathcal{E}(U)$ and $f' \in \mathcal{E}(U')$ with $\alpha|_U = df$ and $\alpha|_{U'} = df'$. So, on $U \cap U' \cong \mathbf{C}^*$, we have that

$$df|_{U\cap U'} = \alpha|_{U\cap U'} = df'|_{U\cap U'}.$$

Hence d(f - f') = 0 on $U \cap U'$, so $f - f' \in H^0_{dR}(U \cap U') \cong \mathbf{C}$, so f - f' is constant. We may assume that the constant is 0 (else replace f' by f' + c). So f = f' on $U \cap U'$, and $h = \begin{cases} f & \text{on } U \\ f' & \text{on } U' \end{cases}$ is a differential form on X such that $\alpha = dh$. So α is d-exact. meaning that $H^1_{dR}(\mathbf{P}^1) = 0$.

One can also show that $H^1_{dB}(\mathbf{C}/\Gamma) \cong \mathbf{C}^2$, so the torus \mathbf{C}/Γ has genus 1.

Definition 5.3.5. Recall that we have maps $\mathcal{E}(X) \xrightarrow{\overline{\partial}} \mathcal{E}^{0,1}(X)$ and $\mathcal{E}^{1,0}(X) \xrightarrow{\overline{\partial}} \mathcal{E}^{1,1}(X)$. Note that $\overline{\partial}(\mathcal{E}^{0,1}(X)) = 0$ since for all $\alpha \in \mathcal{E}^{0,1}(X)$, $\alpha = fd\overline{z}$, so $\overline{\partial}\alpha = \overline{\partial}f \wedge d\overline{z} = \frac{\partial f}{\partial z}d\overline{z} \wedge d\overline{z} = 0$. Define $H^{p,q}_{\overline{\partial}}(X)$ to be the (p,q)th Dolbeault cohomology group of X, with

$$\begin{split} H^{0,0}_{\overline{\partial}}(X) &= \ker(\overline{\partial}: \mathcal{E}(X) \to \mathcal{E}^{0,1}(X)), \\ H^{1,0}_{\overline{\partial}}(X) &= \ker(\overline{\partial}: \mathcal{E}^{1,0}(X) \to \mathcal{E}^{1,1}(X)), \\ H^{0,1}_{\overline{\partial}}(X) &= \mathcal{E}^{0,1}(X) / \mathrm{Im}(\overline{\partial}: \mathcal{E}(X) \to \mathcal{E}^{0,1}(X)), \\ H^{1,1}_{\overline{\partial}}(X) &= \mathcal{E}^{1,1}(X) / \mathrm{Im}(\overline{\partial}: \mathcal{E}^{1,0}(X) \to \mathcal{E}^{1,1}(X)). \end{split}$$

Note that these cohomology groups are vector spaces, for example

$$H^{0,0}_{\overline{\partial}}(X) = \left\{ f \in \mathcal{E}(X) : \overline{\partial}f = \frac{\partial f}{\partial \overline{z}}d\overline{z} = 0 \text{ everywhere} \right\}$$
$$= \left\{ f \in \mathcal{E}(X) : \frac{\partial f}{\partial z} = 0 \text{ everywhere} \right\}$$
$$= \mathcal{O}(X).$$

Remark 5.3.6. If X is compact, then $H^{0,0}_{\overline{\partial}}(X) \cong \mathbb{C}$. Otherwise $H^{0,0}_{\overline{\partial}}(X)$ is very big, for example, if $X = \mathbb{C}$, then

$$H^{0,0}_{\overline{\partial}}(\mathbf{C}) \cong \mathcal{O}(\mathbf{C}) \supset \mathbf{C}[z].$$

Note that $H^{1,0}_{\overline{\partial}}(X) = \{ \alpha \in \mathcal{E}^{1,0}(X) : \overline{\partial} \alpha = 0 \}$. As $\alpha \in \mathcal{E}^{1,0}(X)$, it follows that $\alpha = fdz$, so

$$\overline{\partial}\alpha = \overline{\partial}f \wedge dz = \frac{\partial f}{\partial \overline{z}} d\overline{z} \wedge dz,$$

so if $\overline{\partial}\alpha = 0$, then $\frac{\partial f}{\partial \overline{z}} = 0$. So $f \in \mathcal{O}(U)$ and $\alpha = fdz \in \Omega(X)$, so $H^{1,0}_{\overline{\partial}}(X) \cong \Omega(X)$.

Proposition 5.3.7. If X is a compact Riemann surface, then $H^{1,0}_{\overline{\partial}}(X) \cong \mathbb{C}^g$, where g is the genus of X.

Example 5.3.8. Consider $X = \mathbf{P}^1$, for which $H^{1,0}_{\overline{\partial}}(\mathbf{P}^1) = 0$. Let $\alpha \in H^{1,0}_{\overline{\partial}}(\mathbf{P}^1) \cong \Omega(\mathbf{P}^1)$ and set $\mathbf{P}^1 = U \cup U'$ as before, for $w = \frac{1}{z} \in U'$. Then $\alpha|_U = f(z)dz$ with $f \in \mathcal{O}(U)$ and $\alpha|_{U'} = g(w)dw$ with $g \in \mathcal{O}(U')$. On $U \cap U'$,

$$\begin{aligned} f(z)dz &= \alpha|_{U \cap U'} = g(w)dw & \text{iff} \quad f(1/w)d(1/w) = g(w)dw \\ & \text{iff} \quad f(1/w)(-1/w^2)dw = g(w)dw \\ & \text{iff} \quad f(1/w)(-1/w^2) = g(w) \\ & \text{iff} \quad f(1/w) = -w^2g(w). \end{aligned}$$

Since $f \in \mathcal{O}(U)$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, and since $g \in \mathcal{O}(U')$, $g(w) = \sum_{n=0}^{\infty} b_n w^n$, so the last statement above becames

$$\sum_{n=0}^{\infty} a_n w^{-n} = \sum_{n=0}^{\infty} (-b_m) w^{n+2}$$

Hence $a_n = 0$ and $b_n = 0$ for all n. So f = g = 0, meaning that $\alpha = 0$, so $H^{1,0}_{\overline{\partial}}(\mathbf{P}^1) = 0$.

Definition 5.3.9. Let $F: X \to Y$ be a holomorphic map between Riemann surfaces. For every open set $V \subset Y$, we have F^* , the *pullback of differentiable functions*, given by

$$\begin{array}{rccc} F^*: \ \mathcal{E}(V) & \to & \mathcal{E}(F^{-1}(V)) \\ f & \mapsto & f \circ F \end{array}.$$

This may be generalized to differential forms. If $(V, \psi = \omega)$ is a chart on Y, then

$$F^*: \mathcal{E}^{(1)}(V) \to \mathcal{E}^{(1)}(F^{-1}(V))$$

$$\omega = fdw + gd\overline{w} \mapsto F^*(f)d(F^*(w)) + F^*(g)d(F^*(\overline{w}))$$

and

$$\begin{array}{rcl} F^*: \mathcal{E}^{(2)}(V) & \to & \mathcal{E}^{(2)}(F^{-1}(V)) \\ \omega = f dw \wedge d\overline{w} & \mapsto & F^*(f) d(F^*(w)) \wedge d(F^*(\overline{w})) \end{array}$$

This also generalizes to n-forms.

Example 5.3.10. Consider the space $X = Y = \mathbf{C}$ and $F : \mathbf{C} \to \mathbf{C}$ given by $z \mapsto 2\overline{z} = w$. Take $\omega = 1dw - 3wd\overline{w}$, for which

$$F^*(\omega) = F^*(1)d(F^*(w)) + F^*(-3w)d(F^*(\overline{w}))$$

= $1d(2\overline{z}) + (-3(2\overline{z}))d(\overline{2\overline{z}})$
= $2d\overline{z} - 6\overline{z}(2dz).$

Proposition 5.3.11. For all $f \in \mathcal{E}(V)$ and $\omega \in \mathcal{E}^{(1)}(W)$,

i. $F^*(df) = d(F^*(f))$, and ii. $F^*(d\omega) = d(F^*(\omega))$.

5.4 Integration of 1-forms and primitives

Definition 5.4.1. Let X be a Riemann surface and $\omega \in \mathcal{E}^{(1)}(X)$. Let $\gamma : [0,1] \to X$ be a piecewisecontinuously differentiable curve in X, i.e. γ is entinuous and there exists a partition $0 = t_0 < t_1 < \cdots < t_n = 1$ of [0,1] and charts $(U_k, \varphi_k = z_k)$, where $z_k = x_k + iy_k$ and $x_k = \operatorname{Re}(z_k)$ and $y_k = \operatorname{Im}(z_k)$ for all k, such that $\gamma([t_{k-1}, t_k]) \subset U_k$ and the forms $\{x_k, y_k\} \circ \gamma : [t_{k-1}, t_k] \to \mathbf{R}$ are C^1 .

Define the integral

$$\int_{\gamma} \omega = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} \left(f_k(\gamma(t)) \frac{dx_k(\gamma(t))}{dt} + g_k(\gamma(t)) \frac{dy_k(\gamma(t))}{dt} \right) dt,$$

whenever $\omega|_{U_k} = f_k dx_k + g_k dy_k$ for all k. Note that this is independent of the charts chosen (check this). **Theorem 5.4.2.** Let $F \in \mathcal{E}(X)$. Then $\int_{\gamma} dF = F(\gamma(1)) - F(\gamma(0))$.

<u>*Proof:*</u> In the local charts (U_k, z_k) , $dF = \frac{\partial F}{\partial x_k} dx_k + \frac{\partial F}{\partial y_k} dy_k$, so

$$\int_{t_{k-1}}^{t_k} \left(\frac{\partial F}{\partial x_k}(\gamma(t)) \frac{dx_k(\gamma(t))}{dt} + \frac{\partial F}{\partial y_k}(\gamma(t)) \frac{dy_k(\gamma(t))}{dt} \right) dt = \int_{t_{k-1}}^{t_k} \frac{d(F(\gamma(t)))}{dt} dt = F(\gamma(t_k)) - F(\gamma(t_{k-1})),$$

by the fundamental theorem of calculus and as $F(\gamma(t)): [0,1] \to \mathbb{C}$.

Corollary 5.4.3. If γ is a closed curve (i.e. $\gamma(0) = \gamma(1)$, then $\int_{\gamma} dF = 0$.

Definition 5.4.4. Let $\omega \in \mathcal{E}^{(1)}(X)$. A function $F \in \mathcal{E}(X)$ is called a *primitive* of ω if $dF = \omega$.

Remark 5.4.5. Note the following:

• The element $\omega \in \mathcal{E}^{(1)}(X)$ has a primitive iff ω is *d*-exact (in which case it is also *d*-closed.

· Primitives are unique up to a constant. For example, if $F \in \mathcal{E}(X)$ is a primitive of $\omega \in \mathcal{E}^{(1)}(X)$, then so is F + c for all $c \in \mathbb{C}$. Moreover, if $F, G \in \mathcal{E}(X)$ are primitives of $\omega \in \mathcal{E}^{(1)}(X)$, then $dF = dG = \omega$, so d(F - G) = 0, meaning that F - G = c for some c.

· If $\omega \in \mathcal{E}^{(1)}(X)$ has a primitive F, then $\int_{\gamma} \omega$ is path independent, because it is completely determined by the value of F at the endpoint of γ .

· If $\omega \in \mathcal{E}^{(1)}(X)$ is *d*-cloode and $\int_{\gamma} \omega \neq 0$ for some closed curve γ , then ω is not exact. For example, with $X = \mathbb{C}^*$ and γ the unit circle with $\omega = \frac{dz}{z}$, we have that $\int_{\gamma} \omega = 2\pi \neq 0$, so ω is not *d*-exact.

Remark 5.4.6. Let $\omega \in \mathcal{E}^{(1)}(X)$ be *d*-closed. When does ω have a primitive?

· If $H_{dR}^1(X) = 0$, then *d*-closed 1-forms are always *d*-exact, and therefore admit primitives. For example, if $X = \mathbf{P}^1$, since $H_{dR}^1(\mathbf{P}^1) = 0$, there exist primitives. Similarly, if $X = \mathbf{C}$ or an open disk, and as $H_{dR}^1(\mathbf{C}) = 0$, by Poincare there exist primitives. Since every Riemann surface is locally diffeomorphic to \mathbf{C} on a disk in \mathbf{C} , *d*-closed 1-forms are locally *d*-exact.

· If $H_{dR}^1(X) \neq 0$, then globally the primitives of *d*-closed 1-forms will be multivalued functions. For example, if $X = \mathbf{C}^*$, then $H_{dR}^1(\mathbf{C}^*) \neq 0$, and for $\omega = \frac{dz}{z}$, we write $\omega = d(\log(z))$. Note however, that not every *d*-closed 1-form on \mathbf{C}^* has a multivalued global primitive, i.e. for $\omega = dz = df$, we have that $f(z) = z \in \mathcal{E}^{(1)}(\mathbf{C}^*)$.

Proposition 5.4.7. Let $\omega \in \mathcal{E}^{(1)}(X)$ be *d*-closed. If $\int_{\gamma} \omega = 0$ for any closed loop γ , then ω is *d*-exact. That is, then there exists $F \in \mathcal{E}(X)$ such that $dF = \omega$.

<u>Proof:</u> Let $x_0 \in X$. Then for all $x \in X$, let γ be a curve joining x and x_0 . First note that it $\tilde{\gamma} : [0,1] \to X$ is given by $t \mapsto \gamma(1-t)$, then $\int_{\tilde{\gamma}} \omega = -\int_{\gamma} \omega$. Next, if γ' is any other curve joining x_0 to x, we have that $\gamma + \tilde{\gamma}'$ is a closed curve, so $\int_{\gamma + \tilde{\gamma}'} \omega = 0$.

Moreover, $\int_{\gamma} \omega + \int_{\tilde{\gamma}'} \omega = \int_{\gamma} \omega - \int_{\gamma'} \omega$, so $\int_{\gamma} \omega = \int_{\gamma'} \omega$ for any two such curves. We thus get a well-defined function $F: X \to \mathbf{C}$ given by $x \mapsto \int_x^{x_0} \omega$, slightly abusing notation. We now claim that $dF = \omega$. It is enough to prove that $d_x F = \omega(x)$ for all $x \in X$. So let $x \in X$, and note that locally, ω has a primitive on a neighborhood of x by the Poincare lemma. Suppose that this primitive is f. Then $\omega(x) = d_x f = [f - f(x)] \mod m_x^2$, and $df = \omega$ around x. So for all y near x,

$$F(y) - F(x) = \int_x^y \omega = f(y) - f(x),$$

implying that

$$d_x F = [F - F(x)] \mod m_x^2 = [f - f(x)] \mod m_x^2 = d_x f = \omega(x).$$

Theorem 5.4.8. Let X be a Riemann surface and $\omega \in \mathcal{E}^{(1)}(X)$ be d-closed. Then there exists a Riemann surface \hat{X} and an unbranched holomorphic map $p: \hat{X} \to X$ such that $p^*\omega = dF$ for some $F \in \mathcal{E}(X)$.

<u>Proof:</u> Let \mathcal{F} be the sheaf of primitives of ω on X. For all $U \subset X$ open, we then have $\mathcal{F}(U) = \{f \in \mathcal{E}(U) : df = \omega|_U\}$ and natural restriction functions. Let \hat{X} be a connected component of $|\mathcal{F}|$ and $p = p|_{\hat{X}}$, where $p: |\mathcal{F}| = \bigcup_{x \in X} \mathcal{F}_x \to X$ is given by $\varphi \in \mathcal{F}_x \mapsto x$. We have see that there exists a unique complex structure on \hat{X} such that \hat{X} is a Riemann surface and $p: \hat{X} \to X$ is an unramified holomorphic map. Let $F: \hat{X} \to \mathbf{C}$ be given by $\varphi \mapsto \varphi(p(\varphi))$. Then $F \in \mathcal{E}(X)$ (i.e. F is differentiable), and if $\varphi = [f]$ with $f \in \mathcal{F}(U)$ for U a neighborhood of $p(\varphi)$, we have that $df = \omega|_U$, implying that

$$F(\varphi) = f(p(\varphi)) = f \circ p(\varphi) = p^*(f)(\varphi),$$

meaning that $F = p^*(f)$, so $dF = d(p^*f) = p^*(df) = p^*(\omega)$.

Definition 5.4.9. Let X be a Riemann surface. The space \widetilde{X} is termed a *universal cover* of X if:

 $\cdot X$ is simply connected

 \cdot there exists a covering map $\pi:\widetilde{X}\to X$

· if $p: Y \to X$ is any other covering map, then there exists a holomorphic fiber-preserving map $\tau: \widetilde{X} \to Y$ with $\tau \circ p = \pi$

Then \widetilde{X} is a Riemann surface, and is unique. Also note that if X is simply connected, then $\widetilde{X} = X$ and $\pi = id$.

Let X be a Riemann surface and $\omega \in \mathcal{E}^{(1)}(X)$ be d-closed. Then $p^*\omega = dF$ for some $F \in \mathcal{E}(\dot{X})$, where $p\dot{X} \to X$ is an unbranched holomorphic map. But, p is a covering map (since it is unbranched and holomorphic), so there exists $\tau : \tilde{X} \to \dot{X}$ with $\tau \circ p = \pi$. Thus, if $f = \tau^* F$, then

$$dF = d(\tau^*F) = \tau^*(dF) = \tau^*(p^*\omega) = (p \circ \tau)^*\omega = \pi^*\omega.$$

Corollary 5.4.10. If $\omega \in \mathcal{E}^{(1)}(X)$ is *d*-closed, then $\pi^* \omega$ has a primitive on \widetilde{X} .

Corollary 5.4.11. If X is simply connected, any d-closed $\omega \in \mathcal{E}^{(1)}(X)$ has a primitive on X. Therefore $H^1_{dR}(X) = 0$.

Example 5.4.12. Since \mathbf{C} , \mathbf{P}^1 are simply connected, $H_{dR}^1(\mathbf{C}) = H_{dR}^1(\mathbf{P}^1) = 0$.

5.5 Integration of 2-forms

Definition 5.5.1. Let $U \subset \mathbf{C}$ be open and $\omega \in \mathcal{E}^{(2)}(U)$. Then $\omega = fdx \wedge dy = gdz \wedge d\overline{z}$, and for $D \subset U$, define

$$\iint_D \omega = \iint_D f(x, y) dx dy = \iint_D f(z, \overline{z}) dz d\overline{z},$$

where the right side is usual integration in \mathbf{R}^2 .

Theorem 5.5.2. [Stokes]

Let $U \subset \mathbf{C}$ be open and $A \subset U$ compact, connected with smooth boundary ∂A (i.e. ∂A is a smooth curve). Then for all $\omega \in \mathcal{E}^{(1)}(U)$,

$$\iint_A d\omega = \oint_{dA} \omega.$$

<u>*Proof:*</u> Due to time constraints, we will simplify. Suppose that $\omega = gdy$ and $A = \{z \in \mathbb{C} : \epsilon \leq |z| \leq R\}$, with $0 < \epsilon < R$. This gives the situation below:

Then

$$d\omega = dg \wedge dy = \frac{\partial g}{\partial x} dx \wedge dy = \left(\cos(\theta)\frac{\partial g}{\partial r} - \frac{\sin(\theta)}{r}\frac{\partial g}{\partial \theta}\right) dr \wedge d\theta,$$

 \mathbf{SO}

$$\begin{split} \iint_{A} &= \int_{0}^{2\pi} \int_{\epsilon}^{R} B(r,\theta) dr d\theta \\ &= \int_{0}^{2\pi} g(R,\theta) \cos(\theta) d\theta - \int_{0}^{2\pi} g(\epsilon,\theta) \epsilon \cos(\theta) d\theta \\ &= \int_{|z|=R} \omega - \int_{|z|=\epsilon} \omega \\ &= \int_{\partial A} \omega. \end{split}$$

5.6 Cauchy integral formula

5.7 The exact cohomology sequence

Definition 5.7.1. Let X be a topological space, and \mathcal{F}, \mathcal{G} sheaves on X. Let $\alpha : \mathcal{F} \to \mathcal{G}$ be a sheaf homomorphism. That is, for $U \subset X$ open, there exists a group homomorphism $\alpha_U : \mathcal{F}(U) \to \mathcal{G}(U)$ such that for all $V \subset U$ open, the diagram

$$\begin{array}{c} \mathcal{F}(U) \xrightarrow{\alpha_U} \mathcal{G}(U) \\ \rho \\ \downarrow & \downarrow \rho \\ \mathcal{F}(V) \xrightarrow{\alpha_V} \mathcal{G}(V) \end{array}$$

commutes, i.e. for all $f \in \mathcal{F}(U)$, $\alpha_V(f|_U) = \alpha_U(f|_V)$. Let $U \subset X$ be open. Define

$$\ker(\alpha)(U) = \ker(\alpha_U : \mathcal{F}(U) \to \mathcal{G}(U)),$$
$$\operatorname{Im}(\alpha)(U) = \operatorname{Im}(\alpha_U : \mathcal{F}(U) \to \mathcal{G}(U)),$$
$$\operatorname{coker}(\alpha)(U) = \mathcal{G}(U)/\operatorname{Im}(\alpha)(U).$$

Index of notation

U	atlas	3
Σ	complex structure	3
Γ	lattice on the complex plane	4
$\mathcal{O}(Y)$	space of holomorphic functions on Y	7
$\mathcal{M}(Y)$	space of all meromorphic functions on Y	9
$\mathcal{F}(U)$	presheaf or sheaf on an open set U	17
$ ho_V^U$	restriction homomorphism from U to V	17
$\mathcal{O}^*(Y), \mathcal{M}^*(Y)$	space of nowhere-vanishing holomorphic, meromorphic functions on \boldsymbol{Y}	18
\mathbf{C}_p	skyscraper sheaf at p	18
\mathcal{F}_{a}	stalk of \mathcal{F} at a	19
$ ho_a(f)$	germ of f at a	19
$ \mathcal{F} $	disjoint union of stalks of \mathcal{F}	19
[U,f]	open set in the topology on $ \mathcal{F} $	19
\hat{u}	lift of a path u	21
p^*, p_*	pullback, pushforward of a map p	23
$\mathcal{E}(U)$	smooth (C^{∞}) functions from U to C	25
\mathcal{E}, \mathcal{O}	sheaf of differentiable, holomorphic functions	25
\mathcal{E}_a	germs of differentiable functions on X at a	26
m_a, m_a^2	germs of differentiable functions that vanish at a , up to 2nd order	26
$d_a f$	differential of f at a	26
$T_a^{1,0}, T_a^{0,1}$	space of cotangent vectors of type $(1,0), (0,1)$	27
${\cal E}^{(1)},{\cal E}^{1,0},{\cal E}^{0,1}$	sheaves of differentiable 1-, $(1, 0)$ -, $(0, 1)$ -forms on Y	27
$H^i_{dR}(X)$	ith de Rham cohomology group of X	29
$H^{p,q}_{\overline{\partial}}$	(p,q)th Dolbeault cohomology group of X	30
\widetilde{X}	universal cover of a Riemann surface X	33

Index

cotangent space, 26	differential form, 27
cotangent vector, 27	discrete function, 13
covering map, 14	discrete set, 13
critical value, 17	Dolbeault cohomology, 30
<i>d</i> ₋	doubly-periodic function, 12
closed, 29	elliptic function, 5
exact, 29 $\overline{\partial}$ -	fiber. 13
closed, 29 exact. 29	fundamental theorem of
de Rham cohomology, 29	algebra, 12
deformation retract, 22	genus, 29
differentiable function, 25	germ, 19
differentiable functions, 25	global section, 18
	cotangent space, 26 cotangent vector, 27 covering map, 14 critical value, 17 d- closed, 29 exact, 29 $\overline{\partial}$ - closed, 29 exact, 29 de Rham cohomology, 29 deformation retract, 22 differentiable function, 25 differentiable functions, 25

graph, 2

Hausdorff space, 2 holomorphic function, 7, 8 holomorphically compatible, 2

identity theorem, 8 implicit function theorem, 5 isolated point, 9

lattice, 4 limit point, 9

maximal continuation, 24 meromorphic function, 9 monodromy theorem, 22 multiplicity, 11

number of sheets, 15

open mapping theorem, 11

Poincare lemma, 29 Poincare, Henri, 29

Index of mathematicians

de Rham, Georges, 29	Hausdorff, Felix, 2	Stokes, George, 33
Dolbeault, Pierre, 30	Riemann, Bernhard, 2	

pole, 9

presheaf, 17

primitive, 32

proper mapping, 15

ramification point, 13

removable singularities

Riemann sphere, 2

Riemann surface, 4

global, 18

set of critical values, 17

of differentiable functions, 25

skyscraper, 18

simply connected, 22

skyscraper sheaf, 18

section, 18, 19

sheaf, 18

theorem, 8

restriction homomorphism, 18

pullback, 23, 30

pushforward, 23

References

[For99] Otto Forster. Lectures on Riemann Surfaces. Springer, 1999.

space Hausdorff, 2 stalk, 19 Stokes' theorem, 33 surface, 2

theorem identity, 8 implicit function, 5 monodromy, 22 of algebra, fundamental, 12 open mapping, 11 removable singularities, 8 Stokes', 33 topological surface, 2 topology cofinite, 2

unbranched map, 13 uniformization parameter, 7 universal cover, 33