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1 Basic geometric objects

Algebraic geometry is the study of zero sets of polynomials.

1.1 Definitions and notation

Definition 1.1.1. We introduce the following notation:

K : a field (not necessarily algebraically closed)
An(K) or An : affine n-space, i.e. the set of n-tuples {(a1, . . . , an) : a1, . . . , an ∈ K}
K[x1, . . . , xn] : the polynomial ring in n variables x1, . . . , xn over K

Note that A1 is called the affine line and A2 is the affine plane. Further, for f ∈ K[x1, . . . , xn] non-constant,
a point p ∈ An is termed a zero of f is f(p) = 0. We write V (f) = {p ∈ An : f(p) = 0} for the set of zeros
of f in An, also the hypersurface defined by f .

Example 1.1.2. A hypersurface in A1 is a finite set of points or ∅. For example,
· in R1, V ((x− 1)(x+ 3)) = {1, 3} and V (x2 + 1) = ∅.
· in C, V (x2 + 1) = {i,−i}.

A hypersurface in A2 is called a (affine plane) curve. For example,
· in R2, V ((x− 1)(x+ 3)) = V (x− 1) ∪ V (x+ 3), which is a union of two lines.
· in R2, V (y − x2) is a parabola and V (x2 − y2 − 1) is the unit circle.
· in Q2, V (x2 + y2 − 1) is the set of all rational points on the unit circle.
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A point is called rational if its coordinates are in Q. Note that the unit circle has as infinite number of
rational points, since it can be parametrized using rational functions, by

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
, t ∈ R.

We get a rational point for all t ∈ Z. Note that the unit circle is an example of a rational curve (i.e. it can
be parametrized by rational functions). Not all curves are rational. We will see that elliptic curves are not
rational.

A hypersurgace in A3 is called an affine surface. For example,
· in A3, V (xyz) = V (x) ∪ V (y) ∪ V (z) = {x = 0} ∪ {y = 0} ∪ {z = 0}, a union of planes in A3.

More generally, if S is any set of polynomials in K[x1, . . . , xn], we define V (S) = {p ∈ An : f(p) = 0 ∀ f ∈
S} =

⋂
f∈S V (f). Further, if S = {f1, . . . , fm} is a finite set of polymonials, we write V (f1, . . . , fm) instead

of V ({f1, . . . , fm}).

1.2 Affine algebraic sets

Definition 1.2.1. A subset X ⊂ An is an (affine) algebraic set if X = V (S) for some S ⊂ K[x1, . . . , xn].

2



Example 1.2.2. The sets ∅ = V (1), An = V (0) and V (y − x2) are all algebraic. But not all sets are
algebraic. For example,
· in R1, X = [0, 1] is not algebraic. If X were algebraic, then X ⊂ V (S) for some S ⊂ R[x]. Since

X 6∼= R, at least one of the polynomials in S, say f , is non-zero. Then X = V (S) =
⋂
g∈S V (g) ⊂ V (f), but

V (f) is at most a finite set of points since f is a polynomial in 1 variable.
· in R2, the curve C = {(x, y) : y = sin(x)} is not algebraic. Suppose that C is algebraic, so

C = V (S) for some S ⊂ R[x, y]. Then S must contain at least one non-zero polynomial (else C ∼= R2). So
C =

⋂
g∈S V (g) ⊂ V (f) with f = f(x, y). Then there exists at least one real number −1 6 y0 6 1 such

that h(x) = f(x, y0) is not the zero polynomial. Note we have f(x, y) = a0(y) + a1(y)x + · · · + am(y)xm,
so if f(x, y0) = 0 for all y0 ∈ [−1, 1], then ai = 0 for all i. But each ai is a polynomial in one variable and
must therefore have at most a finite number of roots (if it is non-zero). So if ai = 0, then f = 0, which is a
contradiction. So, in summary, we start with V (h(x)) = (at most a finite number of points), implying

(C ∩ V (y − y0)) ⊂ (v(f(x, y)) ∩ V (y − y0)) = V (h(x)) = (at most a finite number of points).

But C ∩ V (y − y0) = {(arcsin(y0) + 2πn− πm, y0) : m,n ∈ Z}, which is infinite. Hence C is not algebraic.

Remark 1.2.3. In general, one can show that in An a line must intersect any algebraic curve in a finite
set of points. This gives us a test for determining whether or not a set is algebraic: if a set X intersects a
line in an infinite number of points, it cannot be algebraic (by a line, we mean a set determined by a point
(a1, . . . , an) ∈ An, and a direction vector (b1, . . . , bn) ∈ An. That is, L = {a1 + tb1, . . . , an + tbn : t ∈ k}).

Example 1.2.4. Note that the intersection of 2 algebraic sets may be infinite. For example, consider the
twisted cubic, given by

C = {(t, t2, t3) ∈ R3 : t ∈ R} = V (y − x2, z − x3) = V (y − x2) ∩ V (z − x3).

So C is an algebraic set that is the intersection of the surfaces V (y − x2) and V (z − x3), visualized below.

x

y

z

Theorem 1.2.5. The only algebraic sets in A1 are A1, ∅, and finite sets of points.

Proof: Clearly ∅ = V (1) and A1 = V (0) are algebraic. Further, if {a1, . . . , am} is a finite set of points in A1,
then {a1 . . . , am} = V ((x− a1)(x− a2) · · · (x− am)), so it is algebraic. It remains to show that these are the
only algebraic sets in A1. So let X ⊂ A1 be any algebraic set, so X = V (S) for some S ⊂ K[x].
· if S = ∅ or {0}, then X = A1

· if X 6= ∅ nor {0}, then there exists a non-zero f ∈ S with X = V (S) ⊂ V (f), which is at most a finite
set of points. Hence X = ∅ or a finite set of points. �
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Proposition 1.2.6. The following are properties of algebraic sets:
1. if S ⊂ T ⊂ K[x1, . . . , xn], then V (T ) ⊂ V (S)
2. if I = 〈S〉 for S ⊂ K[x1, . . . , xn], then V (I) = V (S)

Proof: 1. Let p ∈ V (T ). Then f(p) = 0 for all f ∈ T ⊃ S. Hence f(p) = 0 for all f ∈ S, so p ∈ V (S).

2. Since S ⊂ 〈S〉 = I, by 1. we have that V (I) ⊂ V (S). We check the other inclusion. So let p ∈ V (S).
Then f(p) = 0 for all f ∈ S. Consider g ∈ I = 〈S〉, Then g =

∑
aifi with ai ∈ K[x1, . . . , xn] and fi ∈ S.

Hence g(p) =
∑
ai(p)fi(p) = 0, so g ∈ V (I). �

Recall that a commutative ring R is Noetherian iff every ideal in R is finitely generated. In particular,
fields are Noetherian (as 〈0〉 and k = 〈1〉 are the only ideals).

Theorem 1.2.7. [Hilbert basis theorem]
If R is a Noetherian ring, then R[x1, . . . , xn] is Noetherian.

The above implies that K[x1, . . . , xn] is Noetherian, giving the following corollary.

Corollary 1.2.8. Every algebraic set over An(K) is the zero set of a finite set of polynomials.

Proof: If X is algebraic, then X = V (S) = V (〈S〉) for some S ⊂ K[x1, . . . , xn]. But S = 〈g1, . . . , gm〉 for
some g1, . . . , gm ∈ K[x1, . . . , xn] (not necessarily in S), by Hilbert. So X = V (g1, . . . , gm). �

Remark 1.2.9. This implies that any algebraic set in An is the intersection of a finite number of hypersur-
faces. If X = V (g1, . . . , gm), then X =

⋂m
i=1 V (gi) and each V (gi) is a hypersurface.

Proposition 1.2.10. The following are properties of algebraic sets:
1. If {Iα} is a collection of ideals in K[x1, . . . , xn], then V (

⋃
α Iα) =

⋂
α V (Iα)

2. If I, J ⊂ K[x1, . . . , xn] are two ideals, define IJ =
∑
k akbk : ak ∈ I, bk ∈ J}. Then V (IJ) =

V (I) ∪ V (J).
3. ∅ = V (1) and An = V (0) are algebraic, and {(a1, . . . , an)} is algebraic by V (x1− a1, . . . , xn− an) for

all such n-tuples

Proof: 1. This follows from a sequence of equivalence statements:

p ∈ V

(⋃
α

Iα

)
iff f(p) = 0 ∀ f ∈ Iα ∀ α

iff p ∈ V (Iα) ∀ α

iff p ∈
⋂
α

V (Iα)

2. Let p ∈ V (I) ∪ V (J), WLOG p ∈ V (I). Then f(p) = 0 for all f ∈ I, which implies that for all h ∈ IJ ,
we have h =

∑
k akbk with ak ∈ I, bk ∈ J . So h(p) =

∑
k ak(p)bk(p) = 0. For the other inclusion, suppose

that p 6∈ V (I) (we will show that p ∈ V (J)). Since p 6∈ V (I), there exists an f ∈ I such that f(p) 6= 0. But
for any polynomial g ∈ J , fg ∈ IJ , and f(p)g(p) = 0. But f(p) 6= 0, and k has no zero divisors, so g(p) = 0
for all g ∈ J . Hence V (IJ) ⊂ (V (I) ∪ V (J)).

3. This follows directly from the previous parts. �

Remark 1.2.11. Property 1. above tells us that intersections of algebraic sets are algebraic. Property 2.
tells us that finite unions of algebraic sets are algebraic. However, infinite unions of algebraic sets need not
be algebraic.

Example 1.2.12. The sets Z ⊂ R and Q ⊂ R are not algebraic, because R is an infinite field.

Note that if K is finite, any set is algebraic, because An(K) is finite, and any subset of it is a finite union
of points, whcih are algebraic.

4



1.3 Topologies

Definition 1.3.1. Given a set X, a topology on X is a set τ in the power set of X such that
1. X, ∅ ∈ τ
2. if {Uα}α∈I ⊂ τ , then

⋃
α∈I Uα ∈ τ

3. if {U1, . . . , Un} ⊂ τ , then
⋂n
i=1 Ui ∈ τ

The pair (X, τ) is termed a topological space, with elements of τ termed τ -open, or simply open sets. The
complement of an open set is a closed set.

Example 1.3.2. A starndard example of a topology is the metric topology on Rn. In R, the open sets are
the unions of open intervals.

Remark 1.3.3. Note that the closed sets of a topology on X are given by the properties
1. X, ∅ are closed
2. if {Uα}α∈I are closed, then

⋂
α∈I Uα is closed

3. if {U1, . . . , Un} are closed, then
⋃n
i=1 Ui is closed

Definition 1.3.4. The Zariski topology on An is defined by taking open sets to be the complements of
algebraic sets. Moreover, given any algebraic set X ⊂ An, we endow it with the induced topology, where
open sets are the intersection of X with an open set in An.

Example 1.3.5. Consider the Zariski topology on the affine line A1. The closed sets are the algebraic sets
∅,A1, {a1, . . . , am}, so the open sets are of the form ∅,A1,A1 \ {a1, . . . , am}.

Example 1.3.6. In R2, here are some examples of open sets:

x

y

U = R2 \ V (x2 + y2 − 1)

x

y

U = R2 \ V (y − x2)

We will see that in A2, then algebraic sets are ∅,A2, and finite unions of algebraic curves. Hence the open
sets are ∅,A2, and A2 −

⋃
(a finite number of algebraic curves).

Definition 1.3.7. A topology is called Hausdorff if it separates points. That is, if for all p, q ∈ X, there
exist open neighborhoods Vp 3 p, Vq 3 q such that Vp ∩ Vq = ∅.

Example 1.3.8. The metric topology on Rn is Hausdorff. The Zariski topology on Rn is not Hausdorff.

1.4 Ideals

Definition 1.4.1. Any algebraic set is of the form X = V (I) for some ideal I C K[x1, . . . , xn]. However,
not every subset of An is algebraic. Given any X ⊂ An, we define I(X) = {f ∈ K[x1, . . . , xn] : f(p) = 0
for all p ∈ X} to be the ideal of X. It is easy to check that I(X) is indeed an ideal of K[x1, . . . , xn].

We will see that not every ideal in K[x1, . . . , xn] is the ideal of a set of points X ⊂ An. Nonetheless, if the
ideal I ⊂ K[x1, . . . , xn] is such that I = I(X) for some X ⊂ An, we say that I is closed.
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Example 1.4.2. Consider the affine line A1, whose algebraic sets are A1, ∅, and {a1, . . . , am} for all ai ∈ K.
Their ideals are

I({a1, . . . , am}) = 〈(x− a1) · · · (x− am)〉 ,

I(A1) =

{
{0} if K is infinite〈
xp

n − x
〉

if K has pn elements
.

Next consider R1, ets that are not algebraic in it, and the associated ideals:

X = [0, 1], I(X) = {0},
|X| =∞, I(X) = {0}.

Proposition 1.4.3. For X = {(a, b)} ⊂ A2, the ideal I(X) = 〈x− a, y − b〉.
Note we do not need both to occur simultaneously, so we do not multiply x− 1 with y − b.

Proof: Let us first show that 〈x− a, y − b〉 is maximal in K[x, y]. Note K[x, y]/ 〈x− a, y − b〉 = K[x, y], where
x and y are the residues of x, y, respectively, in the quotient. Letting x = a and y = b, K[x, y]K[a, b] = K,
so K[x, y]/ 〈x− a, y − b〉 is a field, so 〈x− a, y − b〉 is maximal. But, 〈x− a, y − b〉 ⊂ I({(a, b)}) ( K[x, y],
as 1 6∈ I({(a, b)}). Hence 〈x− a, y − b〉 = I({(a, b)}) by the maximality of 〈x− a, y − b〉. �

We will also do this proof in a different manner.

Proof: Clearly, 〈x− a, y − b〉 ⊂ I({(a, b)}). Let us now show that I({(a, b)}) ⊂ 〈x− a, y − b〉. Let f ∈
I({(a, b)}) so that f(a, b) = 0. Divide f by x − a to eliminate all the x’s from its expression, thus getting
f(x, y) = (x− a)g(x, y) + (y − b)h(y) for some h ∈ K[x, y]. So f ∈ 〈x− a, y − b〉, proving that I({(a, b)}) ⊂
〈x− a, y − b〉. �

Proposition 1.4.4. The following are properties of ideals in K[x1, . . . , xn]:
1. If X ⊂ Y ⊂ An, then I(Y ) ⊂ I(X).
2.

I(∅) = K[x1, . . . , xn]

I({(a1, . . . , an)}) = 〈x1 − a1, . . . , xn − an〉 ∀ (a1, . . . , an) ∈ An

I(An) = {0} if K is infinite

3.

S ⊂ I(V (S)) for all S ⊂ K[x1, . . . , xn]

X ⊂ V (I(X)) for all X ⊂ An

4.

I(V (I(X))) = I(X) for all X ⊂ An

V (I(S)) = V (S) for all S ⊂ K[x1, . . . , xn]

Proof: Let us show that V (I(V (S))) = V (S) for al S ⊂ K[x1, . . . , xn]. By 3. we have that S ⊂ I(V (S)), so
that V (I(V (S))) ⊂ V (S). We also get the other inclusion from the same part. The first identity is identical.
�

Example 1.4.5. Note that equality for 3. does not always hold. For example, if S =
〈
x2 + 1

〉
⊂ R[x], then

V (S) = ∅ and I(V (S)) = I(∅) = R[x]. But S =
〈
x2 + 1

〉
( R[x] = I(V (S)).

Another example is with X = [0, 1] ⊂ R1. Then I(X) = {0} and V (I(X)) = V ({0}) = R1, but X = [0, 1] (
R1 = V (I(X)).
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Definition 1.4.6. Let X ⊂ An and I C K[x1, . . . , xn]. Define X to be the smallest algebraic set containing
X, or the closure of X in the Zariski topology. Similarly, define I to be the smallest closed ideal containing
I, or the closure of I in K[x1, . . . , xn].

Remark 1.4.7. Let X ⊂ An and I C K[x1, . . . , xn]. Then

X = V (I(X)) iff X is algebraic, and

I = I(V (I)) iff I is closed.

Proposition 1.4.8. Let X ⊂ An and I C K[x1, . . . , xn]. Then X = V (I(X)) and I = I(V (I)).

Proof: Let us show that X = V (I(X)). First note that the set V (I(X)) is algebraic and X ⊂ V (I(X)). It
remains to show that if Y ⊂ An is an algebraic set such that X ⊂ Y ⊂ V (I(X)), then Y = V (I(X)). Let
Y be such an algebraic set. By assumption, Y ⊂ V (I(X)), so the only thing to check is that V (I(X)) ⊂ Y .
But X ⊂ Y , so I(Y ) ⊂ I(X) and V (I(X)) ⊂ V (I(Y )) = Y since Y is algebraic. �

Example 1.4.9. Let X = [0, 1]. Then X is not closed in R since it is infinite but not all of R. Further,
X = V (I(X)) = V (I([0, 1])) = V (0) = R. Hence X is dense in R.

In general, a subset Y ⊂ X of a topological space X is called dense if Y = X. In fact, any X ⊂ A1(K) that
is infinite is dense in A1(K) as long as K is infinite.

Next consider the ideal I =
〈
x2 + y2 − 1, x− 1

〉
⊂ R[x, y]. Then I = I(V (I)).

0
x

y

x = 1

x2 + y2 = 1

As V (I) = V (x2 + y2 − 1, x− 1) = V (x2 + y2 − 1) ∩ V (x− 1) = {(1, 0)}, it follows that

I = I(V (I))

= I({(1, 0)})
= 〈x− 1, y〉
)
〈
x2 + y2 − 1, x− 1

〉
= I.

The second-last line follows as y 6∈ I.

1.5 Propreties of ideals

Definition 1.5.1. Let R be a ring. Then I C R is called radical if

I = Rad(I) =
√
I := {a ∈ R : an ∈ I for some n > 0}.

Remark 1.5.2. Note that I ⊂
√
I. Further, the definition of a radical ideal is equivalent to the following:

I =
√
I iff

(
anr ∈ I for some n > 0 =⇒ a ∈ I

)
. (1)

This is easier to use as a defining property of radical ideals in examples.
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Proposition 1.5.3. If I C K[x1, . . . , xn] is closed (i.e. there exists X ⊂ An such that I = I(X)), then I is
radical.

Proof: Suppose that I =
√
I. Let us verify that I satisfies the condition in the remark above. Let a ∈ R be

such that an ∈ I for some n > 0. Then by the definition of
√
I, we have a ∈

√
I. But I =

√
I implies a ∈ I,

so the condition is satisfied.

Conversely, suppose that I satisfies the condition. We need to verify that
√
I ⊂ I. By definition, an ∈ I for

some n > 0. The condition then tells us that a ∈ I. �

Example 1.5.4. The ring R is a radical ideal, as are prime ideals. This follows as for an ∈ P C R for n > 0
and P prime, an−1 ∈ P or a ∈ P . If an−1 ∈ P , then an−2 or a ∈ P , and so on. We finally get that a ∈ P ,
so P is radical.

The ideal I =
〈
x2 + 1

〉
C R[x] is prime since x2 + 1 is irreducible over R, hence I is radical.

The ideal 〈x− a, y − b〉 C K[x, y] is maximal, hence prime, so it is radical.

However, not all ideals are radical. For example, for I =
〈
x2 + y2 − 1, x− 1

〉
, y2 = (x2 + y2 − 1) − (x −

1)(y − 1) ∈ I, but y 6∈ I, so I is not radical. But note that y ∈
√
I, since y2 ∈ I. Also, x − 1 ∈

√
I, since

x− 1 ∈ I. Then 〈x− 1, y〉 ⊂
√
I and 〈x− 1, y〉 is maximal, but I 6= K[x, y], as 1 6∈

√
I, so

√
I = 〈x− 1, y〉.

Proposition 1.5.5. If the ideal I ⊂ K[x1, . . . , xn] is closed, then I is radical.

Proof: Suppose that I is closed, so that I = I(X) for some X ⊂ An. Let us show that I satisfies (1). Let
f ∈ K[x1, . . . , xn] be such that fn ∈ I = I(X). Then fn(p) = f(p) · · · f(p) = 0, but f(p) ∈ K, which is a
field, so f(p) = 0 for all p. This implies that f ∈ I(X) = I, so (1) is satisfied. �

Note that the converse of the above claim is not necessarily true. For example,
〈
x2 + 1

〉
( R[x] is radical,

but not closed, as 〈x2 + 1〉 = R.

Proposition 1.5.6. For X ⊂ An any set, I(X) is radical.

Proposition 1.5.7. If I C K[x1, . . . , xn], then I ⊂
√
I ⊂ I = I(V (I)).

Proof: We have already seen that I ⊂
√
I. Let us show that

√
I ⊂ I(V (I)). Let f ∈

√
I, so that fn ∈ I for

some n > 0. This means, in particular, that

fn(p) = 0 ∀ p ∈ V (I)

=⇒ f(p) = 0 ∀ p ∈ V (I)

=⇒ f ∈ I(V (I)) = I.

The second line follows as f(p) ∈ K. �

If K is algebraically closed (i.e. K = K), we have a stronger statement.

Theorem 1.5.8. [Hilbert’s Nullstellensatz] If K = K and I C K[x1, . . . , xn], then I(V (I)) =
√
I.

Remark 1.5.9. The above implies that I = I iff I =
√
I, or equivalently, there is a 1-1 correspondence

between closed and radical ideals. This gives us the following correspondences:(
algebraic
set in An

)
1 :←−−1−→

(
closed ideals

in K[x1, . . . , xn]

)
X 7→ I(X)

V (J) 7→ J

because
X 7→ I(X) 7→ V (I(X)) = X
J 7→ V (J) 7→ I(V (J)) = J

,

if X is algebraic and J is closed.
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Definition 1.5.10. An algebraic set X ⊂ An is irreducible if X 6= ∅ and X cannot be expressed as
X = X1 ∪X2, where X1, X2 are algebraic sets not equal to X. Otherwise, X is reducible.

Example 1.5.11. The set A1 is irreducible if K is infinite, since the only proper algebraic subsets of A1

are finite sets of points. Moreover, I(A1) = (0) if K is infinite, which is a prime ideal.

Consider the example of V (xy) = V (x) ∪ V (y) ⊂ A2, which is reducible.

x

y

V (x)

V (y)

We claim that I(V (xy)) = 〈xy〉 ⊂ K[x, y], which is not prime, since xy ∈ 〈xy〉, but x, y 6∈ 〈xy〉. Clearly,
〈xy〉 ⊂ I(V (xy)), so we just have to show that I(V (xy)) ⊂ 〈xy〉. Let f ∈ I(V (xy)), for which

f(p) = 0 ∀ p ∈ V (xy) = V (x) ∪ V (y)

=⇒ f(p) = 0 ∀ p ∈ V (x) and ∀ p ∈ V (y)

=⇒ f ∈ I(V (x)) and f ∈ I(V (y)).

But I(V (x)) = 〈x〉. Indeed, 〈x〉 ⊂ I(V (x)) ⊂ K[x, y]. Also, if g ∈ I(V (x)) ⊂ K[x, y], then g(0, y) = 0 for all
y. Now, g(x, y) can be written as g(x, y) = a0(x) + a1(x)y + · · ·+ am(x)ym, so

g(0, y) = 0 ∀ y ⇐⇒ ai(0) = 0 ∀ i
=⇒ ai ∈ 〈x〉 ⊂ K[x] ∀ i
=⇒ g ∈ 〈x〉 ⊂ K[x, y]

=⇒ I(V (x)) ⊂ 〈x〉
=⇒ I(V (x)) = 〈x〉 .

Similarly, I(V (y)) = 〈y〉, so f ∈ 〈x〉 ∩ 〈y〉 = 〈xy〉, and we have proved the claim.

Proposition 1.5.12. An algebraic set X ⊂ An is irreducible iff I(X) is prime.

Note that Fulton also considers ∅ to be irreducible, but then I(∅) = K[x1, . . . , xn] is not prime. However,
most authors assume irreducible algebraic sets are non-empty.
Proof: Let X ⊂ An be irreducible algebraic, and f, g ∈ K[x1, . . . , xn] such that fg ∈ I(X). Let us show that
f ∈ I(x) or g ∈ I(X). Note that 〈fg〉 ⊂ I(X), so that

X = V (I(X)) ⊂ V (〈fg〉) = V (fg) = V (f) ∪ V (g)

=⇒ X = (X ∩ V (f))︸ ︷︷ ︸
algebraic

∪ (X ∩ V (g))︸ ︷︷ ︸
algebraic

.

Hence X = X ∩V (f) or X = X ∩V (g) by the irreducibility of X. This implies that X ⊂ V (f) or X ⊂ V (g),
further implying that f ∈ I(X) or g ∈ I(X). Hence I(X) is prime.

Conversely, let’s assume that I(X) is prime. Suppose that X = X1 ∪ X2 with X1, X2 ⊂ An algebraic.
Then, since X,X1, X2 are algebraic, we have that X = V (I(X)), X1 = V (I(X1)), X2 = V (I(X2)). Also,
I(X) = I(X1 ∪X2) = I(X1) ∩ I(X2). If I(X) = I(X1), then X = V (I(X)) = V (I(X1)) = X1. Otherwise,
there exists f ∈ I(X1) such that f 6∈ I(X). But since I(X1) and I(X2) are ideals, and f ∈ I(X1), it follows
that fg ∈ I(X1)∩ I(X2) for all g ∈ I(X2). But I(X1)∩ I(X2) = I(X), which is prime. This forces g ∈ I(X)
for all f ∈ I(X2), since f 6∈ I(X). Hence I(X2) = I(X), and X2 = X. �
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2 Affine varieties

2.1 Classification of algebraic sets

Definition 2.1.1. An (affine) variety is an irreducible algebraic set in An.

Example 2.1.2. Consider the following examples of affine varieties.

a. The space An(K) with K infinite is a variety since I(An(K)) = (0), which is prime.

b. For all p = (a1, . . . , an ∈ An, we have seen that I({p}) = 〈x1 − a1, . . . , xn − an〉, which is maximal,
therefore prime. Hence {p} is a variety.

c. If K is finite, then An(K) is not a variety, since it can be written as a union of points (and fields have
at least 2 points, 1 and 0).

d. Suppose that K = K, and consider an irreducible polynomial f ∈ K[x1, . . . , xn]. Then 〈f〉 is prime
and therefore also radical. So I(V (〈f〉)) =

√
〈f〉 = 〈f〉, by the Nullstellensatz and the fact that 〈f〉 is

radical. Then V (f) is irreducible and therefore a variety.

Lemma 2.1.3. If K = K and f ∈ K[x1, . . . , xn] is irreducible, then V (f) is irreducible and I(V (f)) = 〈f〉.

Remark 2.1.4. So when K = K, we have the following 1-1 correspondence:

Geometric in An Algebraic in K[x1, . . . , xn]

An (0)

algebraic set radical ideal

variety prime ideal

point maximal ideal

∅ K[x1, . . . , xn]

Note that if K 6= K, then prime ideals may not correspond to algebraic sets. For example, for f(x, y) =
x2 + y2(y − 1)2 ⊂ R[x, y], we have that V (f) = {(0, 0), (0, 1)}, which is reducible. But f is irreducible over
R, as f = (x + iy(y − 1))(x− iy(y − 1)), and R[x, y] ⊂ C[x, y]. So if f would be reducible in R[x, y], then
we would gen a different factorization of f in C[x, y], which is impossible, since C[x, y] is a UFD (unique
factorization domain).

Example 2.1.5. If K 6= K, then two prime ideals may have the same zero set. For example, in R[x, y],〈
x2 + y2

〉
is prime and V (

〈
x2 + y2

〉
) = {(0, 0)},

〈x, y〉 is maximal, and so prime, and V (〈x, y〉) = {(0, 0)}.

Hence there is not a 1-1 correspondence between prime ideals and varieties, of K 6= K.

Proposition 2.1.6. Every algebraic set X ⊂ An is a finite union of irreducible algebraic sets.

Proof: Let X ⊂ An be algebraic, and suppose that X is not the finite union of irreducible algebraic sets. This
means, in particular, that X is irreducible, so that it can be written as X = X1 ∪X2, with one of X1, X2 an
algebraic set that cannot be written as a finite non-trivial union of irreducible algebraic sets. Suppose that,
WLOG, it is X1. Thus, X1 is also reducible, and can be written as X1 = X3 ∪ X4, with X3 an algebraic
set that is not a finite non-trivial union of irreducible algebraic sets. Continue this process to get an infinite
strict descending chain of algebraic sets

X ) X1 ) X3 ) x5 ) · · · .

Take ideals of these algebraic sets to reverse the inclusion as

I(X) ( I(X1) ( I(X3) ( I(X5) ( · · · .
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The strict inclusion follows because if I(X) = I(X1), then X = V (I(X)) = V (I(X1)) = X1, as X, X1

are algebraic. But K[x1, . . . , xn] is Noetherian, so every strict ascending chain of ideals must terminate,
implying that there is m ∈ Z such that I(Xm) = I(Xm+1) = I(Xm+2) = · · · . This implies that Xm = Xn

for all n > m, a contradiction. This proves the proposition. �

Definition 2.1.7. Now consider an algebraic set X ⊂ An, and suppose that it can be written as X =
X1 ∪ · · · ∪ Xm with each Xi an irreducible algebraic set. Then, if Xi ⊂ Xj with i 6= j, we get rid of Xi.
By repeating this procedure enough times, we can write X as X = Xi1 ∪ · · · ∪ Xik , where each Xij is an
irreducible algebraic set, and Xij 6⊂ Xi` for all j 6= `, and {i1, . . . , i`} ⊂ {1, . . . ,m}. This expression is called
the (irredundant) decomposition of X into irreducible algebraic sets.

Theorem 2.1.8. Every algebraic set X ⊂ An has a unique decomposition as a finite union of irreducible
algebraic sets.

Proof: Suppose that X = X1 ∪ · · · ∪Xk = Y1 ∪ · · · ∪ Yk′ , where each Xi, Yj is an irreducible algebraic set,
with Xi 6⊂ X` if i 6= ` and Yj 6⊂ Ym if j 6= m. Then for all i,

Xi = Xi ∩X = Xi ∩ (Y1 ∪ · · · ∪ Yk′) =
⋃
j

Xi ∩ Yj .

But Xi is irreducible, so we must have that Xi = Xi ∩ Yj0 for some j0 ∈ {1, . . . , k′}. In particular, it
means that Xi ⊂ Yj0 . Similarly, Yj0 ⊂ Xi0 for some i0 ∈ {1, . . . , k}. So Xi ⊂ Yj0 ⊂ Xi0 , meaning that
Xi = Yj0 = Xi0 . This can be repeated for all i and j, showing that each xi corresponds to a Yj , and vice
versa. �

Example 2.1.9. Consider X = V (y4 − x3, y4 − x3y2 + xy2 − x3) ⊂ C2. We generate factors by noting that

y4 − x2 = (y2 − x)(y2 + x),

y4 − x2y2 + xy2 − x3 = (y − x)(y + x)(y2 + x),

where all of the factors on the right are irreducible by Eisenstein. So we may write

X = V (y2 + x) ∪ V (y2 − x, (y − x)(y + x)) = V (y2 + x) ∪ {(0, 0), (1, 1), (1,−1)}.

Here V (y2 + x) is irreducible since y2 + x is irreducible and C = C, and {(0, 0), (1, 1), (1,−1)} = {(0, 0)} ∪
{(1, 1)}∪{(1,−1)} is irreducible because points are irreducible. We found these points by solving the system
of equations given by y2 − x = 0 and (y − x)(y + x) = 0. However, we see that (0, 0) ∈ V (y2 + x), whereas
(1, 1), (1,−1) 6∈ V (y2 + x). Thus the decomposition of X is

X = V (y2 + x) ∪ {(1, 1)} ∪ {1,−1}.

Remark 2.1.10. So far we have see that the algebraic sets in A1 consist of ∅,A1, and finite sets of points.
Since any algebraic set admits a decomposition as a finite union of irreducible algebraic sets, which is
unique, it is enough to classify the irreducible algebraic sets in A2. Potential candidates are A2, V (f) with
f irreducible and V (f) infinite, and {pt}. We will see that these are the only ones. But first we need a
technical lemma.

Lemma 2.1.11. If f, g ∈ K[x, y] with no common factors, then V (f, g) = V (f) ∩ V (g) is at most a finite
set of points.

Proof: First note that f, g can be considered as polynomials in K[x][y] ⊂ K(x)[y], which is a PID (principal
ideal domain), since K(x) is a field. Recall Gauss’s lemma, which says that an integral domain D with a
fraction field F having f ∈ D[y] irreducible in D[y] implies f is irreducible in F [y].

Then, if f, g have no common factors in K[x][y], then they have no common factors in K(x)[y], because the
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irreducible factors of f, g in K[x][y] are the same as the irreducible factors in K(x)[y], since it is a UFD. Now,
since f and g don’t have common factors in K(x)[y], which is a PID, there exists s, t ∈ K(x)[y] such that
sf + tg = 1. But, there exists d ∈ K[x] such that ds = a, dt = b ∈ K[x][y], implying that aF = bg ∈ K[x].
Let (x0, y0) ∈ V (f, g). Then 0 = a(x0, y0)f(x0, y0) + b(x0, y0)g(x0, y0) = d(x0), so x0 is a root of d ∈ K[x].
Hence there are only a finite number of possibilites for x0. Similarly, one finds there are only a finite number
of possibilities for y0. So V (f, g) is at most a finite set of points. �

Proposition 2.1.12. If f is an irreducible polynomial in K[x, y] and V (f) is infinite, then I(V (f) = 〈f〉.
In particular, V (f) is an irreducible algebraic set.

Proof: Clearly 〈f〉 ⊂ I(V (f)), so we just need to show that I(V (f)) ⊂ 〈f〉. Let g ∈ I(V (f)), so then
V (f) ⊂ V (f, g). But V (f) is infinite, meaning that f and g have a common factor by the Lemma above.
Hence f | g since f is irreducible. Then g ∈ 〈f〉, so I(V (f)) ⊂ 〈f〉.

Theorem 2.1.13. [Classification of irreducible algebraic sets in A2(K) for |K| =∞]
The irreducible algebraic sets in A2 are A2, {pt}, and V (f) with f ∈ K[x, y] irreducible and |V (f)| =∞.

Proof: Let X ⊂ An be algebraic, and assume that X 6= A2, X 6= {pt}. By ireducibility, X is infinite and

I(X) is prime. Note that I(X) 6= {0}, otherwise X = A2. So there exists a non-zero f ∈ I(X). Moreover,
we can assume that f is ireducible, since an ireducible factor of f is in I(X), because I(X) is prime. We
now claim that I(X) = 〈f〉. Certainly 〈f〉 ⊂ I(X). Let g ∈ I(X) and suppose that g 6∈ 〈f〉. Then f and g
do not have a common factor (because f is irreducible), forcing V (f, g) to be finite. But, X ⊂ V (f, g) with
X infinite. Hence g ∈ 〈f〉 implies I(X) = 〈x〉, so X = V (I(X)) = V (f). �

2.2 Coordinate rings and polynomial maps

Recall that an affine variety is an irreducible algebraic subset of An endowed with the induced Zariski
topology. Since the only irreducible subset of An(K) with K finite are points, we will ossume from now on
that K is infinite.

Definition 2.2.1. Suppose that X is a variety. Then I(X) is prime, and Γ(X) = K[x1, . . . , xn]/I(X) is
called the coordinate ring of X. Note that since I(X) is prime, Γ(X) is a domain. In fact, K[x1, . . . , xn]/I(X)
is a domain iff I(X) is prime iff X is irreducible.

Remark 2.2.2. Given any polynomial f ∈ K[x1, . . . , xn], one may think of f as a polynomial function on
X by restricting f to X. But if we choose f, g ∈ K[x − 1, . . . , xn], they may define the same polynomial
function on X if f |X = g|X . In fact

f |X = g|X ⇐⇒ f = g on X ⇐⇒ f − g ∈ I(X).

Therefore Γ(X) = {polynomial functions on X}.

Example 2.2.3. Consider the following examples of sets and their coordinate rings.

a. X = An, I(X) = (0). Then Γ(X) = K[x1, . . . , xn]/(0) = K[x1, . . . , xn].

b. X = {pt} = {(a1, . . . , an)}, I(X) = 〈x1 − a1, . . . , xn − an〉. Then
Γ(X) = K[x1, . . . , xn]/ 〈x1 − a1, . . . , xn − an〉 = K. Note that this is consistent with the fact that any
function on a singleton is constant.

c. X = V (y − x2) ⊂ A2, I(X) =
〈
y − x2

〉
. Since X = V (f) with f = y − x2 irreducible and X

infinite, Γ(X) = K[x, y]/
〈
y − x2

〉
= K[x, y] with y = x2. Then Γ(X) = K[x] = K[t] for t = x. So this is a

polynomial ring in one variable.

Theorem 2.2.4. Let X be an affine variety. Then Γ(X) is Noetherian.
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Proof: Consider the projection map π : K[x1, . . . , xn] → K[x1, . . . , xn]/I(X). Let us show that J C Γ(X)

is finitely generated. First note that the inverse image π−1(J) is an ideal in K[x1, . . . , xn] that contains
I(X). But K[x1, . . . , xn] is Noetherian, so π−1(J) is generated by f1, . . . , fk, i.e. π−1(J) = 〈f1, . . . , fk〉 for
fi ∈ K[x1, . . . , xn]. Then J = π(π−1(J)) =

〈
f1, . . . , fk

〉
, so it is finitely generated (where f i represents the

residue class of fi). �

Remark 2.2.5. The coordinate ring Γ(X) has additional structure to its ring structure. It is also a vector
space over K, where the vector space addition is the usual addition in the ring, and scalar multiplication
coincides with multiplication in the ring. Such a ring is called a K-algebra.

Example 2.2.6. Consider the following examples of K-algebras.
· K[x1, . . . , xn] is a K-algebra.
· If A is a K-algebra and I C A, then A/I is a K-algebra.

Definition 2.2.7. Let X ⊂ An and Y ⊂ Am be varieties. A function ϕ : X → Y is called a polynomial map
if there exist polynomials f − 1, . . . , fm ∈ K[x1, . . . , xn] such that ϕ(x) = (f1(x), . . . , fm(x)) for all x ∈ X.
Note that the fi are uniquely determined by ϕ up to elements in I(X). So we can think of the components
of ϕ as being elements of Γ(X).

Example 2.2.8. Consider the following examples of polynomial maps.
· Polynomial functions f : X → K = A1

· Any linear map An → Am

· Any affine map An → Am given by x 7→ Ax+ b for A ∈Mm×n(K) and b ∈ Am

· Compositions of polynomial maps
· The map as given below:

X = V (y − x2) ⊂ A2 → A1

(x, y) 7→ x
x

y
y − x2 = 0

A1 → Y = V (y2 − x3) ⊂ A2

t 7→ (t2, t3)
x

y
y2 − x3 = 0

Proposition 2.2.9. Let X ⊂ An and Y ⊂ Am be two varieties and ϕ : X → Y a polynomial map. Then
1. for any algebraic Z ⊂ Y , ϕ−1(Z) ⊂ X is algebraic (i.e. ϕ is continuous in the Zariski topology), and
2. ϕ(X) is irreducible in Am.

Proof: 1. Suppose that An has ambient coordinates x1, . . . , xn and Am has ambient coordinates y1, . . . , ym.
Then the map given by

ϕ : X ⊂ An → Y ⊂ Am

(x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

with fi ∈ K[x1, . . . , xn], since ϕ is a polynomial. Let Z ⊂ Y be algebraic. Then Z = V (g1, . . . , gk) for
gi ∈ K[y1, . . . , ym], with

ϕ−1(Z) = {p ∈ X : ϕ(p) ∈ Z}
= {p ∈ X : gi(ϕ(p)) = 0 ∀ i} since Z = V (g1, . . . , gk)

= {p ∈ X : gi(f1(p), . . . , fm(p)) = 0 ∀ i}
= V (g1(f1, . . . , fm), . . . , gk(f1, . . . , fm)),
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so ϕ−1(Z) is algebraic in An.

2. Suppose ϕ(X) = Z1 ∪ Z2 with Z1, Z2 algebraic. Let us show that ϕ(X) = Z1 or Z2, implying that ϕ(X)
is irreducible. First note that X = ϕ−1(ϕ(X)) = ϕ−1(Z1)∪ϕ−1(Z2), where ϕ−1(Z1), ϕ−1(Z2) are algebraic
by 1., since Z1, Z2 are algebraic. This implies that

X = ϕ−1(Z1) or X = ϕ−1(Z2) =⇒ ϕ(X) ⊂ Z1 or ϕ(X) ⊂ Z2

=⇒ ϕ(X) ⊂ Z1 = Z1 or ϕ(X) ⊂ Z2 = Z2.

Since Z1, Z2 ⊂ ϕ(X), this means that ϕ(X) = Z1 or Z2. �

Example 2.2.10. The proposition above can be used to determine whether an algebraic subset of An is
irreducible. For example, consider SL(n, k) = {A ∈ gl(n, k) : det(A) = 1}. Note that gl(n, k) = {n × n
matrices over K} ∼= Kn2 ∼== An2

. Then SL(n, k) = det−1({1}), which is an algebraic set, since det : An2 →
K = A1 is a polynomial map.

Remark 2.2.11. We have 3 tests for determining the irreducibility of an algebraic set Z ⊂ Am: Z is
irreducible iff

1. I(Z) is prime, or
2. Γ(Z) = K[y1, . . . , ym]/I(Z) is a domain, or
3. Z = ϕ(X) for some polynomial map ϕ : X → Am with X ⊂ An a variety.

Example 2.2.12. Consider the twisted cubic X = V (y − x2, z − x3) ⊂ A3 and I(X) =
〈
y − x2, z − x3

〉
.

Observe that

Γ(X) = K[x, y, z]/
〈
y − x2, z − x3

〉
= K[x, y, z] with y = x2, z = x3

= K[x]

= K[t], with t = x

which is a domain. Hence X is irreducible. Also, X = ϕ(A1), with ϕ : A1 → X ⊂ A3 given by t 7→ (t, t2, t3).

Definition 2.2.13. Two varieties X ⊂ An and Y ⊂ Am are said to be isomorphic if there exists an
invertible polynomial map ϕ : X → Y whose inverse ϕ−1 : X → Y is also a polynomial map. We then write
X ∼= Y .

Example 2.2.14. Consider the following examples of isomorphic varieties.
· ϕ : X = V (y − x2) ⊂ A2 → A1 given by (x, y) 7→ x. The inverse ϕ−1 : A1 → X ⊂ A2 is given by
t 7→ (t, t2). Hence X ∼= A1.

· ϕ : X = V (xy − 1) ⊂ A2 → A1 given by (x, y) 7→ x. This polynomial map is not surjective, since no
point in X gets mapped to 0. Hence ϕ is not an isomorphism. Note we can show that there does not
exist an isomorphism between X and A1. Here, X = V (f) with f = xy − 1 is irreducible, implying that
I(X) = 〈f〉, because we are in A2 and X is irreducible. So then we find that

Γ(X) = K[x, y]/ 〈xy − 1〉 = K[x, y]

with xy = 1. We will see that Γ(X) 6∼= Γ(A1), so X 6∼= A1.

· ϕ : A1 → V (y2 − x3) ⊂ A2 given by t 7→ (t2, t3) is a bijection, with inverse ϕ−1(x, y) = y1/3. But,
ϕ−1 cannot be a polynomial, map, because if ϕ−1(x, y) = p(x, y) was a polynomial, then t = ϕ−1(ϕ(t)) =
p(t2, t3), which is an expression whose powers of t are strictly greater than 1. Also note that

Γ(X) = K[x, y]/
〈
y2 − x3

〉
= K[x, y],

for y2 = x3.

14



Remark 2.2.15. Isomorphisms that are affine coordinate changes are called affine equivalences. It is possible
to show that any irreducible conic in R2 is affinely equivalent to

y2 = x
parabola

or
x2 + y2 = 1

circle
or

x2 − y2 = 1
hyperbola

.

Definition 2.2.16. Let ϕ : X → Y be a polynomial map between two varieties X,Y . Define the pullback
along ϕ by

ϕ∗ : Γ(Y ) → Γ(X)
g 7→ g ◦ ϕ .

Let us check that ϕ∗ is well-defined. Let X ⊂ An with ambient coordinates x1, . . . , xn and Y ⊂ Am with
ambient coordinates y1, . . . , ym. Suppose that g = g′ in Γ(Y ) = K[y1, . . . , ym]/I(Y ). Then g′ = g + h for
some h ∈ I(Y ), and

g′ ◦ ϕ = g ◦ ϕ+ h ◦ ϕ = g ◦ ϕ,

because for all p ∈ X, ϕ(p) ∈ Y , so h(ϕ(p)) = 0. Hence g′ ◦ ϕ = g ◦ ϕ in Γ(X) = K[x1, . . . , xn]/I(X), and
ϕ∗ is well-defined.

Remark 2.2.17. Note that the pullback is functiorial. Moreover,
· (idX)∗ = idΓ(X)

· (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗
· ϕ∗ is a K-algebra homomorphism, i.e. a K-linear ring homomorphism.

The last follows as Γ(X) is a K-algebra because it is a ring that admits a K-vector space structure.

Example 2.2.18. Since the pullback ϕ∗ is a K-algebra homomorphism, it is enough to specify it on the
generators yi of Γ(Y ) = K[y1, . . . , ym]/I(Y ) = K[y1, . . . , ym]. For example, ϕ : A1 → X = V (y2 − x3) ⊂ A2

is given by t 7→ (t2, t3). Then the map ϕ∗ is completely defined by

ϕ∗ : Γ(X) = K[x, y] → Γ(A1) = K[t]
x 7→ x ◦ ϕ = t2

y 7→ y ◦ ϕ = t3
.

Proposition 2.2.19. [Faithfulness]
If ϕ : X → Y and ψ : X → Y are polynomial maps and ϕ∗ = ψ∗, then ϕ = ψ.

Proof: Let (x1, . . . , xn) and (y1, . . . , ym) be ambient coordinates for An, Am, respectively. Then ϕ =
(f1, . . . , fm) and ψ = (g1, . . . , gm) for fi, gi ∈ K[x1, . . . , xn]. Note that fi = yi ◦ ϕ and gi = yi ◦ ψ. So
if ϕ∗ = ψ∗, then

fi = yi ◦ ϕ = ϕ∗(yi) = yi ◦ ψ = gi.

Hence fi and gi agree up to an element of I(X) for all i, so ϕ = ψ. �

Proposition 2.2.20. Let ϕ : X → Y be a polynomial map. Then ϕ is an isomorphism if and only if ϕ∗ is
an isomorphism of K-algebras, in which case (ϕ∗)−1 = (ϕ−1)∗.

Proof: Suppose that ϕ has a polynomial inverse ϕ−1 : Y → X. Then ϕ ◦ ϕ−1 = idY and ϕ−1 ◦ ϕ = idX , so

(ϕ−1)∗ ◦ϕ∗ = (ϕ◦ϕ−1)∗ = (idY )∗ = idΓ(Y ). Similarly, ϕ∗ ◦ (ϕ−1)∗ = idΓ(X), so ϕ∗ is isomorphic with inverse
(ϕ−1)∗. Note that (ϕ−1)∗ is a K-algebra homomorphism, since it is the pullback of a polynomial map.

Conversely, suppose that ϕ∗ is an isomorphism of K-algebras with inverse Ψ. Then by the next proposition,
Φ = ϕ∗ for some unique polynomial map ψ : Y → X. To see that ψ = ϕ−1, note that (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ =
ϕ∗ ◦ (ϕ∗)−1 = idΓ(Y ) = (idY )∗. Thus ψ ◦ ϕ = idY , and similarly, ϕ ◦ ψ = idX . �

Proposition 2.2.21. [Fullness]
If Φ : Γ(X)→ Γ(Y ) is a K-algebra homomorphism, then there exists a unique polynomial map ϕ : X → Y
with ϕ∗ = Φ.
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Proof: Let Φ : Γ(Y )→ Γ(X) be a K-algebra homomorphism. Here X ⊂ An and Y ⊂ Am. Suppose that the
ambient coordinates in An are x1, . . . , xn and in Am are y1, . . . , ym. Assume that there exists a polynomial
map ϕ : X → Y such that ϕ∗ = Φ. Then ϕ = (f1, . . . , fm) with fi ∈ K[x1, . . . , xn] and

ϕ∗(yj)︸ ︷︷ ︸
= yj◦f = fj

= Ψ(yj) iff fj = Φ(yj).

So for all j = 1, . . . ,m, pick a representative fj of the residue class Φ(yj), and set ϕ = (f1, . . . , fm). Then
certainly ϕ : An → Am is a polynomial. But we still need to check that (i.) ϕ(X) ⊂ ϕ(Y ) so that we get
ϕ : X → Y , and (ii.) ϕ∗ = Φ.

(i.) It is enough to check that I(Y ) ⊂ I(ϕ(X)) because then ϕ(X) ⊂ V (I(ϕ(X)) ⊂ V (I(Y )) = Y , as Y is
algebraic. Next. let g ∈ I(Y ). Then g = 0 in Γ(Y ) and Φ(g) = 0. To show that g ∈ I(ϕ(X)), we need to
verify that

g(ϕ(p)) = 0 ∀ p ∈ X iff (g ◦ ϕ)(p) = 0 ∀ p ∈ X
iff g ◦ ϕ ∈ I(X)

iff g ◦ ϕ = 0 ∈ Γ(X).

But we see that

g ◦ ϕ = g(f1, . . . , fm)

= g(f1, . . . , fm)

= g(Φ(y1), . . . ,Φ(ym)) for g =
∑
I

aiyi1 · · · yid

= Φ(g(y1, . . . , ym)) since Φ is a K-algebra hom.

= Φ(g)

= 0

in Γ(X). Hence g ∈ I(ϕ(X)), so ϕ(X) ⊂ Y .

(ii.) Since K-algebra homomorphisms are completely determined by their image on the generators of the
K-algebra, and by construction, ϕ∗(yj) = Φ(yj), we haze ϕ∗ = Φ. Finally, the choice of fjs was unique up
to elements of I(X), implying that ϕ is the unique polynomial such that ϕ∗ = Φ. �

Corollary 2.2.22. For X,Y varieties, X ∼= Y iff Γ(X) ∼= Γ(Y ).

Proof: If there exists an isomorphism ϕ : X → Y , then ϕ∗ : Γ(X)→ Γ(Y ) is an isomorphism. Conversely, if
there exists a K-algebra homomorphism Φ : Γ(Y )→ Γ(X), then Φ = ϕ∗ for some isomorphism ϕ : X → Y .
�

Example 2.2.23. Consider X = V (xy − 1) ⊂ A2. Is X ∼= A1? We have already seen that

Γ(X) = K[x, y]/ 〈xy − 1〉
= K[x, y] with xy = 1
= K[x, x−1]
= (ring of Laurent polynomials).

x

y

X
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And we also know that Γ(A1) = K[t]. By the theorem, we know that X ∼= A1 iff K[x, x−1] ∼= K[t]. So assume
that K[x, x−1] ∼= K[t], so there exists a K-algebra homomorphism Φ : K[x, x−1] → K[t]. In particular, Φ
is a surjective ring homomorphism, implying that Φ(1) = 1. Then Φ(x) · Φ(x−1) = Φ(x · x−1) = Φ(1) = 1.
Hence Φ(x) and Φ(x−1) are units in K[t]. Therefore Φ(x),Φ(x−1) ∈ K, so Φ(K[x, x−1]) ∈ K, contradicting
surjectivity. Hence K[x, x−1] ∼= K[t], so X ∼= A1.

Definition 2.2.24. A K-algebra A is finitely generated if there exist a1, . . . , an ∈ A such that A =
K[a1, . . . , an]. Equivalently, there exists a surjective K-algebra homomorphism ϕ : K[x1, . . . , xn] → A
for some n ∈ N (so that if ai = ϕ(xi), then A = K[a1, . . . , an]).

Example 2.2.25. Consider the following examples of K-algebras:
· K[x1, . . . , xn] is a finitely-generated K-algebra.
· Any quotient of a finitely-generated K-algebra is finitely-generated, because if A = K[a1, . . . , an] with

ai ∈ A and I C A, then A/I = K[a1, . . . , an] with ai ∈ A/I. So Γ(X) is a finitely-generated K-algebra for
all varieties X.

Proposition 2.2.26. Suppose that K = K¿ and A is a finitely-generated A-algebra that is an integral
domain. Then there exists a variety X such that A ∼= Γ(X) as K-algebras.

Proof: Since A is finitely-generated, there exists a surjective K-algebra homomorphism ϕ : K[x1, . . . , xn]→
A. Set I = ker(ϕ). Then A ∼= K[x1, . . . , xn]/I, so set X = V (I). But I(X) = I(V (I)) =

√
I = I, by the

Nullstellensatz and as I is prime and A is an integral domain. �

Remark 2.2.27. This gives us a nice correspondence between objects:

Geometric Algebraic

affine variety X finitely-generated K-algebra and integral domain Γ(X)

algebraic set X radical ideal I(X)

algebraic subset of X radical ideal in Γ(X)

subvariety of X prime ideal in Γ(X)

point in X maximal ideal in Γ(X)

polynomial maps ϕ : X → Y K-algebra homomorpisms ϕ∗ : Γ(Y )→ Γ(X)

2.3 Rational functions and local rings

Let X ⊂ An be a variety. Then Γ(X) is an integral domain, and we may consider its quotient field, i.e. field
of fractions.

Definition 2.3.1. Given a variety X ⊂ An, the quotient field of Γ(X) is called the field of rational functions
on X, or the function field of X, and is denoted by K(X).

Example 2.3.2. Unlike polynomial functions, rational functions may not be defined at every point in X.
· Let X = An. Then K(X) = K(x) and 1/x is not defined at x = 0.
· Let X = V (y− x2) ⊂ A2. Then Γ(X) = K[x, y] = K[x] for y = x2, so K(X) = K(x), and 1/x ∈ K(X)

is not defined when x = 0 ⇐⇒ (x, y) = (0, 0) ∈ X.

Definition 2.3.3. A rational function f on X is said to be defined, or regular at p ∈ X if it may be written
as f = a

b
for some a, b ∈ Γ(X), and b(p) 6= 0. In this case, we say that a(p)/b(p) ∈ K is the value of f at p,

and denote it by f(p). Moreover, the set of points where f is not defined is called the pole set of f . Points
where f is not defined are called poles.

17



Remark 2.3.4. Suppose that f = a/b = a′/b
′

is K(X). This means that

ab
′

= a′b in Γ(X) iff ab
′ − a′b = 0 in Γ(X)

iff ab′ − a′b = 0 in X.

So if p ∈ X is such that b(p) = b′(p) 6= 0, then a(p)/b(p) = a′(p)/b′(p). That is, the value of f at p is
well-defined, i.e. does not depend on the choice of a, b ∈ Γ(X), with f = a/b and b(p) 6= 0.

Example 2.3.5. Consider the following examples in function fields.
· Let X = A1 and f = 1/x ∈ K(X). Then f is defined everywhere except at x = 0. However, f(x) = x2/x

is defined everywhere on X.
· Let X = V (x2 + y2 − 1) ⊂ A2. Then I(X) =

〈
x2 + y2 − 1

〉
, so Γ(X) = K[x, y], with x2 = 1 − y2.

Take f = y3/(1 − x2) ∈ K(X). The potential poles of f are points where 1 − x2 = 0, or x = ±1 on X, or
(x, y) = (±1, 0) on X. However,

f =
y2

1− x2 =
y2 · y
1− x2 = y,

and since y is defined ot (±1, 0), we have that f is defined at (±1, 0), and so f is defined everywhere. Now,
take f = (1−y)/x ∈ K(X). Then potential poles occur where x = 0, or x = 0 on X, or (x, y) = (0,±1). Let
us check if these points are indeed poles. We assume that char(K) 6= 2, and check first at (0, 1). Observe
that

f =
1− y
x

=
(1− y)(1 + y)

x(1 + y)
=

1− y2

x(1 + y)
=

x

1 + y
,

and since x/(1 + y) is defined at (0, 1), so is f and f(0, 1) = 0/(1 + 1) = 0, so this is not a pole. Let us now
check for the point (0,−1). Suppose that this is not a pole, so there exist a, b ∈ Γ(X) such that f = a/b,
and b(0,−1) 6= 0. Then

1− y
x

=
a

b
in K(X) ⇐⇒ (1− y)b = ax on X.

Hence at (0,−1), we have that

(1− (−1))b(0,−1) = a(0,−1) · 0 ⇐⇒ 2b(0,−1) = 0,

which is a contradiction, since char(K) 6= 2 and b(0,−1) 6= 0. Hence f is not defined at (0,−1), and (0,−1)
is a pole of f .

Proposition 2.3.6. The pole set of a rational function on X is an algebraic subset of X.

Proof: Let f ∈ K(X). If a/b is any representation of f (i.e. f = a/b and a, b ∈ Γ(X)), then V (b) is the pole
set of a/b. Further, the pole set of V is given by

⋂
f=a/b V (b), which is algebraic. �

Remark 2.3.7. Note the following facts.
· The set of all points where f ∈ K(X) is defined is called the domain of f , which we denote by Df . Note

that Df is an open subset of X since Df = X \ (pole set of f), and the pole set of f is closed. Therefore if
Df is closed, then Df = X.
· Rational functions are continuous with respect to the Zariski topology.
· If f ∈ K(X) is such that f = 0 on an open subset U ⊂ X, thon f = 0 on X. This implies the identity

theorem.

Theorem 2.3.8. [Identity theorem]
If f, g ∈ K(X) are such that f = g on some open subset U ⊂ X, then f = g on X.

Proof: Suppose that f = g on U ⊂ X open. Then h = f − g = 0 on U ⊂ X open, so h = 0 on X, meaning
that f = g on X. Tho enly thing left to prove is that if f = 0 on U , then f = 0 on X. So let p ∈ U ,
and since f = 0 on U , the rational function f must be defined at p. So there exist a, b ∈ Γ(X) such that
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f = a/b and b(p) 6= 0. Let V = X \ V (b). Then b 6= 0 on V , implying that the quotint a/b makes sense on
V . Moreover, f = a/b on U ∩ V ⊂ U . But f = 0 on U ∩ V , so a/0 on U ∩ V , meaning that a = 0 on U ∩ V .
Therefore a = 0 (since b 6= 0 on U ∩ V ), so U ∩ V ⊂ V (a). Hence X = U ∩ V ⊂ V (a) = V (a) ⊂ X, as V (a)
is algebraic. Hence f = 0 on X. �

Remark 2.3.9. Some authors define rational functions formally as equivalence classes of pairs (U, f), where
f is a rational function defined on U , with U ⊂ X open. The equivalence relation is given by

(f, U) ∼ (g, V ) ⇐⇒ (there exists W ⊂ U ∩ V open with f |W = g|W ) .

In this case, we call (f, U) a germ of rational functions.

Definition 2.3.10. Let X ⊂ An and Y ⊂ Am be two varieties. A map ϕ : X → Y such that ϕ(x) =
(f1(x), . . . , fn(x)) ∈ Y for all x ∈ X whenever the fis are defined is called a rational map. We say that ϕ is
defined at x ∈ X if each fi is defined at x and ϕ(x) ∈ Y . Moreover, the domain of ϕ is the set of all points
where ϕ is defined.

Example 2.3.11.

2.4 A proof of the Nullstellensatz

Theorem 2.4.1. If K = K and I C K[x1, . . . , xn], then I(V (I)) =
√
I.

We will need the following fact: let K = K and let K = K[a1, . . . , ar] be a finitely-generated K-algebra.
Note that there may be relations among the generators a1, . . . , ar. If K is a field, the K = K.

Theorem 2.4.2. [Weak Nullstellensatz]
Let K = K. Then every maximal ideal in R = K[x1, . . . , xn] is of the form 〈x1 − a1, . . . , xn − an〉 for ai ∈ K

3 Dimension

Corollary 3.0.3. If Y ⊂ X ⊂ Am has codimension r in X, then there exist subvarieties Y0, . . . , Yr of X of
codimension 0, . . . , r, respectively, such that Y = Yr ( · · · ( Y0 = X, with dim(Yi) = dim(X)− i.
Proof: This will be done by induction on r. For r = 1, let Y1 = Y and Y0 = X. For r > 1, suppose that is is
true for all r up to r−1. Then dim(Y ) = dim(X)−r. Since Y ( X, I(X) ( I(Y ), meaning that there exists
f ∈ I(Y ) (which we assume to be irreducible, since I(Y ) is prime) such that f 6∈ I(X). Hence f 6= 0 on X,
so V (f)∩X 6= X. So every irreducible component of V (f)∩X has codimension 1 in X. Since Y ⊂ V (f)∩X,
we may pick Y1 to be the irreducible component of V (f) ∩X containing Y . Set Y = Yr ( Y1 ( Y0 = X, so
now Y has codimension r − 1 in Y1. Then induction gives the rest of the sets Yi. �

3.1 Multiple points and tangent lines

3.2 Intersection multiplicity

Proposition 3.2.1. [Properties of intersection multiplicity]
Let C : f = 0 be smooth and D : g = 0. Then:

1. I(p, C ∩D) is invariant under affine coordinate changes
2. I(p, C ∩D) =∞ iff C and D have a common component passing through p
3. If C,D intersect properly, than I(p, C ∩D) <∞, and I(p, C ∩D) = 0 iff p 6∈ C ∩D
4. I(p, C ∩ D) = 1 iff C,D intersect transversally at p. Otherwise, I(p, C ∩ D) 6 mp(C)mp(D), with

equality holding iff C,D have no common tangent directions at p
5. [Additivity] If g = g1g2, then I(p, C ∩D) = P (p, C ∩ V (g1)) + I(p, C ∩ V (g2))
6. If E =: h = 0 with h = g in Γ(C), then (p, C ∩D) = I(p, C ∩ E)
7. [Symmetry] If C,D are smooth at p, then I(p, C ∩D) = I(p,D ∩ C) (i.e. ordCp (g) = ordDp (f))

Proof:
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4 Projective varieties

4.1 Projective space and algebraic sets

Definition 4.1.1. Let K be any field. Consider An+1(K). The set of all lines through tho erigin 0 =
(0, . . . , 0) is called the n-dimensional projective space, and is denoted Pn(K), or just Pn, if K is understood.
Then

Pn = (An+1 − 0)/K∗,

where (x1, . . . , xn+1) ∼ (λx1, . . . , λxn+1) for all λ ∈ K∗. The equivalence class {(λx1, . . . , λxn+1) : λ ∈ K∗}
is the set of all points on the line L joining 0 and (x1, . . . , xn+1).

If p is a point in Pn, then any (n − 1)-tuple (a1, . . . , an+1) in the equivalence class of p is called a set of
homogeneous coordinates for p. Equivalence classes are denoted p = [a1 : · · · : an+1] to distinguish them
from the affine coordinates. Note that [a1 : · · · : an+1] = [λa1 : · · · : λan+1] for all λ ∈ K∗.

Remark 4.1.2. Projective n-space can be covered with n + 1 copies of affine n-space. For all i, let Ui =
{[x : · · · : xn+1] : xi 6= 0}. Then for any [x1 : · · · : xn+1] ∈ U , we have [x1 : · · · : xn+1] = [ 1

xi
x1 : · · · : 1 : · · · :

1
xi
xn+1]. Thus

[x1 : · · · : xn+1]←−1:1−−−→
(
u1 =

x1

xi
, . . . , ûi, . . . , un+1 =

xn+1

xi

)
.

Hence Ui ∼= An. For example, we may cover P2 = (A3 − 0)/K∗, given by [x : y : z] in homogeneous
coordinates, by

Ux = {x 6= 0} = {[1 : u : v] : u, v ∈ K} , Uy = {[xy : 1 : zy ]} , Uz = {[xz : yz : 1]}.

Conversely, affine n-space may be considered as a subspace of Pn, through the injection An ↪→ Pn. Hence
for all i, Hi = Pn−Ui = {xi = 0} = {[x1 : · · · : 0 : · · · : xn+1]} is called a hyperplane, which can be identified
with Pn−1 by the correspondence

Hi 3 [x1 : · · · : 0 : · · · : xn+1]↔ [x1 : · · · : x̂i : · · · : xn+1] ∈ Pn−1.

Note that we cannot have x1 = · · · = xn+1 = 0, otherwise the original point is not defined. In particular,
H∞ = Hn+1 is called the hyperplane at infinity, with Pn = Un+1 ∪H∞ = An ∪Pn+1.

Example 4.1.3. Consider the following examples of projective space.
· P0(K) = {pt}.
· P1(K) = A1 ∪P1 = A1 ∪ {pt}. For example,

P1(R) = S1 : R −−→
∞

P1(C) = S2 : C −−→
∞

· P2(K) = A2 ∪ `∞ = H∞ = {[x : y : 1]} ∪ {[x : y : 0]}.

Definition 4.1.4. Let f ∈ K[x1, . . . , xn+1]. Then p = [a1 : · · · : an+1] ∈ Pn is a zero of f if and only if
f(λa1, . . . , λan+1) = 0 for all λ ∈ K∗, in which case we write f(p) = 0.

Let S ⊂ K[x1, . . . , xn+1]. Then Vp(S) = {p ∈ Pn : f(p) = 0 for all p ∈ S}, called the zero set of S in
Pn. Moreover, if Y ⊂ Pn is such that Y = Vp(S) for some S ⊂ K[x1, . . . , xn], then Y is called a projective
algebraic set.

Finally, for Y ⊂ Pn, define Ip(Y ) = {f ∈ K[x1, . . . , xn+1] : f(p) = 0 for all p ∈ Y } to be the projective
ideal of Y .
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Lemma 4.1.5. Let f ∈ K[x1, . . . , xn+1] and write f = fm + · · ·+ fd, where fi is an i-form for all i. Then
if p ∈ Pn, we have f(p) = 0 iff fi(p) = 0 for all i.

Proof: Suppose that p = [a1 : · · · : an+1]. Then

f(p) = 0 ⇐⇒ f(λa1, . . . , λan+1) = 0 ∀ λ ∈ K∗

⇐⇒ fm(λa1, . . . , λan+1) + · · ·+ fd(λa1, . . . , λan+1) = 0

⇐⇒ λmfm(a1, . . . , an+1) + · · ·+ λdfd(a1, . . . , an+1) = 0

⇐⇒ fm(a1, . . . , an+1) = · · · = fd(a1, . . . , an+1) = 0

⇐⇒ fm(λa1, . . . , λan+1) = · · · = fd(λa1, . . . , λan+1) = 0

⇐⇒ fi(p) = 0 ∀ i.

�

Thus, if f = fm + · · · + fd with fi an i-form, then Vp(f) = Vp(fm, . . . , fd). Also, if f ∈ Ip(Y ) for some
Y ⊂ Pn, then fi ∈ Ip(Y ) for all i. Therefore we have the following:

Proposition 4.1.6.
i. Every algebraic set in Pn is the zero set of a finite set of forms.
ii. If Y ⊂ Pn, then Ip(Y ) is generated by forms.

Definition 4.1.7. An ideal I C K[x1, . . . , xn+1] is called homogeneous if f ∈ I and f = fm + · · ·+ fd, with
fi an i-form, then fi ∈ I for all i. Note that Ip(Y ) is homogeneous for all Y ⊂ Pn.

Remark 4.1.8. The proof of the above lemma, for i. in the affine case, follows as Y ⊂ Pn implies Ip(Y ) is
radical. Moreover, Ip(Y ) is homogeneous. We thus have a correspondence:

Pn

(algebraic set Y )

K[x1, . . . , xn](
homogeneous
radical ideal

)
←−−−→

However, we will see that this correspondence is not 1 : 1, since there is more than one homogeneous radical
idal corresponding to the empty set ∅. For example, since Va(〈x1, . . . , xn+1〉) = (0, . . . , 0), we have that

∅ = Vp(a) = Vp(〈x1, . . . , xn+1〉).

Proposition 4.1.9. Let I, J C K[x1, . . . , xn]. Then
i. I is homogeneous iff I can be generated by forms,
ii. if I, J are homogeneous, then I + J , IJ , I ∩ J ,

√
I are homogeneous, and

iii. I is a prime homogeneous ideal iff for forms f, g ∈ K[x1, . . . , xn] with fg ∈ I, it follows that f ∈ I
and g ∈ I.

Proof: iii. The direction ⇒ is clear, so let us prove the ⇐ direction. Suppose that I is homogeneous oand
satisfies the described property. Let us show that I is prime. Let f, g ∈ K[x1, . . . , xn+1] and suppose that
fg ∈ I. Write f = fm + · · ·+ fd and g = gm′ + · · ·+ gd′ , where fi, gi are i-forms. Then

fg = fmgm′ +

d+d′∑
k>m+m′

∑
i+j=k

figj ,

and fmgm′ ∈ I since I is homogeneous. If fm 6∈ I, then gm′ ∈ I by the condition. So g − gm′ = gm′+1 +
· · ·+ gd′ ∈ I, and f(g − gm′) ∈ I. Repeating the process,

g(g − gm′) = fmgm′+1 +

d+d′∑
k>m+m′+1

∑
k=i−j

figj ,
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so fmgm′+1 ∈ I with fm 6∈ I, so gm′+1 ∈ I by the condition. Repeating several times this process, we get
that gi ∈ I for all i, so g ∈ I. Note that if gm′ 6∈ I, then f ∈ I. And if fm, gm′ 6∈ I, then repeat the process
with (f − fm)(g − gm′). �

Example 4.1.10. Consider the following examples.
· I =

〈
x2
〉

and I =
〈
x2, y

〉
in K[x, y] are homogeneous ideals.

· I =
〈
x2 + x

〉
is not homogeneous since x2 + x is not a form.

Definition 4.1.11. Let θ : An+1 \ {0} → Pn be the standard projection (x1, . . . , xn+1 7→ [x1 : · · · : xn+1].
If Y ⊂ Pn, the affine cone over Y is C(Y ) = θ−1(Y ) ∪ {0}, and looks as in the diagram below.

0

Pn

An+1

Y

For example, if P = {p} for some p ∈ Pn, then C({p}) is the line in An+1 defined by p. So for all Y ⊂ Pn,
C(Y ) is the union of all lines in An+1 befined by the points in Y .

Remark 4.1.12. These are some properties of the affine cone:
· C(∅) = {0}
· C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2)
· C(Y1) = C(Y2) iff Y1 = Y2

· if ∅ 6= Y ⊂ Pn, then Ip(Y ) = Ia(C(Y ))
· if I C K[x1, . . . , xn+1] is a homogeneous ideal such that Vp(I) 6= ∅, then C(Vp(I)) = Va(I). In particular,
C(Y ) = Va(I) for some non-empty Y ⊂ Pn iff Y = Vp(I).

Example 4.1.13. Consider the following examples.
· Pn = Vp(0)
· Let p = [a : b] ∈ P1. Then C({p}) is the line in A2 through 0 and (a, b), or Va(bx − ay). Hence
{p} = Vp(bx − ay), so points are projective algebraic sets. In general, if p = [a1 : · · · : an+1] ∈ Pn

with ai 6= 0 for some i, then {p} = Vp(aix1 − a1xi, . . . , aixn+1 − an+1xi), so points in Pn are projective
algebraic sets.
· Let Y = Vp(x− y, x2 − yz) ⊂ P2. Then

C(Y ) = Va(x− y, x2 − yz) = va(x, y) ∪ Va(x− y, x− z) = {(0, 0, t) : t ∈ K} ∪ {(s, s, s) : s ∈ K},

hence Y = {[0 : 0 : 1]} ∪ {[1 : 1 : 1]}.

Example 4.1.14. Consider the following examples of projective ideals:
· Ip(Pn) = 〈0〉, since Ip(P

n) = Ia(C(Pn)) = Ia(An+1) = 〈0〉.
· Ip(∅) = 〈1〉
· for p = [a1 : · · · : an+1] with ai 6= 0 for some i, then

Ip({p}) = 〈aix1 − a1xi, . . . , aixn+1 − an+1xi〉 .

Proposition 4.1.15. Let {Ui}i∈I be a family of projective algebraic sets. Then Ui∪Uj is projective algebraic
for any i, j ∈ I, and

⋂
i∈I Ui is projective algebraic. Moreover, ∅ and Pn are projective algebraic.
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Proposition 4.1.16. [Projective Nullstellensatz]
Let K = K and I C K[x1, . . . , xn+1]. Then

1. Vp(I) = ∅ iff there exists N ∈ N such that I contains all forms of degree > N , and

2. Vp(I) 6= ∅ implies Ip(Vp(I)) =
√
I.

Proof: For 1. we have that

Vp(I) = ∅ ⇐⇒ Va(I) = ∅ or {(0, . . . , 0}
⇐⇒ Va(I) ⊂ {(0, . . . , 0)}
⇐⇒ Ia({(0, . . . , 0)}) ⊂ Ia(Va(I)).

However, 〈x1, . . . , xn+1〉 = Ia({(0, . . . , 0)}) and Ia(Va(I)) =
√
I, so Vp(I) = ∅ iff xmi

i ∈ I for all i, so xmi ∈ I
for all i, for m = maxi{mi}. Then Vp(I) = ∅ iff 〈x1, . . . , xn+1〉N ⊂ I for some N > m, but that holds iff any
form of degree at least N is contained in I.

For 2. the affine Nullstellensatz gives that Ip(Vp(I)) = Ia(C(Vp(I)) = Ia(Va(I)) =
√
I. �

4.2 Rational functions

4.3 Projective plane curves

Proposition 4.3.1. Let C be an irreducible plane curve of degree 2. Then C is smooth.

Proof: Suppose that C is not smooth, so there is some p ∈ C at which C is singular. Then for C = Vp(f), it
would be that mp(C) > 2. Let q ∈ C\{p} and L = Vp(h) the line through p and q. By Bezout, C∩L = {p, q},
and assuming that L 6⊂ C,

2 = deg(L) deg(C) = deg(h) deg(f) = I(p, L ∩C) + I(q, L ∩C) > mp(L)mp(C) +mq(L)mq(C) > 2 + 1 = 3,

which is a contradiction. Hence L is a component of C, so C is reducible, a contradiction. Hence C has no
singularities, and is smooth. �

4.4 Divisors

Definition 4.4.1. Let C be a smooth projective plane curve and Div0(C) the subgroup of Div(C) consisting
of all degree 0 divisors on C. If D ∈ Div0(C) is such that D = ÷(f) for some f ∈ K(C), we say that D is
principal. If D,D′ ∈ Div0(C) are such that D−D′ is principal, then D and D′ are called linearly equivalent,
and we write D ≡ D′. Finally, let P (C) denote the subgroup of Div0(C) consisting of all principal divisors.
Let

Cl0(C) = Div0(C)/P (C)

be the divisor class group of degree zero of C.
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Index of notation

K field 2
An affine n-space 2
V (f), V (S) set of zeros (or hypersurface defined by) of f , S 2
I C X, I(X) I is an ideal in X, the ideal of X 5
X closure of X 7

Rad(I),
√
I radical of an ideal I 7

Γ(X) coordinate ring of X 12
ϕ∗ pullback of a map ϕ 15
K(X) function field of X 17
Df domain of a function f 18
Pn(K), Pn n-dimensional projective space (over K) 20
Vp(X), Ip(X) projective zero set and projective ideal of X 20
C(X) cone of a variety X 22

Index

affine
algebraic set, 2
cone, 22
equivalence, 15
line, 2
plane, 2
surface, 2
variety, 10

affine equivalence, 15
K-algebra, 13
algebraic set, 2

projective, 20
algebraically closed, 8

closed ideal, 5
closure, 7
cone, affine, 22
coordinate ring, 12
curve, 2

decomposition, 11
defined at a point, 17
dense set, 7
domain, 18

field of rational functions, 17
finitely generated, 17

function field, 17
functoriality, 15

germ, 19

Hausdorff topology, 5
Hilbert basis theorem, 4
homogeneous coordinates, 20
homogeneous ideal, 21
hyperplane at infinity, 20
hypersurface, 2

ideal, 5
homogeneous, 21
projective, 20

identity theorem, 18
irreducible set, 9
irredundant decomposition, 11
isomorphic varieties, 14

line, 3

Noetherian ring, 4
Nullstellensatz, 8

projective, 23
weak, 19

pole, 17

pole set, 17
polynomial map, 13
projective algebraic set, 20
projective ideal, 20
projective space, 20
pullback, 15

radical ideal, 7
rational

curve, 2
point, 2

rational map, 19
reducible set, 9
regular at a point, 17
residue class, 13

theorem
Hilbert basis, 4
identity, 18

topology, 5
Zariski, 5

variety, 10
isomorphic, 14

Zariski topology, 5
zero set in Pn, 20

Index of mathematicians

Hausdorff, Felix, 5
Hilbert, David, 4

Noether, Emmy, 4 Zariski, Oscar, 5
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