
Compact course notes

Pure Math 745, Fall 2013
Representation Theory

Lecturer: D. McKinnon
transcribed by: J. Lazovskis

University of Waterloo
December 2, 2013

Contents

1 Introduction 2
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Subrepresentations and morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Inner products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Character theory 4
2.1 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Character tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The symmetric group Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Commutators and dimension bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Induced representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Group rings 18
3.1 Modules and rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Tensor products of modules over an arbitrary ring . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Integrals and integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Induced representations, part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Index 29



1 Introduction

1.1 Definitions

Definition 1.1.1. Let G be a group. A representation of G in a vector space V is a homomorphism
ρ : G→ GL(V ), where V is taken to be a finite-dimensional complex vector space (Cn).

GL(V ) is the group of invertible linear maps V → V , also viewed as n× n matrices.

Example 1.1.2. For ρ the trivial homomorphism, ρ is termed the trivial or unit representation.

- Consider G = D4, the group of symetries of a square. There is a representation of G in C2 corresponding
to this description.

- Consider G = Sn and V = Cn. The permutation representation of Sn is the homomorphism that takes a
permutation σ ∈ Sn to its corresponding permutation matrix.

Definition 1.1.3. An injective representation is termed faithful.

Example 1.1.4. Let G be a finite group acting on a finite set X. There is a permutation representation
corresponding to this action on the vector space V =

⊕
x∈X C~vx.

Note that every group G acts on itself by the left multiplication action. If G is finite, the corresponding
permutation representation is termed the left-regular representation.

1.2 Subrepresentations and morphisms

Definition 1.2.1. Let ρ : G → GL(V ) be a representation of G. A subspace W ⊂ V is termed G-stable,
G-invariant, or a subrepresentation of V iff one of the following equivalent conditions hold:

1. ρ(g)(~w) ∈W for all g ∈ G and ~w ∈W
2. ρ(g)(W ) ⊂W for all g ∈ G
3. ρ(g)|W ∈ GL(W ) for all g ∈ G
4. ρ(G)|W ⊂ GL(W )

Example 1.2.2. Let G = Z2, V = C2, and ρ : G→ GL2(C) be given by ρ(0) = ( 1 0
0 1 ) and ρ(1) = ( 0 1

1 0 ). Let
W = span{(1, 1)}. Then W is G-invariant. Further, the spaces 0 and V are always G-invariant. We also
have that W ′ = span{(1,−1)} is G-invariant.

Note that to find the G-invariants of W , it suffices to check that ρ(gi)(~wj) ∈ W for generators gi of G
and basis vectors ~wj of W .

Definition 1.2.3. Let ρ : G→ GL(V ) and τ : G→ GL(W ) be representations of G. A morphism from ρ to
τ (or from V to W ) is a linear transformation T : V → W such that τ(g)(T (~v)) = T (ρ(g)(~v)) for all g ∈ G
and ~v ∈ V .

Example 1.2.4. Let G = Z4. Let ρ : G→ GL(C) and τ : G→ GL(C2) be representations of G, defined by
ρ(n) = in and τ(n) =

(
0 1
−1 0

)n
. Define a map T : C → C2 by T (z) = (z, z). Then T is a morphism from ρ

to τ .

Theorem 1.2.5. Let ρ : G → GL(V ) and τ : G → GL(W ) be representations of a group G, and let
T : V → W be a morphism from ρ to τ . Let V1 ⊂ V and W1 ⊂ W be subrepresentations of V and W ,
respectively. Then T (V1) ⊂W is a subrepresentation of W and T−1(W1) ⊂ V is a subrepresentation of V .

Definition 1.2.6. Let ρ : G → GL(V ) be a representation. Then ρ is irreducible iff the only subrepresen-
tations of ρ are ρ and the 0-representation.

Example 1.2.7. Every 1-dimensional representation is irreducible, as its only subspaces are 0 or improper.
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Definition 1.2.8. The direct sum of vector spaces V and W is defined to be the vector space below. Addition
and scalar multiplication work as indicated.

V ⊕W = {~v ⊕ ~w : ~v ∈ V, ~w ∈W}
(~v1 ⊕ ~w1) + (~v2 ⊕ ~w2) = (~v1 + ~v2)⊕ (~w1 + ~w2)

λ(~v ⊕ ~w) = λ~v ⊕ λ~w

The vector space V ⊕W is the smallest vector space that contains both V and W .

Definition 1.2.9. Let ρ : G → GL(V ) and τ : G → GL(W ) be representations of G. Define ρ ⊕ τ : G →
GL(W ) by

[(ρ⊕ τ)(g)](~v ⊕ ~w) = [ρ(g)](~v)⊕ [τ(g)](~w)

Example 1.2.10. Let G = Z2, and representations ρ : G → C and τ : G → C be defined by the trivial
representation and τ(0) = 1, τ(1) = −1, respectively. The direct sum σ : ρ⊕ τ is given by

σ : G→ GL2(C) = GL(C⊕ C)

σ(0) =

(
1 0
0 1

)
σ(1) =

(
1 0
0 −1

)
1.3 Inner products

Definition 1.3.1. A complex inner product space is a complex vector space V with a pairing 〈 , 〉 : V ×V → C
satisfying:

1. 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉
2. 〈c~v, ~w〉 = c 〈~v, ~w〉
3. 〈~v, ~w〉 = 〈~w,~v〉
4. 〈~v,~v〉 ∈ R and 〈~v,~v〉 > 0, 〈~v,~v〉 = 0 iff ~v = 0

Example 1.3.2. This is an example of an inner product:

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn

Definition 1.3.3. A linear transformation T : V → V is termed unitary iff for all ~w,~v ∈ V , 〈T~v, T ~w〉 =
〈~v, ~w〉.

Definition 1.3.4. Let W be a subspace of a complex inner product space. The orthogonal complement if
W in V is

W⊥ = {~x ∈ V : 〈~w, ~x〉 = 0 ∀ ~w ∈W}
Note that W ∩W⊥ = {0}, and dim(W ) + dim(W⊥) = dim(V ).

Definition 1.3.5. A morphism T : ρ→ τ is an isomorphism iff there is another morphism T ′ : τ → ρ such
that T ◦ T ′ = id and T ′ ◦ T = id.

Theorem 1.3.6. Let V be a complex inner product space and G a group. Let ρ : G → GL(V ) be a
representation such that ρ(g) is unitary for all g ∈ G. Then there are irreducible representations ρ1, . . . , ρn
of G such that ρ ∼= ρ1 ⊕ · · · ⊕ ρn.

Proof: By a simple induction, it suffices to prove that if V is irreducible, then there are 2 proper subrepresen-
tations W,W ′ such that V ∼= W ⊕W ′. Thus assume that V is reducible. Then there is a proper non-trivial
subrepresentation W of V . Let W ′ = W⊥. It remains to show that W ′ = W⊥ is G-invariant. Thus, choose
any ~w ∈ W⊥ and any g ∈ G (from now on, ρ will be omitted). We will show that g(~w) ∈ W⊥. To do this,
we must take any ~v ∈W and show that 〈~v, g(~w)〉 = 0.

Since ρ is unitary, g−1 is unitary, so 〈~v, g(~w)〉 =
〈
g−1(~v), ~w

〉
= 0. This means that g(~w) ∈ W⊥, so W⊥ is

G-invariant, so W , W⊥ are both representations, and V ∼= W ⊕W⊥ as desired. �

Next we are going to find an inner product such that ρ will always be unitary.
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Theorem 1.3.7. Let G be a finite group with ρ : G → GL(V ) a finite-dimensional representation of G.
Then there is some complex inner product 〈 · , · 〉 such that ρ(g) is unitary for all g ∈ G.

Proof: Let 〈 · , · 〉1 be any inner product on V . Define a new pairing on V by

〈~v,~v〉2 =
∑
g∈G
〈[ρ(g)](~v), [ρ(g)](~v)〉1 .

The pairing easily satisfies 〈~v1 + ~v2, ~v〉2 = 〈~v1, ~v〉2 + 〈~v2, ~v〉2 and 〈c~v,~v〉2 = c 〈~v,~v〉2 and 〈~u,~v〉2 = 〈~v, ~u〉2. If
~u = ~v, then 〈~u,~v〉2 ∈ R>0, because each summand is, and the sum is 0 iff g(~v) = 0, which happens iff ~v = 0,
as desired. Now, ρ(g) is unitary with respect to 〈 · , · 〉2 for all g ∈ G, as

〈g(~u), g(~v)〉2 =
∑
h∈G

〈h(g(~u)), h(g(~v))〉1

=
∑
h∈G

〈(hg)(~u), (hg)(~v)〉1

=
∑
h∈G

〈h(~u), h(~v)〉1

= 〈~u,~v〉2

�

Note that the previous two theorems immediately imply that every finite-dimensional representation of
a finite group G is isomorphic to a direct sum of irreducible representations.

Theorem 1.3.8. Let ρ : G → GL(V ) and τ : G → GL(W ) be irreducible representations of G. Let
T : V →W be a morphism. Then T is either an isomorphism, or 0.

Proof: The kernel of T is a subrepresentation of V , which, by irreducibility of ρ, must be 0 or V . If
ker(T ) = V , then T = 0. If ker(T ) = 0, then T is injective, so since Im(T ) = 0 or W , we must have that
either T = 0 or T is surjective. So either T = 0 or T is an isomorphism. �

Theorem 1.3.9. [Schur’s lemma]
Let T : V → V be a morphism of irreducible representations. Then T = λid for some scalar λ ∈ C.

Proof: Let λ be an eigenvalue of T . Then T = λI is a morphism (this is easy to check). Since T − λI is not
an isomorphism, by the previous theorem, it must be 0. So T = λI. �

Theorem 1.3.10. Let G be a finite abelian group and ρ : G→ GL(V ) an irreducible representation. Then
dim(V ) = 1.

Proof: It turns out (you should check this) that if G is abelian, then for every g ∈G, ρ(g) : V → V is
a morphism, so by Schur’s lemma, ρ(g) = λgI for some λg ∈ C. But this means that every subspace is
G-invariant, so since ρ is irreducible, V can’t have any non-trivial spaces, and so dim(V ) = 1. �

2 Character theory

2.1 Tensor products

Definition 2.1.1. Let V,W be complex vector spaces. Let H be the vector space whose basis is {~v ⊗ ~w :
~v ∈ V, ~w ∈ W}. Note that H is very large. Define a subspace R of H to be the span of all vectors in H of
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the following forms:

~v1 ⊗ ~w + ~v2 ⊗ ~w − (~v1 + ~v2)⊗ ~w

~v ⊗ ~w1 + ~v ⊗ ~w2 − ~v ⊗ (~w1 + ~w2)

(λ~v)⊗ ~w − λ(~v ⊗ ~w)

~v ⊗ (λ~w)− λ(~v ⊗ ~w)

Define V ⊗W = H/R

Example 2.1.2. For V = W = {0}, V ⊗W = {0}, as H = span{0⊗ 0} and λ(0⊗ 0) = (λ0)⊗ 0 = 0⊗ 0 for
all λ.

Example 2.1.3. For V = {0} and W any vector space, V ⊗W = {0}, because for any w ∈W ,

0⊗ w + 0⊗ w = (0 + 0)⊗ w = 0⊗ w =⇒ 0⊗ w = 0.

Example 2.1.4. Let V = span{~v}, W = span{~w} for ~v, ~w non-zero. Then V ⊗W is spanned by by elements
of the form (λ~v) ⊗ (µ~w). But (λ~v) ⊗ (µ~w) = (λµ)(~v ⊗ ~w), so V ⊗W is spanned by {~v ⊗ ~w}. To see that
~v ⊗ ~w is non-zero, we use a very useful trick, described below.

Remark 2.1.5. Let q : H → V ⊗W be the “reduction mod R” linear transformation. Then q is surjective
and H is non-zero, so it suffices to show that q is not identically zero. Define T : H → C by

T

(∑
i

ai(λi~v)⊗ (µiw)

)
=
∑
i

aiλiµi

which is iclearly a linear transformation. The image of T is C, because T (~v ⊗ ~w) = 1. So T is surjective.
Moreover, R ⊂ ker(T ), so by the universal property of quotients, T : V ⊗W → C is well-defined.

Theorem 2.1.6. [Universal property of quotients]
Let U be a vector space, K ⊂ U any subspace, q : U → U/K the “reduce mod K” linear transformation.
Let T : U → V be a linear transformation. Then there is a linear transformation T̃ : U/K → V satisfying
T = T̃ ◦ q iff K ⊂ ker(T ). That is, making the diagram below commute:

U/K

U V

q

T

T̃

Also, Im(T ) = Im(T̃ ) and ker(T̃ ) = q(ker(T )).

Theorem 2.1.7. Let V,W be finite-dimensional vector spaces. Let {~v1, . . . , ~vn} and {~w1, . . . , ~wm} be bases
for V and W , respectively. Then {~vi⊗ ~wj} is a basis for V ⊗W . In particular, dim(V ⊗W ) = dim(V ) dim(W ).

Proof: Let
∑
k xk ⊗ yk be an arbitrary element of V ⊗W . Then

∑
k

xk ⊗ yk =
∑
k

(∑
i

aik~vi

)
⊗

∑
j

bjk ~wj

 =
∑
i,j,k

aikbjk(~vi ⊗ ~wj) ∈ span{~vi ⊗ ~wj}

To get linear independence, define a linear transformation

T : H → Cnm by T

∑
k

ck

(∑
i

aik~vi

)
⊗

∑
j

bjk ~wj

 =
∑
i,j,k

ckaikbjk~eij
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where {~eij} are the standard unit basis vectors in Cnm, Cnm being viewed as n ×m matrices and ~eij the
matrix with all zeros except for a 1 in the (i, j)-entry. Since T (~vi ⊗ ~wj) = ~eij , T is injective. It is easy to
check that R ⊂ ker(T ). For example,

T (~v1 ⊗ ~w + ~v2 ⊗ ~w − (~v1 + ~v2)⊗ ~w) = T

(∑
i

ai~vi

)
⊗
∑
j

bj ~wj +
∑
i

a′i~vi ⊗ bj ~wj −
∑
i

(ai − a′i)~vi ⊗
∑
j

~wj


=
∑
i,j

aibj~eij +
∑
i,j

a′ibj~eij −
∑
i,j

(ai − a′i)bj~eij

= 0

By the UPQ, T : H/R → Cnm is wel-defined, so T : V ⊗W → Cnm is well-defined and onto. Therefore,
since {~eij} is linearly independent in Cnm, their preimages {~vi⊗ ~wj} are also linearly independent in V ⊗W .
�

Example 2.1.8. Suppose that T : U → V and S : W → X are linear transformations. We can define

T ⊗ S : U ⊗W → V ⊗X by (T ⊗ S)(
∑
~vi ⊗ ~wi) =

∑
T (~vi) ⊗ S(~wi). Let M1 =

(
a b
c d

)
and M2 =

(
e f
g h

)
in

M2(C). Then the matrix of M1 ⊗M2 with respect to {~ei ⊗ ~ej} of C2 ⊗ C2 is
ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh


Definition 2.1.9. Let ρ : G → GL(V ) and τ : G → GL(W ) bu representations. Then ρ ⊗ τ : G →
GL(V ⊗W ) is given by

[(ρ⊗ τ)(g)]

(∑
i

~vi ⊗ ~wi

)
=
∑
i

[ρ(g)](~vi)⊗ [τ(g)](~wi).

Example 2.1.10. Let G = S3 and ρ : G → GL(C) be the trivial representation and τ : G → CL(C)
the sign representation (gives +1 to even permutations, and −1 to odd permutations). Then ρ ⊗ τ : G →
GL(C⊗ C) ∼= GL(C) is given by (ρ⊗ τ)(g) = ρ(g)τ(g) = τ(g).

Example 2.1.11. If ρ : G → GL(C) is one-dimensional and τ : G → GL(V ) is any representation, then
ρ⊗ τ ∼= τ1, where τ1(g) = ρ(g)τ(g).

Proposition 2.1.12. If ρ, τ are irreducible representations, then ρ⊗ τ is not irreducible.

Remark 2.1.13. What if ρ : G→ GL(V ) is irreducible, is ρ⊗ ρ irreducible? No, if dim(V ) < 2.

Theorem 2.1.14. Let ρ : G→ GL(V ) be a representation with dim(V ) > 2. Then ρ⊗ ρ is irreducible.

Proof: Define θ : H → V ⊗ V (for H the free vector space on V × V ) by

θ

(∑
i

ai~vi ⊗ ~wi

)
=
∑
i

ai ~wi ⊗ ~vi

Then R ⊂ ker(θ) (this is easy to check), so θ is well-defined. Let Sym2(V ) be the 1-eigenspace of θ, and
Alt2(V ) be the (−1)-eigenspace of θ. We claim that Sym2(V ) and Alt2(V ) are G-invariant subspaces of
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V ⊗V . To see this, note that Sym2(V ) and Alt2(V ) have zero intersection, and V ⊗V = Sym2(V )∪Alt2(V ),
so V ⊗ V ∼= Sym2(V )⊕Alt2(V ) as vector spaces. So suppose that

∑
i ai(~vi ⊗ ~wi) ∈ Sym2(V ). Then

θ

(
[(ρ⊗ ρ)(g)]

(∑
i

ai(~vi ⊗ ~wi)

))
= θ

(∑
i

ai([ρ(g)](~vi)⊗ [ρ(g)](~wi))

)
=
∑
i

θ (([ρ(g)](~vi))⊗ ([ρ(g)](~wi)))

=
∑
i

ai[ρ(g)](~vi)⊗ [ρ(g)](~vi)

= [(ρ⊗ ρ)(g)]

(∑
i

~wi ⊗ ~vi

)

= [(ρ⊗ ρ)(g)θ

(∑
i

ai~vi ⊗ ~wi

)

= [(ρ⊗ ρ)(g)]

(∑
i

~vi ⊗ ~wi

)

So [(ρ ⊗ ρ)(g)](
∑
i ai(~vi ⊗ ~wi)) ∈ Sym2(V ). Thus Sym2(V ) is G-invariant and we’re done. The case for

Alt2(V ) is similar. �

Remark 2.1.15. Note that if dim(V ) = n, then dim(V ⊗ V ) = n2, and Sym2(V ) = n+
(
n
2

)
= n(n+1)

2 .

2.2 Characters

Definition 2.2.1. Let ρ : G→ GL(V ) be a representation. The character of ρ is the function χρ : G→ C
given by χρ(g) = trace(ρ(g)). If ρ is irreducible, then χρ is termed an irreducible character.

Remark 2.2.2. The following are some elementary properties of characters:

· If dim(ρ) = 1, then χρ = ρ
· If ρ ∼= τ , then χρ = χτ , as trace is invariant under linear transformations
· χρ(1) = dim(V ) for any ρ
· χρ(g−1hg) = χρ(h)

If we add the stipulation that g is finite and dim(V ) is finite, then we also have:

· χρ⊕τ = χρ + χτ
· χρ⊗τ = χρ · χτ
· χρ(g−1) = χρ(g)

Theorem 2.2.3. Let ρ, τ be representations of G in V,W , respectively. Let T : V → W be any linear
transformation. Then T ′ =

∑
g τ(g−1) ◦ T ◦ ρ(g) is a morphism ρ → τ . In particular, if ρ and τ are

irreducible, and ρ ∼= τ , then T ′ = 0.

Definition 2.2.4. Define C[G] = {f : G → C} to be the complex group ring (or algebra). Note that C[G]
has a natural inner product

〈ϕ,ψ〉 =
1

#G

∑
g∈G

ϕ(g)ψ(g)

This corresponds to the usual inner product in Cn, divided by #G, via f ↔ (f(g1), . . . , f(gn)).

Theorem 2.2.5. Irreducible characters are an orthonormal set in C[G].
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Proof: We show that if ρ, τ are irreducible representations, then 〈χρ, χτ 〉 =
{

1 if ρ∼=τ
0 if ρ6∼=τ

Let ρ : G → GL(V ) with a fixed basis of V , and τ : G → GL(W ) wih a fixed basis of W . For each g ∈ G,
write ρ(g) = rij(g) and τ(g) = tij(g) as matrices. Then

〈χρ, χτ 〉 =
1

#G

∑
g,i,j

rii(g)tjj(g) =
1

#G

∑
g,i,j

rii(g)tjj(g
−1)

Let T : V → W be any linear transformation. Then T ′ =
∑
g τ(g−1) ◦ T ◦ ρ(g) is a morphism ρ → τ . If

ρ 6∼= τ , then T ′ = 0, so if T = [Tij ], we have∑
g,i,j

tki(g
−1)Tijrj` ∀ k, `

So we set Tij = 0 for all i, j except k, `, for which Tk` = 1. Then
∑
g trrr``(g

−1) = 0, so summing over k, `
gives 〈χρ, χτ 〉 = 0.

If ρ ∼= τ , then χρ ∼= χτ , so we assume ρ = τ . If ρ = τ , then T ′ = λI by our theorem, and λ = #G · trace(T ) ·
(dim(V ))−1. Exactly the same argument as before gives 〈χρ, χτ 〉 = 1. �

This means that there are infinitely many irreducible representations of G up to isomorphism, because
the corresponding characters are an orthogonal set in a finite-dimensional vector space.

Remark 2.2.6. Note that if ρ = (m1ρ1) ⊕ · · · ⊕ (mrρr) for mi ∈ Z and ρi pairwise non-isomorphic
representations, then

mi = 〈χρ, χρi〉

Note even further that irreducible decompositions of representations are unique up to isomorphism. More-
over, non-isomorphic representations have different characters, because the character determines an irre-
ducible decomposition. Finally, with ρ as above, we have that

〈χρ, χρ〉 = m2
1 + · · ·+m2

n and 〈χρ, χρ〉 = 1 ⇐⇒ ρ is irreducible.

Example 2.2.7. Recall that we had a representation of S3 in C2 on the assignment.

ρ(g) ρ(g) ∈ C2 character of ρ(g)

ρ(1) ( 1 0
0 1 ) 2

ρ(12) ( 0 1
1 0 ) 0

ρ(13)
(−1 0
−1 1

)
0

ρ(23)
(

1 −1
0 −1

)
0

ρ(123)
(

0 −1
1 −1

)
-1

ρ(132)
(−1 1
−1 0

)
-1

Hence 〈χρ, χρ〉 = 1
6 (22 + 02 + 02 + 02 + (−1)2 + (−1)2) = 1, and so ρ is irreducible.

Example 2.2.8. Note that there are only 3 irreducible representations of S3 - the trivial, the sign, and the
one given in the previous example. All others that are irreducible are isomorphic to one of them.

Now, let ρ : S3 → GL(C3) be the permutation representation. How can we write ρ as a sum of irreducible
representations? We note the following facts:

χρ(1) = 3 χρ(2-cycles) = 1 χρ(3-cycles) = 0

〈χρ, χρ〉 =
1

6
(32 + 12 + 12 + 12 + 02 + 02) = 2
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Let ∆ be the representation that was ρ in the previous example. Then

〈χρ, χ∆〉 =
1

6
(3 · 2 + 1 · 0 + 1 · 0 + 1 · 0 + 0 · (−1) + 0 · (−1)) = 1

Therefore ρ = ∆ ⊕ ρ′ for some representation ρ′ whose irreducible decomposition contains no ∆. We note
further that

〈χρ, χtriv〉 =
1

6
(3 · 1 + 1 · 1 + 1 · 1 + 1 · 1 + 0 · 1 + 0 · 1) = 1

And so ρ = ∆⊕ (triv).

Example 2.2.9. Let G be any finite group, and V =
⊕

g∈G Cg. Let ρ : G → GL(V ) be given by
[ρ(g)] (

∑
aigi) =

∑
aiggi. This ρ is termed the left-regular representation of G.

Then χρ(g) = #G if g = 1, and χρ(g) = 0 if g 6= 1. Therefore 〈χρ, χρ〉 = #G, so unless G is the trivial
group, it is never irreducible.

And if τ is any irreducible representation of G, then 〈χρ, χτ 〉 = dim(τ) = 1, so ρ ∼= (d1ρ1) ⊕ · · · ⊕ (drρr)
where ρ1, . . . , ρr are all irreducible representations of G up to isomorpism, and di = dim(i). This means that
〈χρ, χρ〉 = d2

1 + · · ·+ d2
r, and as 〈χρ, χρ〉 = #G, we have that #G = d2

1 + · · ·+ d2
r.

Remark 2.2.10. Irreducible characters in general do not span C[G]. Note that for all g, h ∈ G,

χ(g−1hg) = χ(h)

so χ remains constant on conjugacy classes.

Definition 2.2.11. A conjugacy class in a group G is a set of elements C such that for all c, d ∈ C,
c−1dc ∈ C. A class function on a group G is a function f : G → C that is constant on conjugacy classes.
Class functions are a subspace of C[G].

Theorem 2.2.12. Let G be a finite group. The irreducible characters of G form the orthonormal basis of
the space V of class functions on G.

Hence if G has k conjugacy classes, then G has k irreducible characters.

Proof: We will show that if W = span{irreducible characters}, then W⊥ ∩ V = {0}. This wil imply W = V ,

as W ⊂ V . Note that W = W , and thus W⊥ = W , so f ∈ W iff f ∈ W⊥. So first suppose that f ∈ W⊥.
Then f ∈W⊥, so

〈
χ, f

〉
= 0 for any irreducible character χ. Define

T ρf : V → V by T ρf (~v) =
∑
g∈G

f(g)[ρ(g)](~v)

for any representation ρ of G. It is straightforward to check that T ρf is a morphism ρ→ ρ. If ρ is irreducible,

then T ρf = λid, for some λ ∈ C. However, as

0 = 〈χ, f〉 =
∑
g∈G

χρ(g)f(g) =
∑
g∈G

f(g)trace(ρ(g)) = trace(T ρf )

we have that λ = 0. Hence T ρf = 0 for any irreducible representation ρ. Then by linearity, T ρf = 0 for any
representation ρ.

Let ρ be the left-regular representation with ~v = gi. Then

0 = T ρf (~v) =
∑
g∈G

f(g)[ρ(g)](~v) =
∑
g∈G

f(g)ggi

so since {ggi} = {gi} is linearly independent, it follows that f(g) = 0 for all g ∈ G. This means that
W⊥ ∩ V = {0} as desired, so W = V and the irreducible characters span the space of class functions. �
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2.3 Character tables

Example 2.3.1. Let G = D4, the dihedral group of order 4. Let’s write down a list of all the irreducible
characters of G. This will be called a character table for G. So let x represent counter-clockwise rotation by
90◦, and y represent reflection along the axis of symmetry. The facts we know are:

D4 = {x, y : yx = x−1y, x4 = y2 = 1}
conjugacy classes: {1}, {x2}, {x, x3}, {xy, x3y}, {y, x2y}

So there are 5 irreducible characters. They may be classified as follows:

· The trivial character, χt, is always irreducible.

· Using the homomorphism ϕ : D4 → Z2, with ϕ(xayb) = b (mod 2), we get a “sign” representa-
tion on D4, with ρ(g) = (−1)ϕ(g).

· Using the homomorphism ψ : D4 → (Z2)2, with ψ(xayb) = (a (mod 2), b (mod 2)), we get two
more irreducible characters, corresponding to the representations

ρ1(xayb) = (−1)a (mod 2) and ρ2(xayb) = (−1)a+b (mod 2)

· The final character may then be calculated from the orthonormality condition.

This gives us the following table:

{1} {x2} {x, x3} {xy, x3y} {y, x2y}

χt 1 1 1 1 1

χsgn 1 1 1 −1 −1

χρ1 1 1 −1 −1 1

χρ2 1 1 −1 1 −1

χ• 2 −2 0 0 0

Note that there are lots of ways to find the last character of D4. The easiest is to use the fact that, with the
other 4 characters, it is an orthonormal basis of the space of class functions. Or you could just guess it - it
is the realization of D4 as the symmetries of a square.

Note that our approach above was to find homomorphisms from D4 to simpler groups, and then find
representations of those groups.

Remark 2.3.2. For La the left-regular representation, we have that⊕
ρi irreducible

χρi(1) · χρi = χLa = (dim(G) 0 0 · · · 0).

Example 2.3.3. Compute the character table for A5. First note that the only normal subgroups of A5 are
{0} and A5. For {0}, homomorphisms to simpler groups are not simpler. For A5, the only homomorphism
to a simpler group gives the trivial representation. First we note that conjugacy class representatives of A5,
and the class sizes, are given by:

(1) (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)
{ }

1 cycle
(

5
3

)
· 2 = 20 cycles 5 · 3 = 15 cycles 24/2 = 12 cycles 24/2 = 12 cycles

conjugacy classes in S5
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So we need 5 representations. We always have the trivial representation with character χt. Next consider
the permutation representation, whose trace χperm is the number of fixed vectors. This representation, for
which χperm = (5, 2, 1, 0, 0), is not irreducble, as

〈χperm, χperm〉 =
1

60
(52 · 1 + 22 · 20 + 12 · 15 + 02 · 12 + 02 · 12) =

1

60
(25 + 80 + 15) = 2

We hope that χperm = χt ⊕ χ, because then we will know χperm. So we check if the trivial representation
appears in it:

〈χperm, χt〉 =
1

60
((5 · 1) · 1 + (2 · 1) · 20 + (1 · 1) · 15) =

1

60
(5 + 40 + 15) = 1

So we define χpt = χperm − χt, which is irreducible. However, we need 3 more representations, so we try
Sym2(pt) and Alt2(pt). Before we do that, we need to formaulate their characters. So we include the final
table below, with the work done for finding the entries of the below further down.

(1) (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)

χt 1 1 1 1 1

χpt 4 1 0 −1 −1

χn 5 −1 1 0 0

χ1 3 0 −1 ϕ −1/ϕ

χ2 3 0 −1 −1/ϕ ϕ

The symbol ϕ is the golden ratio, (1 +
√

5)/2.

Theorem 2.3.4. Let ρ : G → GL(V ) be a representation of a finite group. Let ρs and ρa be the Sym2(ρ)
and Alt2(ρ) representations. Let χ, χs, χa be the characters of ρ, ρs, ρa, respectively. Then

χs(g) =
1

2

(
χ(g)2 + χ(g2)

)
and χa(g) =

1

2

(
χ(g)2 − χ(g2)

)
Proof: Since G is finite (more generally, since ρ is unitary), ρ(g) is diagonalizable. Let {e1, . . . , en} be an

eigenbasis of V with corresponding eigenvalues λ1, . . . , λn. Then χ(g) =
∑
λi and χ ∗ g2) =

∑
(λi)

2. Now,

0ρs(g)](~ei ⊗ ~ei) = [ρ(g)](~ei)⊗ [ρ(g)](~ei) = λ2
i (~ei ⊗ ~ei)

[ρs(g)](~ei ⊗ ~ej + ~ej ⊗ ~ei) = λiλj(~ei ⊗ ~ej + ~ej ⊗ ~ei)

So χs(G) =
∑

( λi)
2 +

∑
i<j λiλj = 1

2 (χ(g)2 − χ(g2)). A similar calculation works for χa. �

What are the characters of Sym2(σ) and Alt2(σ)? First, check the irreducibility of χs by

χs(g) =
1

2
(χ(g)2 + χ(g2)) = (10, 1, 2, 0, 0).

The irreducibility is then checked with the other characters.

〈χs, χs〉 =
1

60
(102 + 12 · 20 + 22 · 15) = 3

〈χs, χt〉 =
1

60
(10 · 1 + 1 · 1 · 20 + 2 · 1 · 15) = 1

〈χs, χpt〉 =
1

60
(10 · 4 + 1 · 1 · 20) = 1

11



This implies that χs is the sum of three irreducible representations, with χt being one and χs being another.
That is, χs = χt ⊕ χpt ⊕ χn for some irreducible representation ρn with χn = (5,−1, 1, 0, 0). This gives us
one more irreducible representation ρn, but we still need two more. Next, check the irreducibility of χa. We
note that

χa(g) =
1

2
(χ(g)2 − χ(g2)) = (6, 0,−2, 1, 1) with 〈χ,aχa〉 = 2.

So this representation is the sum of two irreducible representations. However, we have

〈χa, χt〉 = 0 〈χa, χpt〉 = 0 〈χa, χn〉 = 0

So χa = χ1 ⊕ χ2, for the two represntations that are not yet in the table. Note that both must be of
dimension 3. By trial and error, we find that

χ1 = (3, a, b, c, d) and χ2 = (3,−a,−2− b, 1− c, 1− d).

We know that 〈χ1, χt〉 = 〈χ1, χpt〉 = 〈χ1χn〉 = 0, which gives 3 linear equations in 4 variables. We also have
that 〈χ1, χ1〉 = 1, which is a quadratic equation in a, b, c, d. Ultimately, we find that

χ1 = (3, 0,−1, ϕ,−1/ϕ) and χ2 = (3, 0,−1,−1/ϕ, ϕ),

where ϕ is the golden ratio. This completes the table.

2.4 The symmetric group Sn

A good question to ask is what are the irroducible representations of Sn. We can start by saying that the
conjugacy classes of Sn will be the sets of permutations with the same cycle structure.

Definition 2.4.1. Conjugacy classes of Sn are in a 1-1 correspondence with Young tableaux. The young
tableau associated to a conjugacy class (r1, r2, . . . , rk), with

∑
ri = n and r1 > r2 > · · · > rk is

· · ·

...

· · ·

· · · · · · r1 boxes

r2 boxes

rk boxes

Example 2.4.2. Consider the following permutations and their associated Young tableaux.

(1 2 3)(4 5)(6 7) ∈ S7 ↔ (1 2 3 4) ∈ S7 ↔

(1 2)(3 4 5) ∈ S7 ↔

Definition 2.4.3. A numbering of a Young tableau is an injective function from {1, . . . , n} to the boxes in
the tableau.

Note that Sn acts on the set of numberings of a fixed tableau.
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Definition 2.4.4. A tabloid is an equivalence class of numberings of some fixed tableau, where two num-
berings are equivalent iff for each row both numberings contain the same set of numbers, albeit possibly in
a different order.

So Sn also acts on the set of tabloids of a given fixed shape.

Definition 2.4.5. Let S be a fixed shape of a Young tableau. Let MS =
⊕

T CT , where T ranges over all
tabloids of shape S. This is a permutation representation of Sn in MS , coming from the Sn action on the
tabloids.

Let T be a numbering of a tableau, and let C(T ) be a subgroup of Sn of elements σ ∈ Sn that preserve
the columns of T . That is, m and σ(m) are in the same column for all m. Define R(T ) to be an anologous
object, except for rows.

Let [T ] be the tabloid associated to T . Define ~vT =
∑
σ∈C(T ) sgn(σ)[σ(T )], where sgn(σ) =

{−1 if σ is odd
1 if σ is even

Remark 2.4.6. It may be checked that ~vT does not depend on T , only on [T ]. Let Ss = span(~vT ). We will
show that Ss is an Sn-invariant subspace of MS . For any τ ∈ Sn, we have

τ(~vT ) = τ

(∑
σ

sgn(σ)[σ(T )]

)
=
∑
σ

sgn(σ)[τσ(T )]

=
∑

σ∈C(τ(T ))

sgn(σ)[τ−1τστ ] (as C(τ(T )) = τC(T )τ−1)

=
∑

σ∈C(τ(T ))

sgn(σ)[στ(T )]

= ~vτ(T )

So Sn permutes the ~vT , meaning that Ss is Sn invariant. Note that Ss is called the Specht module associated
to the shape S.

Our plan now is to show that Ss is irreducible, and that Ss 6∼= St if s 6= t. This will imply that {Ss} is a
complete list of irreducible representations of Sn up to isomorphism.

Definition 2.4.7. Let s, t be Young tableaux of the same size (same number of boxes in each row). Write
s = (s1, . . . , sk) and t = (t1, . . . , tk) (set si or ti to 0 if necessary, to give t and s the same number of rows).
We say that s is dominates t iff for all m, s1 + · · ·+ sm > t1 + · · ·+ tm.

Further, s strictly dominates t iff s dominates t and s 6= t.

Example 2.4.8. To show how dominating works, note that(
dominates

)
but

(
does not
dominate

)
and

(
does not
dominate

)
.

Theorem 2.4.9. Let T, T ′ be numberings of shpaes s, s′ of the same size with s not strictly dominating s′.
Then either

1. there are 2 different numbers in the same row of T and the same column of T ′, or
2. s = s′ and there is some p′ ∈ R(T ′), q ∈ C(T ) such that p′(T ) = q(T ).

Proof: Assume that 1. is not true. We will prove that 2. holds. We want to find p′ ∈ R(T ′) and q ∈ C(T )
such that p1(T ′) = q(T ). Choose q1 ∈ C(T ) so that all the numbers in the first row of T ′ are in the first row
of q1(T ), which is possible, because all the numbers are in different columns of T by the negation af 1..

Choose q2 ∈ C(T ) to be the first row of numbers from T ′, and permute the second row of numbers from T ′
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to the second row (or higher) of q2q1(T ). Keep going until you get a q = qk · · · q1 ∈ C(T ) such that for every
i, all the numbers in the ith row of T ′ are in the ith row of q(T ), or higher.

This means that s dominates s′. By assumption, s = s′, and each row of T ′ has the same set of numbers at
the corresponding row of q(T ). So there is some p′ ∈ R(T ′) such that p′(T ′) = q(T ). �

Example 2.4.10. Consider the following situation:

T =
1

2 3
and T ′ =

3

1 2

There is no way to make T = T ′ by permuting each row of T ′ and each column of T .

Definition 2.4.11. Define the value

bT =
∑

σ∈C(T )

sgn(σ)σ ∈
⊕
g

Cg.

Then ~vT = bT (T ). Moreover, for any σ ∈ C(T ),

bTσ = sgn(σ)bT and bT bT =
∑∑

sgn(σ)sgn(τ)στ = #C(T )

Theorem 2.4.12. Let T, T ′ and s, s′ be as above. If 1. holds, then bT (T ′) = 0. Otherwise, bT (T ′) = ±~vT .

Proof: If 1. holds, let τ be the transposition switching the two numbers. Then τ ∈ R(T ′) and τ ∈ C(T ), so
bT τ = −bT , and bT (T ′) = 0 because

bT (T ′) = bT (τ(T ′)) = (bT τ)(T ′) = −bT (T ′)

If 2. holds, then choose p ∈ R(T ′) and q ∈ C(T ), such that p′(T ′) = q(T ). Then

bT (T ′) = bT (p′(T ′)) = bT (q(T )) = sgn(q)bT (T ) = ±vT

�

Proposition 2.4.13. The space Ss is irreducible, and Ss 6∼= St if s 6= t.

Proof: Assume that Ss = V ⊕W for some subspaces V,W that are Sn-invariant. Let T be any numbering
of s. Then

bT (Ss) = bT (spanT ′{~vT ′}) = span{~vT },

which is 1-dimensional. So (bT (v)) ⊕ (bT (w)) is 1-dimensional, meaning that (WLOG) bT (v) = span{~vT }.
But V is Sn-invariant, so bT (V ) ⊂ V , giving ~vT ∈ V . But Ss = spanσ{σ(~vT )}, and thus V = Ss, as Ss is
the smallest Sn-invariant subspace containing ~vT .

Next, if s 6= t, then (WLOG) s does not strictly dominate t. Then if T is any numbering of s, we get
that bT (St) = 0, but bT (St) 6= 0. This means that Ss 6∼= St if s 6= t, as desired. So we have found all the
irreducible representations of Sn. �

Example 2.4.14. Compute a character table for S4. Recalling that the trace of a permutation matrix is
the number of fixed points, we may calculate the characters of the 5 permutation representations of S4.
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1 6 8 6 3

(1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)

M ( ) 1 1 1 1 1

M
( )

4 2 1 0 0

M
( )

6 2 0 0 2

M

( )
12 2 0 0 0

M

( )
24 0 0 0 0

To find the related irreducible representations, we first note that S( ) = M( ), as it the trivial
representation. Next, note that〈

M
( )

, S( )
〉

=
1

24
(4 + 2 · 6 + 1 · 8) = 1 so M

( )
= S( )⊕R,

where χR = (3, 1, 0,−1,−1), which is irreducible. So since S
( )

is isomorphic to a subrepresentation

of M
( )

, it follows that S
( )

= R. Next, observe that

M
( )

∼= S ( )⊕ S
( )

⊕R so R ∼= S
( )

,

with χR = (6, 2, 0, 0, 2)− (1, 1, 1, 1, 1)− (3, 1, 0,−1,−1) = (2, 0,−1, 0, 2). We do not proceed further, but all
the associated irreducible representations may be found in this manner.

2.5 Commutators and dimension bounds

Remark 2.5.1. A finite group G is abelian iff all of its irreducible representations are 1-dimensional.

Remark 2.5.2. Let G be a group with H C G and G/H abelian. This means that there is a surjective
homomorphism q : G→ A such that A is abelian and ker(q) = H. Then

q(xy) = q(x)q(y) = q(yx) ∀ x, y ∈ G so q(xyx−1y−1) = 1.

This means that xyx−1y−1 ∈ H for all x, y ∈ G. The element xyx−1y−1 is called the commutator of x and
y, and is sometimes written [x, y].

Definition 2.5.3. Let G be a group. Define the commutator subgroup N of G to be the subgroup generated
by all commutators of G. It is a normal subgroup of G, and is denoted by [G,G].

From the above statements we may conclude that, for H 6 G, the group G/H is abelian iff H contains
tho commutator subgroup of G.

Remark 2.5.4. Let N be the commutator subgroup of a finite group G, and A = G/N . Then every 1-
dimensional representation ρ : A → GL(C) gives rise to a 1-dimensional representation ρ ◦ q : G → GL(C),
for q : G→ A the quotient homomorphism.

Conversely, if τ : G→ GL(C) is a 1-dimensional representation, then since GL(C) is abelian, N ⊂ ker(τ). By
the universal property of quotients, τ induces a homomorphism τ̃ : G/N → GL(C), which is a representation.
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The above remark proves the following:

Theorem 2.5.5. The 1-dimensional representations of a finite group G are in a 1-1 correspondence with
the 1-dimensional representations of G/N , where N is the commutator subgroup of G.

Here, G/N is called the abelianization of G.

Theorem 2.5.6. Let G be a finite group and A 6 G abelian. Then any 1-dimensional representation of G
has dimension less than or equal to #G/#A.

Proof: Let ρ : G→ GL(V ) be an irreducible representation of G. Let τ = ρ|A. Let W ⊂ V be an A-invariant
subspace of V . Then dim(W ) = 1. Let W = span{~w}, and let W ′ = span{[ρ(g)](~w)}, where the span is over
all g ∈ G. Then W ′ is G-invariant. But if g1, g2 are in the same coset of xA of A in G, then g1 = g2a for
some a ∈ A, so g1(~w) = (g2a)(~w) = g2(λ~w) for some λ ∈ C. So the dimension of W ′ can be no greater than
the number of left cosets of A in G, which is #G/#A. Since V is irreducible (and if we choose W ′ 6= 0),
then W ′ = V , and we are done. �

Remark 2.5.7. Since the dihedral group Dn has an abelian (cyclic) subgroup of order n, it follows that
every irreducible representation of Dn has dimension 1 or 2.

2.6 Induced representations

Let G1, G2 be finite groups. What are the irreducible representations of G1 × G2? Let us first consider
ρi : Gi → GL(Vi) as representations for i = 1, 2. Define ρ : G1 × G2 → GL(V1 ⊗ V2), for any gi ∈ Gi and
~v ∈ V1, ~w ∈ V2 by

[ρ(g1, g2)]
(∑

~vj ⊗ ~wj

)
=
∑

[ρ1(g1)](~vj)⊗ [ρ2(g2)](~wj)

This ρ is usually expressed as ρ = ρ1 ⊗ ρ2. It is easy to see that ρ is a representation. It is also true
that if ρ1, ρ2 are irreducible, then ρ is also irreducible. To see this, note that the character of ρ satisfies
χρ(g1, g2) = χρ1(g1)χρ2(g2), so

〈χρ, χρ〉 =
1

#G1 ·#G2

(∑
g1,g2

χρ(g1, g2)χρ(g1, g2)

)

=
1

#G1
· 1

#G2

(∑
g1,g2

χρ1(g1)χρ2(g2)χρ1(g1)χρ2(g2)

)

=
1

#G1

(∑
g1,g2

χρ1(g1)χρ1(g1)

)
1

#G2

(∑
g2

χρ2(g2)χρ2(g2)

)
= 〈χρ1 , χρ1〉 〈χρ2 , χρ2〉
= 1

We know that if Gi has ai conjugacy classes, then G1 × G2 has a1a2 conjugacy classes. So G1 × G2 has
a1a2 irreducible representations (up to isomorphism), and we have constructed a1a2 of them. To see that
ρ1 ⊗ ρ2 6∼= ρ′1 ⊗ ρ′2 if (ρ1, ρ2) 6∼= (ρ′1, ρ

′
2), note that by a calculation similar to above,

〈χρ, χρ′〉 = 〈χρ1 , χρ1〉 〈χρ2 , χρ2〉

So if ρi 6∼= ρ′i for some d, then 〈χρ, χρi〉 = 0, giving 〈χρ, χρ′〉 = 0.

Definition 2.6.1. Let G be a finite group with H 6 G and ρ : H → GL(V ) a representation. Choose
g1, . . . , gn ∈ G so that g1H, . . . , gnH is a complete and distinct set of left cosets of H in G. Define the vector
space

W = g1V1 ⊕ · · · ⊕ gnVn where giVi = V
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Define a homomorphism

IndGHρ = τ : G → GL(W )
[τ(g)](g1~v1 + · · ·+ gn~vn) = gj1[ρ(h1)](~v1) + · · ·+ gjn[ρ(hn)](~vn)

where for each r, ggr = gjrhr. A simple check shows that this is a representaton of G.

Example 2.6.2. Let G be any group and H = (1). So ρ : H → GL(C) must be the trivial representation.
Then IndGHρ is the left-regular representation. This is because we have ggr = gjr for all r.

Example 2.6.3. Let G be any group and H = G. Then IndGHρ = ρ.

Example 2.6.4. Let G = Z4 and H = 〈2〉. If ρ : H → GL1(C) is trival, then τ = IndGHρ is the permutation
representation of G acting on left H-cosets by left-multiplication.

Example 2.6.5. Let G = Z4 and H = 〈2〉. Let ρ : H → GL1(C) be the sign representation, i.e. ρ(0) = 1
and ρ(2) = −1. Let τ = IndGHρ. Note in general that dim(IndGHρ) = [G : H] dim(ρ), where [G : H] is the
index of H in G, or equivalently, the number of left cosets of H in G.

Here we have that dim(τ) = 2. A basis for W = 0C⊕ 1C is {0(1), 1(1)}. This turns τ(n) into a matrix:

τ(0) = ( 1 0
0 1 )

[τ(1)](0(1)) = (1 + 0)(1) = 1(1) =⇒ τ(1) = ( 0
1 )

[τ(1)](1(1)) = (1 + 1)(1) = (0)[ρ(2)](1) = 0(−1) = −0(1) =⇒ τ(1) =
(

0 −1
1 0

)
[τ(2)](0(1)) = (2 + 0)(1) = (0)[ρ(2)](1) = 0(−1) = −0(1) =⇒ τ(2) =

(−1
0

)
[τ(2)](1(1)) = (2 + 1)(1) = (1)[ρ(2)](1) = 1(−1) = −1(1) =⇒ τ(2) =

(−1 0
0 −1

)
Similarly, τ(−1) =

(
0 1
−1 0

)
. Notice that τ = ρ1 ⊕ ρ2, where ρ1, ρ2 are the 2 extensions of ρ to G.

Theorem 2.6.6. If τ = IndGHρ, then

χτ (g) =
∑

g−1
i ggi∈H

χρ(g
−1
i ggi) =

1

#H

∑
x−1gx∈H

ρ(x−1gx)

Proof: Choose a basis {gi~vi} for
⊕
giVi and pick g ∈ G. For each i, ggi = gihi for some hi ∈ H and index

i. The trace of τ(g) is the sum of all the coefficients of gi~vj in [τ(g)](gi~vj). If gi 6= gj , then the coefficient of
gi~vj in [τ(g)](gi~vj) is 0. But gj = gi iff hi = g−1

i ggi, so [τ(g)](gi~vj) = gi[ρ(g−1
i ggi)](~vj), thereby increasing

the trace of τ(g) by the trace χρ(g
−1
i ggi) of ρ(g−1

i ggi).

This establishes the first formula. The second follows immediately by group theory. �

Example 2.6.7. Let G = D4 and H = 〈y〉, where y has order 4. Let ρ : H → GL(C) be given by
ρ(ya) = ia.How do we extend ρ to G, or what is IndGHρ = τ?

First define the space W = C⊗ xC, where x ∈ G is a reflection, and we must have that y(x~v) = (yx)~v. But
we also have that (yx~v) = (xy−1)(~v) by the properties of D4. And

(xy−1)(~v) = x(y−1~v) = x(−i~v) = −i(x~v)

As an aside, we note that if the order of x was 3, then w = C⊕xC⊕x2C. Further, if x was in a different coset
than y, then we would have to make a new definition. Back to the example, we now have that everything is
forced, so

τ(1) =

(
1 0
0 1

)
τ(y) =

(
i 0
0 −i

)
τ(y2) =

(
−1 0
0 −1

)
τ(y3) =

(
−i 0
0 i

)

τ(x) =

(
0 1
1 0

)
τ(xy) =

(
0 i
−i 0

)
τ(xy2) =

(
0 −1
−1 0

)
τ(xy3) =

(
0 i
−i 0

)
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Therefore the character of τ is

χτ (1, y, y2, y3, x, xy, xy2, xy3) = (2, 0,−2, 0, 0, 0, 0, 0)

This is the same answer that the theorem above gives, which is good.

3 Group rings

3.1 Modules and rings

Definition 3.1.1. Let G be a group, not necessarily finite. The complex group ring of G is C[G] =
⊕

g∈GCg,
where multiplication is defined by (∑

i

aigi

)∑
j

bjgj

 =
∑
i,j

aibjgigj

Then C[G] is a ring, commutative if and only if G is abelian.

Proposition 3.1.2. C[G], the vector space spanned by elements in G with multiplication defined in the
usual associative way, is a commutative ring iff G is abelian.

Definition 3.1.3. Let R be a ring with unity. A left R-module is an abelian group M with operation
· : R×M →M such that:

(i). r · (b+ c) = r · b+ r · c
(ii). r1 · (r2 · a) = (r1 · r2) · a
(iii). 1 · a = a
(iv). (r1 + r2) · a = r1 · a+ r2 · a

for all r, r1, r2 ∈ R and a, b, c ∈M

Example 3.1.4. If R is a commutative field, then any R-module is a vector space over R with finite
dimension. That is, they are free modules.

Example 3.1.5. Z-modules are abelian groups with n ·m = m ·m · · ·m︸ ︷︷ ︸
n times

. For example:

· Zn is a Z-module
· Z/nZ is a Z-module given by mx = mx (mod n)
· Any abelian group is a Z-module
· Let R be any ring. If I is a left ideal of R, then I is an R-module

Remark 3.1.6. A left ideal is an R-submodule, so R-submodules may be factored using factorizations
of ideals (into prime ideals). Begin by letting ρ : G → GL(V ) be a representation of G. Then V is a
C[G]-module given by (∑

i

aigi

)
~v =

∑
i

aiρ(gi)[~v]

Given any left C[G]-module, we may make a representation of G by i : G→ C[G] the inclusion map.

Example 3.1.7. ρ(g)[~v] = g~v, which is clearly in GL(V ), and clearly a homomorphism ρ : G → GL(V ).
Hence as a representation of G, V is naturally a C[G]-module.

Example 3.1.8. Let G = Zn, and ρ : G→ GL(C), with ρ(1) = −1. What is C[G]?

Well, we must have that C[G] = C · 0⊕ C · 1. This means that C is a C[G]-module, multiplication being

(c1 · 0 + c2 · 1) · z = c1 · ρ(0) · z + c2 · ρ(1) · z = c1 · z − c2 · z
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Example 3.1.9. Polynomial rings are C[t]-modules. Evaluate p(t) ∈ C[t] at z0 ∈ C. For instance, we might
have ez0(p) = p(z0). More generally, C[t]→ C[G] by ϕ : t 7→ g ∈ G. Clearly this map is onto, so ϕ(p) = p(1),
so

C[G] ∼= C[t]/ ker(ϕ)

However, ker(ϕ) =
〈
t2 − 1

〉
. Hence this map is a linear transformation that is onto, so it is also injective,

as C[t]/ ker(ϕ) is 2-dimensional, as is C[G], so the universal property of quotients says that ϕ gives a
homomorphism

C[t]/
〈
t2 − 1

〉
→ C[G]

So ϕ′ is an isomorphism and C[G] ∼= C[t]/
〈
t2 − 1

〉
. By the Chinese remainder theorem, C[T ]/

〈
t2 − 1

〉 ∼=
C⊕ C, so C[G] ∼= C⊕ C as rings.

Definition 3.1.10. Let R be a ring with unity (not necessarily commutative). Let M , N be left R-modules.
an R-module homomorphism from M to N is a function f : M → N such that f(m1 +m2) = f(m1)f (m2),
and f(λm) = λf(m) for all m,m1,m2 ∈M and λ ∈ R.

Note that if R = C[G], then an R-module homomorphism is exactly a morphism of representations. An
isohomprihsm of R-modules is a homomorphism of R-modules that has an inverse homomorphism.

Definition 3.1.11. Let R be a ring and M an R-module. Define

EndR(M) = (the endomorphism ring of M over R) = {R-module homomorphisms f : M →M}

The operations are pointwise function addition and composition. Note that an endomorphism of M is a
homomorphism M →M .

Note that Schur’s lemma says that EndC[G](V ) = C if V is an irreducible representation of G.

Definition 3.1.12. Let M,N be R-modules. Define

HomR(M,N) = {f : M → N : f is an R-module homomorphism}

Note that HomR(M,N) is an R-module via (f1 + f2)(m) = f1(m) + f2(m) and (cf1)(m) = c · f1(m) for all
m ∈ R.

Recall also that V1 6∼= V2 with V1, V2 irreducible, then HomC[G](V1, V2).

Note that if M,N are R-modules, then M ⊕ N is also an R-module with (m1, n1) + (m2, n2) = (m1 +
m2, n1 + n2) and r(m,n) = (rm, rn). With this definition, the direct sum of C[G]-modules corresponds to
the direct sum of representations.

Definition 3.1.13. An R-module M is simple iff its only R-submodules are 0 and M . Note that simple
C[G]-modules correspond precisely to irreducible representations of G. Thus every C[G]-module that is a
finite-dimensional vector space is isomorphic to a direct sum of simple C[G]-modules.

Definition 3.1.14. An R-module is called semi-simple iff for every submodule N of M there is a submodule
N⊥ of M such that M = N ⊕N⊥.

Theorem 3.1.15. [Maschke]
Every C[G]-module is semi-simple if G is finite.

Proof: Let V be a C[G]-module, W ⊂ V any submodule. We want to find a submodule W ′ ⊂ V such that
V ∼= W ⊕W ′ as C[G]-modules.

Let f : V → W be some C-linear projection, i.e. f(~w) = ~w for all ~w ∈ W . If only f were a C[G]-module
homomorphism, then W ′ = ker(f) would give us what we want. However, f may not be a C[G]-module
homomorphism, so we have to make it work. Define h : V →W by

h(~v) =
1

#G

∑
g

g−1f(g~v)
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Then h(~v) ∈W , beause f(g~v) ∈W , and W is G-invariant. Notice also that g(~w) = ~w for all ~w ∈W , so h is
a projection onto W . Now we can show that h is a C[G]-module homomorphism, with

h

(∑
i

aigi

)
=
∑
i

aih(gi~v) =
1

#G

∑
g,i

aig
−1
i f(ggi~v) =

1

#G

∑
i,g

aigi(g
′
i)
−1f(g′i~v) =

(∑
i

aigi

)
h(~v)

where g′i = ggi. This is as desired. So V ∼= W ⊕ ker(h) as vector spaces, and W and ker(h) are both
C[G]-modules. So V ∼= W ⊕ ker(h) as C[G]-modules. �

Note we have already proved the above theorem for the C[G]-module is a finite-dimensional C-vector
space.

Remark 3.1.16. Our next goal is to understand the ring C[G] better. As a left C[G]-module, C[G] corre-
sponds to the left-regular representation. So as a C[G]-module, we have

C[G] ∼= n1V1 ⊕ · · · ⊕ nrVr
where V1, . . . , Vr are the simple C[G]-modules (corresponding to irreducible representations) with ni =
dim(Vi), where dim(Vi) means dimension as a C-vector space.

Proposition 3.1.17. C[G] is isomorphic to End(C[G]) as a ring, if we make C[G] into a C[G]-module by
left-multiplication.

Proof: Let ϕ : C[G]→ End(C[G]) be given by

ϕ

(∑
i

aigi

)
=

[∑
i

bigi 7→

(∑
i

bigi

)(∑
i

aig
−1
i

)]
It is easy to see that ϕ is well-defined and C[G]-linear. It is also clearly injective, so we just need to check
that ϕ is onto. So let f ∈ C[G] be an arbitrary endomorphism. We want to show that f = ϕ(

∑
aigi) for

some
∑
aigi ∈ C[G]. Let a = f(1) ∈ C[G]. Then for all b ∈ C[G], we have f(b) = bf(1) = ba, so we conclude

that f ∈ Im(ϕ) as desired. �

Our next question is: what kind of a ring is C[G]? As a left C[G]-module, C[G] ∼= d1V1 ⊕ · · · ⊕ drVr,
where V1, . . . , Vr are the irreducible representations of G, up to isomorphism, and di = dim(Vi). Note the
representations are actually ρi : G→ GL(Vi).

Theorem 3.1.18. Let V be a simple C[G]-module (that is, a C[G]-module corresponding to an irreducible
representation), and n ∈ Z+. Then End(nV ) = Mn(C) for nV = V ⊕ · · · ⊕ V , the sum of n copies of V .

Proof: Define ϕ : Mn(C)→ End(nV ) by

ϕ(M) =

(~v1, . . . , ~vn) 7→M

~v1

...
~vn

 ∈ nV


It is easy to check that ϕ is a well-defined ring homomorphism, and that it is injective (as ker(ϕ) = 0). For
surjectivity, let f ∈ End(V ). Write f = (f1, . . . , fn), where fi : nV → V is a C[G]-module homomorphism.
By restricting fi to the jth coordinate, we get a C[G]-module homomorphism fij : V → V . By Schur’s
lemma, fij = aij idV for some aij ∈ C, so

f(~v1, . . . , ~vn) = (f1(~v1, . . . , ~vn), . . . , fn(~v1, . . . , ~vn))

= (f11(~v1) + · · ·+ fin(~vn), . . . , fn1(~v1) + · · ·+ fnn(~vn))

= (a11~v1 + · · ·+ ain~vn, . . . , an1~v1 + · · ·+ ann~vn)

= M

~v1

...
~vn


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for Mij = aij . So ϕ is surjective, and so is a bijection, and so is a ring homomorphism. �

Remark 3.1.19. The above showed us that

C[G] ∼= End(C[G])
∼= End(d1V1 ⊕ · · · ⊕ drVr)
∼= End(d1V1)⊕ · · · ⊕ End(drVr)
∼= Md1(C)⊕ · · ·Mdr (C)

But what is this isomorphism described by? Let ρi : G → GL(Vi) be the irreducible representation corre-
sponding to Vi. Define ρ : C[G]→Md1(C)⊕ · · · ⊕Mdr (C) by

ρ

(∑
i

aigi

)
=

(∑
i

aiρ1(gi), . . . ,
∑
i

aiρr(gi)

)
=
∑
i

ai(ρ1(gi), . . . , ρr(gi))

It is clear that ρ is a ring homomorphism. It is injective because if ρ(
∑
aigi) = 0, then the representations ρi

would be linearly dependent, meaning that their characters are linearly dependent, but they are orthonormal.
Hence ρ is injective. Since we already know that C[G] ∼= Md1(C) ⊕ · · · ⊕Mdr (C) as C-vector spaces, we
conclude that ρ is also surjective.

The above statement also means that the ith component ρi : C[G]→Mdi(C) of ρ is surjective. That is,
every linear transgormation f : Cdi → Cdi can be realized as a linear combination of the matrices ρi(g), for
g ∈ G.

Remark 3.1.20. For Z(V ) the center of V ,

Z(C[G]) ∼= Z(Md1(C)⊕ · · · ⊕Mdr (C)) = CI ⊕ · · · ⊕ CI ∼= C⊕ · · · ⊕ C.

As a subring of C[G], the center is a complex vector space of dimension r = # of conjugacy classes of G.

Suppose that (
∑
aigi)g = g(

∑
aigi) for all g ∈ G. This is the same as

∑
aigig =

∑
aiggi. Thus if

∑
aigi

is in the center of C[G], then for every g, i, j such that ggi = gjg we must have that ai = aj . But note that
ggi = gjg iffg−1gjg = gi, so in order for

∑
aigi to be in the center of C[G], we need ai = aj if gi and gj are

in the same conjugacy class.

Thus every element of the center of C[G] is in the span of the elements
∑
g∈C g, for C a conjugacy class of

G. This span has dimension r, so it must equal the center of G.

3.2 Tensor products of modules over an arbitrary ring

Definition 3.2.1. Let R be a commutative ing with unity. Let M,N be left R-modules, and let B be a free
R-module on the set {m⊗ n : m ∈ M,n ∈ N}. That is, B = {

∑
ai(mi ⊗ ni) : mi ∈ M,ni ∈ N, ai ∈ R}.

Define

Z =

 R-linear combinations of
the following forms:

(m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n
m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2

(rm)⊗ n− r(m⊗ n)
m⊗ (rn)− r(m⊗ n)

,
r ∈ R

m,m1,m2 ∈M
n,n1, n2 ∈ N


DefineM⊗RN = B/Z, where the R-module B/Z is the abelian group R/Z with the R-action r(b+z) = rb+z.

Example 3.2.2. Consider the folowing examples of tensor products of modules, where R is commutative:
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· M ⊗R R ∼= M , because every element of M ⊗R R is equal to m⊗ 1 for some m ∈M
· Rn ⊗R Rm ∼= Rnm, same as for vector spaces

· For R = Z, M = Q and N = Z[
√

2] = {a+ b
√

2 : a, b ∈ Z}, we have that

M ⊗R N = Q⊗Z Z[
√

2] ∼= Q[
√

2] ∼= Q(
√

2).

Example 3.2.3. Let’s consider the last example in greater detail. Define a map

ϕ : Q⊗ Z[
√

2]→ Q(
√

2) by
∑
i

qi ⊗ (ai + bi
√

2) 7→
∑
i

qi(ai + bi
√

2).

Then ϕ is a homomorphism of Z-modules. To see that ϕ is surjective, note that Q(
√

2) = {a+ b
√

2 : a, b ∈
Q}, so every element in Q(

√
2) may be written as (a + b

√
2)/c, for a, b, c ∈ Z and ϕ(1/c ⊗ (a + b

√
2)) =

(a+ b
√

2)/c.

To see that ϕ is injective, it is enough to show that Q ⊗ Z[
√

2] and Q(
√

2) are both 2-dimensional vector
spaces, and that ϕ is a Q-linear transformation. All of these facts are easy to see except the dimension of
Q⊗ Z[

√
2], which is proven as follows. First, we note that any element of Q⊗ Z[

√
2] is of the form∑

i

qi ⊗ (ai + bi
√

2) =
∑
i

aiqi ⊗ 1 +
∑
i

biqi ⊗
√

2 =

(∑
i

aiqi

)
(1⊗ 1) +

(∑
i

biqi

)
(1⊗

√
2).

So Q ⊗ Z[
√

2] is spanned by 1 ⊗ 1 and 1 ⊗
√

2 as a Q-vector space. Since ϕ is surjective and Q(
√

2) has
dimension 2, we see that dim(Q⊗ Z[

√
2]) = 2, and ϕ is an isomorphism, as desired.

Definition 3.2.4. Let R be a ring with unity, but not necessarily commutative. Let T be a ring containing
R as a subring, and let M be an R-module. Define B to be the free abelian group on {t⊗m : t ∈ T,m ∈M},
so B = {

∑
ti ⊗mi : ti ∈ T,mi ∈M}. Define

Z =

 Z-linear combinations of
the following forms:

(t1 + t2)⊗m− t1 ⊗m− t2 ⊗m
t⊗ (m1 +m2)− t⊗m1 − t⊗m2

(tr)⊗m− t⊗ (rm)
,

r ∈ R
t, t1, t2 ∈ T

m,m1,m2 ∈M


Define T ⊗RM = B/Z as abelian groups with left T -module structure by t(

∑
ti ⊗mi) =

∑
(tti)⊗mi.

Example 3.2.5. Let G = Z2, H = {0}, V = C, with the trivial action. in other words, V is the trivial
one-dimensional representation of H, so V is a C[H]-module. Consider C[G]⊗C[H] V . It is a C-vector space.
An arbitrary element of C[G]⊗C[H] V is of the form∑

(ai · 0 + bi · 0)⊗ zi =
∑

(aizi · 0 + bizi · 1)⊗ 1 = (A · 0 +B · 1)⊗ 1 ∈ spanC{0⊗ 1, 1⊗ 1}.

Therefore C[G]⊗C[H] V = span{0⊗ 1, 1⊗ 1}.

Consider the above example in more detail. Let W = C[G] ⊗C[H] V = span{0 ⊗ 1, 1 ⊗ 1}. Then W is a
C[G]-module, with

0(0⊗ 1) = (0 + 0)⊗ 1 = 0⊗ 1 1(0⊗ 1) = (1 + 0)⊗ 1 = 1⊗ 1

0(1⊗ 1) = (0 + 1)⊗ 1 = 1⊗ 1 1(1⊗ 1) = (1 + 1)⊗ 1 = 0⊗ 1

So W corresponds to the 2-dimensional left-regular representation of G, as expected.

Example 3.2.6. Let H = Z4, G = D4, ρ(n) = in, and V = C, the corresponding C[H]-module. Let’s
compute W = C[G] ⊗C[H] V as a C[G]-module. This ought to be the representation of D4 induced by the
given representation of Z4. So an arbitrary element of C[G]⊗C[H] V is of the form

∑
i

∑
j

aijgj

⊗ ~vi =
∑
i

∑
j

Aijy
j

⊗ zi +
∑
i

∑
j

Bijxy
j

⊗ z′i
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where Bij = aij for j corresponding to xyj , and Aij = aij for j corresponding to yj .

=
∑
i

∑
j

Aij ⊗ ρ(yj)zi

+
∑
i

∑
j

Bijx⊗ ρ(yj)z′i


= A(1⊗ 1) +B(x⊗ 1)

for A,B ∈ C. Next, let τ : G→ GL(C) be the representation associated to W . Then

[τ(yn)](1⊗ 1) = (yn)⊗ 1 = yn ⊗ 1 = 1⊗ ρ(yn) = 1⊗ in = in(1⊗ 1)

[τ(yn)](x⊗ 1) = ynx⊗ 1 = xy−n ⊗ 1 = x⊗ i−n = i−n(x⊗ 1)

[τ(xyn)](1⊗ 1) = xyn ⊗ 1 = x⊗ in = in(x⊗ 1)

[τ(xyn)](x⊗ 1) = xynx⊗ 1 = xxy−n ⊗ 1 = y−n ⊗ 1 = i−n(1⊗ 1)

Theorem 3.2.7. Let G be a finite group, H ⊂ G a subgroup, ρ : H → GL(V ) a representation, and
τ : G→ GL(W ) the induced representation. Then τ corresponds to the C[G]-module C[G]⊗C[H] V .

Proof: To cnstruct τ , we choose g1, . . . , gr ∈ G so that g1H, . . . , grH is a complete and irredundant list of
left H-cosets in G. Let W = g1V ⊕ · · · ⊕ grV , with [τ(g)] defined by

[τ(g)](gi~v) = gi[ρ(h)](~v)

where ggi = gjh for some h ∈ H. Define W ′ = C[G] ⊗C[H] V with C[G]-module structure induced by
multiplication on the left. We want to shown that W,W ′ are isomorphic, so we construct an isomorphism
between them. Define a map

ϕ : W → W ′∑
gi~vi 7→

∑
gi ⊗ ~vi

This is an isomorphism of C[G]-modules. It is straightforward to show that ϕ is a homomorphism of C[G]-
modules. It is also surjective because W ′ is spanned by elements of the form g⊗ ~v, and gih⊗ ~v = gi ⊗ h(~v).
To show that ϕ is an isomorphism, it is enough to show that dim(W ) = dim(W ′), as ϕ is a C-linear
transformation. First note that dim(W ) = [G : H] dim(V ). To compute dim(W ′), define a map

T : C[G]⊗C V → C[G]⊗C[H] V
α⊗ ~v 7→ α⊗ ~v

and extend linearly. It is not hard to see this is a linear transformation and is surjective. The kernel of T is
the span of elements of the form gh⊗ ~v − g ⊗ h~v. The kernel is thus also spanned by elements of the form
gih⊗~vj − gi⊗ h~vj , where {~v1, . . . , ~vn} is a basis for V . In this list we may further neglect terms with h = 1.
So ker(T ) is spanned by {gih⊗~vj − gi⊗ h~vj}, where h ranges over the non-trivial elements of H. There are
r · (#H−1) ·dim(V ) such elements, so ker(T ) has dimension at most [G : H](#H−1) dim(V ), and therefore

dim(W ′) > dim(V ) dim(C[G])− dim(ker(T )) = dim(V )#G− dim(V )[G : H](#H − 1) = dim(V )[G : H]

Since ϕ maps W onto W ′, we conclude, by counting dimensions, that ϕ is an isomrphism. �

3.3 Integrals and integers

A question that often arises is why are the numbers χ(g) always so “nice”? Mainly because they are sums
of roots of unity. But how does this affect their niceness?

Definition 3.3.1. A commutative ring R is Noetherian iff every ideal of R is finitely generated.
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Definition 3.3.2. Let R be a Noetherian ring contained in some bigger commutative ring T . An element
α ∈ T is said to be integral over R iff R[α] is a finitely-generated R-module.

Example 3.3.3. Suppose a
b ∈ Q is a rational number. If a

b ∈ Z, then Z[ab ] ∼= Z is a finitely-generated
Z-module, so a

b is integral over Z. Conversely, assume that a
b 6∈ Z. Then there is some prime p that divides b

but not a. For any finite set x1, . . . , xn ∈ Z[ab ], there is some maximal power ` of p dividing the denominator

of any xi, so the Z-module generated by x1, . . . , xn cannot contain am

bm for m > `.

This implies that a rational number is integral over Z iff it is an integer.

Theorem 3.3.4. Let T be a commutative ring, R ⊂ T a subring, α ∈ T any element. Then α is integral
over R iff there is some monic polynomial f(x) ∈ R[x] with f(α) = 0.

Proof: Suppose that α is integral over R. Then R[α] is a finitely-generated R-module. Consider the set

{1, α, α2, . . . } ⊂ R[α]. Since R[α] is finitely-generated, there is a finite subset a1, . . . , an ∈ R[α] such that
every element γ ∈ R[α] can be written as γ = r1a1 + · · · + rnan for some ri ∈ R. But each ai is a
polynomial in α with coefficients in R, so there is some N ∈ Z such that every ai is an R-linear combination
of 1, α, . . . , αN−1. Then αN = r1a1 + · · · + rnan for some ri ∈ R, so αN = f(α) for some polynomial
f(x) ∈ R[x] of degree < N . Thus g(x) = xn − f(x) is a monic polynomial with coefficients in R and
g(α) = 0.

Suppose that f(α) = 0 for some monic polynomial f(x) ∈ R[x]. If N = deg(f), we get αN = rN−1α
N−1 +

· · ·+ r0. So R[x] is generated by 1, α, α2, . . . , αN−1. �

Example 3.3.5. Which elements of Q[
√

5] are integral over Z? First, we have Q[
√

5] = {ab + c
√

5
d : a, b, c, d ∈

Z}. If c = 0, then we have a rational number, and we know the answer from above. So when c 6= 0, the
minimal polynomial is(

x− a

b
− c

d

√
5
)(

x− a

b
+
c

d

√
5
)

= x2 −
(

2a

b

)
x+

(
a2

b2
− 5c2

d2

)
= x2 −

(
2a

b

)
x+

a2d2 − 5b2c2

b2d2

When does this polynomial have integer coefficients? Assume WLOG that gcd(a, b) = gcd(c, d) = 1. Then
2a
b ∈ Z, which implies that b | 2, so WLOG b = 1 or 2. If b = 1, then the polynomial is x2 − 2ax+ a2d2−5c2

d2 ,

so d2 | 5, meaning that d = 1. If b = 2, then the polynomial is x2−ax+ a2d2−20c2

4d2 . Then 4d2 | (a2d2− 20c2),
so 4 | a2d2. Then 4 | d2, since b = 2 implies that a is odd, so d is even, meaning that d = 2d′ for some integer
d′. Then

a2d2 − 20c2

4d2
=

4a2(d′)2 − 20c2

16(d′)2
=
a2(d′)2 − 5c2

4(d′)2
.

Now, d′ must be odd, since otherwise the numerator is odd and 4(d′)2 is even, so our fraction is not an
integer. Furthermore, we must have that (d′)2 | (a2(d′)2 − 5c2), which implies that (d′)2 | 5c2. But then
(d′)2 | 5, so d′ = 1 and d = 2. Thus

a

b
+
c

d

√
5 =

a+ c
√

5

2
.

But this expansion is not always an integer, so there is something more going on here. We also need a and
c to be odd, so that a2(d′)2 − 5c2 can be even. So in general, any integral element of Q(

√
5) must be of the

form x + y( 1+
√

5
2 ) for x, y ∈ Z. All these elements are integral over Z because the minimal polynomial of

x+ y( 1+
√

5
2 ) is(
t−

(
x+ y

(
1 +
√

5

2

)))(
t−

(
x+ y

(
1−
√

5

2

)))
= t2 − (2x− y)t+ (x2 + 2xy − 2y2)

Theorem 3.3.6. Let T be a commutative ring, R ⊂ T a subring. Assume that R, T are Noetherian. Then
the set of elements of T that are integral over R is a subring of T .
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Proof: This amounts to showing that the set of integral elements is non-empty and closed under addition and
multiplication. So the set S of R-integral elements of T is non-empty (as it contains 1), therefore it suffices
to show that it is closed under +,−, and ·. Thus let x, y ∈ S be any elements. Then x + y, x − y, xy are
all elements of the ring R[x, y], a finitely-generated R-module, generated by {xi, yj}, where i, j range over
the same sets as those needed to ensure that {xi} generates R[x] and {yj} generates R[y]. To conclude the
proof, we need the following lemma:

Lemma 3.3.7. If R is a Noetherian ring and M is a finitely-generated R-module, then every R-submodule
of M is also finitely-generated.

Proof: Suppose that N ⊂ M is an R-submodule. Since M in finitely-generated (by m1, . . . ,mn), there is a
surjective R-module homomorphism ϕ : Rn →M given by

ϕ(r1, . . . , rn) = r1m1 + · · ·+ rnmn.

If we can show that ϕ−1(N) = {~v ∈ R : ϕ(~v) ∈ N} is a finitely-generated R-module, then N will also be
finitely-generated by the images (under ϕ) of the generators for ϕ−1(N). Thus we may assume that M = Rn.
If n = 1, then N is an ideal of R, so since R is Noetherian, N is finitely-generated. New proceed by induction
on n. Define an R-module homomorphism π : Rn → R by π(r1, . . . , rn) = r1. Then ker(π) ∼= Rn−1

is a finitely-generated R-module. And Im(π) is also finitely-generated because it is a submodule of R.
Furthermore, ker(π) ∼= Rn−1 is finitely-generated because it is a submodule of ker(π) ∼= Rn−1 and Im(π|N )
is finitely-generated because it is a submodule of R.

Thus, N can be finitely generated by the union of a set of generators for ker(π) ∩N and any finite set in N
that maps via π to a finite generating set for Im(π|N ). �

This also proves the theorem. �

Remark 3.3.8. We know the eigenvalues of all representations are all roots of unity. So if G is finite, g ∈ G
any element, then χ(g) is always integral over Z.

Theorem 3.3.9. Let G be a finite group and ρ : G→ GL(V ) an irreducible representation. Then dim(V ) |
#G.

Proof: For any conjugacy class C of G, let eC =
∑
g∈C g ∈ C[G]. Then eC is in the center of C[G],

and
⊕

C eC is a ring containing eC that is a finitely-generated Z-module, so eC is integral over Z. But
C[G] ∼= Mn1

(C)× · · · ×Mnr
(C), and its center is Cid× · · ·Cid, and the isomorphism maps

∑
i

aigi →

(∑
i

aiρ1(gi), . . . ,
∑
i

aiρr(gi)

)
where ρi : G → GL(Vi) is the ith irreducible representation of G, up to isomorphism. So ρi(eC) is a scalar
multiple of id, meaning that trace(ρi(eC))/ dim(Vi) is integral over Z. Thus, for any α =

∑
aigi in the

center of C[G], we have that
∑
aiχρ(gi)/ dim(V ) is integral over Z for any character χρ of any irreducible

representation ρ : G→ GL(V ). Moreover,

span{eC} =
{∑

f(gi)gi) : f is a class function
}

where a class function is a function that is constant on conjugacy classes. So for any class function
f : G → C, the sum

∑
f(gi)χρ(gi)/ dim(V ) is integral over Z for any irreducible representation ρ. If we

choose f(gi) = χρ(g
−1
i ), then∑

i

χρ(g
−1
i )χρ(gi)/ dim(V ) =

∑
i

1

dim(V )
=

#G

dim(V )

is integral over Z. Therefore dim(V ) = dim(ρ) | #G. �
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3.4 Induced representations, part II

Definition 3.4.1. Let G be a finite group, H 6 G, and f : H → C a class function of H. Define the induced
class function on G by

[IndGH(f)](g) =
1

#H

∑
t∈G

tgt−1∈H

f(tgt−1)

This is a class function on G. Also note that IndGH(χρ) = χIndG
H(ρ).

Theorem 3.4.2. [Frobenius reciprocity]
Let ψ be a class function on H and ϕ a class function on G. Then

〈ψ,ResH(ϕ)〉H =
〈

IndGH(ψ), ϕ
〉
G

where ResH(ϕ) is the restriction of ϕ to H.

Proof: WLOG we assume that ψ,ϕ are ireducible characters corresponding to irreducible representations τ ,
ρ, respectively. Then 〈ψ,ResH(ϕ)〉H = the number of copies of τ in the irreducible decomposition of the

representation associated to ResH(ϕ), and similarly for
〈

IndGH(ψ), ϕ
〉
G

. If µ ∼=
⊕r

i=1 aiρi for irreducible

representations ρi 6∼= ρj if i 6= j, then dim(hom(ρi, µ)) = ai (we actually proved this before, when we
computed End(C[G]). So

〈ψ,ResH(ϕ)〉H = dim(homC[G](V,W )) and
〈

IndGH(ψ), ϕ
〉
G

= dim(homC[G](C[G]⊗C[H] V,W ))

where τ : H → GL(V ) and ρ : G→ GL(W ). Define a linear transformation Λ of linear transformations

Λ : HomC[H](V,W )→ HomC[G](C[G]⊗ V,W ) by Λ(T ) = {g ⊗ ~v 7→ [ρ(g)](t(~v))}

It is straightforward to check that Λ is well-defined and injective. For surjectivity, let f : C[G]⊗ V →W be
any homomorphism of C[G]-modules. Then f = Λ(f |1⊗~v). So Λ is an isomorphism. �

Remark 3.4.3. A natural question to ask now, is when is IndGH(ρ) irreducible? Or, for H,K 6 G where G
is finite and ρ : H → GL(V ) a representation of H, what is ResK(IndGH(ρ))?

Definition 3.4.4. A double coset of (H,K) in G is a coset of the form HgK for some g ∈ G. Note that for
any g1, g2 ∈ G, either Kg1H = Kg2H or Kg1H ∩Kg2H = ∅.

Theorem 3.4.5. Let {g1, . . . , gn} be a set of double coset representatives for (H,K) in G, and let Hi =
giHg

−1
i ∩K. Define ρi : Hi → GL(V ) by ρi(x) = ρ(g−1

i xgi). Then

ResK(IndGH(ρ)) ∼=
⊕
i

IndKHi
(ρi).

Proof: First observe that

ResK(IndGH(ρ)) = IndGH(ρ) as a C[K]-module

= C[G]⊗C[H] V as a C[K]-module

We want to show that C[G]⊗C[H] V ∼=
⊕

i(C[K]⊗C[Hi] V ) as C[K]-modules. Define

ϕ : C[G]⊗C[H] V →
⊕
i

(C[K]⊗C[Hi] V ) by ϕ(kgih⊗ ~v) = (0, . . . , 0, k ⊗ [ρ(h)](~v), 0, . . . , 0)
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where the non-zero entry is the ith coordinate. Extend linearly to complete the definition. To show that ϕ
is well-defined, we need to show that if k1gih1 = k2gih2, then k1 ⊗ [ρ(h1)](~v) = k2 ⊗ [ρ(h2)]~v for all ~v ∈ V .
First note that k1gih1 = k2gih2 implies that k1 = k2(gih2h

−1
1 g−1

i ). Next observe that

k1 ⊗ [ρ(h1)](~v) = k2(gih2h
−1
1 g−1

i )⊗ [ρ(h1)](~v)

= k2 ⊗ [ρi(gih2h
−1
1 g−1

i )ρi(h1)](~v)

= k2 ⊗ [ρ(h2h
−1
1 )ρ(h1)](~v)

= k2 ⊗ [ρ(h2)](~v)

as desired. So ϕ is a well-defined homomorphism of C[K]-modules. Now we need an inverse. So define

ψ :
⊕
i

(C[K]⊗C[Hi] V )→ C[G]⊗C[H] V by ψ(k1 ⊗ ~v1, . . . , kn ⊗ ~vn) =
∑
i

kigi ⊗ ~vi.

To see that ψ is well-defined, we must show that if gihg
−1
i ∈ Hi, then the following three equalities hold:

ψ(kgihg
−1
i ⊗ ~v) = ψ(k ⊗ [ρi(gihg

−1
i )])(~v)

ψ(0, . . . , 0, kgihg
−1
i ⊗ ~v, 0, . . . , ) = kgih⊗ ~v = kgi ⊗ [ρ(h)](~v)

ψ(k ⊗ [ρi(gihg
−1
i )])(~v) = kgi[ρ(h)](~v).

To see that they indeed hold, we note that

ψ(ϕ(kgih⊗ ~v)) = ψ(0, . . . , 0, k ⊗ [ρ(h)](~v), 0, . . . , 0) = kgi ⊗ [ρ(h)](~v) = kgih⊗ ~v

and

ϕ(ψ(k1 ⊗ ~v, . . . , kn ⊗ ~vn)) = ϕ

(∑
i

kigi ⊗ ~v

)
= (k1 ⊗ ~v1, . . . , kn ⊗ ~vn)

So ϕ,ψ are mutually inverse, which means that they are isomorphisms, as desired. �

Theorem 3.4.6. [Mackey’s irreducibility criterion]
Let G be a finite group, H 6 G, and ρ : H → GL(V ) a representation. Then IndGH(ρ) is irreducible iff:

1. ρ is irreducible, and
2. for all g ∈ G−H,

〈
χρg ,ResHg

(χρ)
〉
Hg

= 0

where Hg = gHg−1 ∩H, and ρg : Hg → GL(V ) is given by ρg(t) = ρ(g−1tg).

Proof: Consider the following sequence of equivalent statements:

IndGH(ρ) is irreducible iff
〈

IndGH(χρ), IndGH(χρ)
〉
G

= 1

iff
〈
χρ,ResH(IndGH(χρ)

〉
H

= 1

iff

〈
χρ,
∑
i

IndHHi
(χρi)

〉
H

= 1

iff
∑
i

〈ResHi(χρ), χρi〉Hi
= 1

iff 〈ResH(χρ), χρ〉H = 1 and 〈ResHi
(χρ), χρi〉Hi

= 0 ∀ i 6= 1

iff 〈χρ, χρ〉H = 1 and 〈ResHi(χρ), χρi〉Hi
= 0 ∀ i 6= 1

iff ρ is irreducible and
〈
ResHg

(χρ), χρg
〉
Hg

= 0 ∀ g ∈ G−H

Note that for the third line we chose g1, . . . , gn double coset representatives, and WLOG let g1 = 1. �
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Corollary 3.4.7. If H C G and ρ : G→ GL(V ) is a representation, then IndGH(ρ) is irreducible iff:

1. ρ is irreducible, and
2. 〈χρg , χρ〉 = 0 for all g ∈ G−H

Proof: Immediate from Mackey. �

Example 3.4.8. Let G = D4 =
〈
x, y : x2 = y4 = 1, xy = y−1x

〉
, the dihedral group of order 4, and

ρ : H → GL(C) be given by ρ(ya) = ia. Is IndGH(ρ) irreducible?

Since dim(ρ) = 1, ρ is irreducible. Any g ∈ G−H is g = xya, so gHg−1 = xHx, so Hg = Hx, and ρg = ρx

for all such g. Further,
ρx(ya) = ρ(xyax) = ρ(y−a) = i−a,

so ρx 6∼= ρ. Thus, since ρx is also irreducible, 〈χρx , χρ〉 = 0, so IndGH(ρ) is irreducible by Mackey.

This completes the mathematical portion of the course.
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