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1 Seminars

1.1 Background and Stiefel-Whitney classes

We will begin by stating the axioms of the Stiefel-Whitney class, and then proceeding to build up all the
knowledge required to understand them.

Definition 1.1. The Stiefel-Whitney characteristic class is defined by the following axioms.

A1. For each i ∈ Z>0, there is an element wi(ξ) ∈ Hi(B;Z2), called the ith Stiefel-Whitney class, with

w0(ξ) = 1

wi(ξ) = 0 if i > n and ξ is an Rn-bundle

A2. If there exists a bundle map from ξ to η with f : B(ξ)→ B(η), then wi(ξ) = f∗wi(η)
A3. If ξ and η are vector bundles over the same space, then

wk(ξ ⊕ η) =

k∑
i=0

wi(ξ) ^ wk−i(η)

A4. For the canonical line bundle over P1, w1(γ11) 6= 0.

Definition 1.2. A real vector bundle ξ over B consists of the following:

1. A topological space E = E(ξ) called the total space
2. A continuous map π : E → B called the projection map
3. For each b ∈ B, fhe fiber π−1(b) = Fb is a vector space

The condition of local triviality must also be satisfied: for each b ∈ B, there is a neighborhood U 3 b and a
homeomorphism h and an isomorphism ϕ, given by

h : U × Rn → π−1(U)
ϕ : Rn → π−1(b) for all b ∈ U

x 7→ h(b, x)

The pair (U, h) is termed a local coordinate system for ξ.

Definition 1.3. A vector bundle ξ is termed an n-plane bundle or an Rn-bundle if π−1(b) ∼= Rn for all
b ∈ B.

Note that the fiber function Fb must be a locally constant function of b.

Definition 1.4. Let ξ be a vector bundle with E
π−−→ B, and let B1 be an arbitrary topological space such

that f : B1 → B is continuous. Define the induced bundle or pullback bundle f∗ξ over B1 to consist of

1. the total space E1 = {(b1, e) ∈ B1 × E : f(b1) = π(e)}
2. the projection map π1 : E1 → B1 given by π1(b1, e) = b1
3. for each b1 ∈ B1, the fiber Fb1 is isomorphic by f̂ to Ff(b1)

Local triviality is satisfied by: for each b1 ∈ B, there is a neighborhood U1 = f−1(U), for U the neighborhood
of f(b1), and a homeomorphism

h1 : U1 × Rn → π−11 (U1)
(b, x) 7→ (b1, h(f(b1), x))

The local coordinate system for f∗ξ is (U1, h1). This information is contained within the following commu-
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tative diagram:

B1 B

E1 E

f

f̂

π1 π

It may be demonstrated that if ξ is a smooth bundle and f is smooth, then f∗ξ is a smooth bundle.

Definition 1.5. Let ξ, η be vector bundles of the same rank. A bundle map f : ξ → η is a map in the
category of vector bundles, as well as a continuous function f : E(ξ) → E(η) such that Fb(ξ) ∼= Fb′(η) as
vector spaces, via g.

So g carries each η-fiber isomorphically over to some ξ-fiber. Further, the bundle map induces a function of
base spaces f̄ : B(ξ)→ B(η).

Lemma 1.6. Let ξ, η be vector bundles and g : η → ξ a bundle map. Then η ∼= ḡ∗ξ.

Definition 1.7. Let ξ1, ξ2 be vector bundles over B. The Whitney sum of ξ1 and ξ2 is the induced bundle
d∗(ξ1 × ξ2), and is denoted by ξ1 ⊕ ξ2, where d : B → B × B is given by b 7→ (b, b). The isomorphism
Fb(ξ2 ⊕ ξ2) ∼= Fb(ξ1)⊕ Fb(ξ2) is canonical.

Definition 1.8. The canonical line bundle over RPn, denoted by γ1n, consists of

1. the total space E = {(±x, v) : v = λx, λ ∈ R} ⊂ RP 1 × Rn+1

2. the projection map π : E → RPn given by π(±x, v) = ±x
3. for each x ∈ RPn, the fiber Fx is associated to the line through x and −x in Rn+1

Local triviality is satisfied by choosing for each x ∈ RPn a neighborhood U ⊂ Sn small enough to contain
no pair of antipodal points. Let U1 be the image of U in RPn. Then the map

h : U1 × R → π−1(U1)
(±x, t) 7→ (±x, tx)

is a homeomorphism, so (U1, h) is a local coordinate system.

Now we have all the basic definitions to understand the Stiefel-Whitney class. Let us do some simple
examples.

Example 1.9. Calculate w(γ1n).
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1.2 Grassmannians

Definition 2.1. The Grassmannian manifoldGr(n, k) = Gn(Rn+k) = Gr(n, V ) is the set of all n-dimensional
vector subspaces of Rn (or Rn+k, or V , respectively).

Example 2.2. The real projective space may be expressed as Gr(1,Rk) = RP k−1.

Proposition 2.3. Gr(n,Rk) is a compact manifold.

Proof: (sketch) Let V,W ∈ Gr(n,Rk). If W is “close” to V (i.e. not orthogonal), then W is the graph of

a linear transformation fW : V (∼= Rn) → V ⊥(∼= Rk−n). Since fW is linear, there is an n × (k − n) matrix
representing fW . By injectively mapping subspaces to matrices, we get a natral isomorphism with Rn(k−n).

Construction and injectivity of the homeomorphism {W} → Hom(V, V ⊥), as well as compactness, are left
to the reader. Compactness may be proved by constructing a diffeomorphism

Gr(n,Rk) ∼= O(k)
/

[O(n)×O(k − n)]

�

Definition 2.4. The tautological vector bundle (or canonical vector bundle) γn(Rk) over Gr(n,Rk) consists
of

1. the total space E = {(n-dim. vec. subsp. of Rx, vector in that subsp.)}
2. the projection map π : E → Gr(n,Rk) defined by π(X,x) = X
3. fibers FX with vec. sp. structure t1(X,x1) + t2(X,x2) = (X, t1x1 + t2, x2)

The triviality condition is satisfied by taking each X ∈ Gr(n,Rk), and letting U = {Y : Y ∩X⊥ = 0} ⊂
Gr(n,Rk), and defining a homeomorphism h by:

h : U ×X → π−1(U)
(Y, x) 7→ (Y, y) such that projX(y) = x

Observe the following inclusion, which holds as Rk ⊂ Rk+1:

Gr(n,Rk) ↪→ Gr(n,Rk+1)

By taking the limit of these inclusions, as k →∞, we get a new object.

Definition 2.5. The infinite Grassmannian manifold Gr(n) = GRn = Gr(n,R∞) is the set of all n-
dimensional vector subspaces of R∞.

As a set, Gr(n) =
⋃
k>n

Gr(n,Rk), which is a direct limit. Let us consider the construction of direct limits.

For a system (Gr(n,Rk), ιk`) as below for all ` > k, the direct limit of the system is the object Gr(n),
equipped with maps ιk, ι` such that ιk = ι` ◦ ιk`. Further, if A is any other object with maps ϕk, ϕ` as in
the diagram below, then there exists a unique map ϕ such that ϕ` = ϕ ◦ ι`.

Gr(n,R`)

Gr(n,Rk)

Gr(n) Aιk`

ιk

ι`

ϕk

ϕ`

ϕ
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What is the topology on Gr(n)? We take it to be the largest possible topology:

U ⊂ Gr(n) is open/closed ⇐⇒ (U ∩Gr(n,Rk)) ⊂ Gr(n, k) is open/closed for all k > n

Now let’s consider what the tautological vector bundle over Gr(n) looks like.

Definition 2.6. The universal vector bundle γn over Gr(n) has the exact same structure as γn(Rk), except
R∞ is used instead of Rk.

Definition 2.7. A paracompact space is a Hausdorff space such that every open cover has a locally finite
open refinement.

This means that every point has an open neighborhood that is in finitely many elements of the refined cover.

Example 2.8. Every metric space is paracompact.

Example 2.9. Every manifold (space that is locally Euclidean) that is Hausdorff and has a countable
topological basis in paracompact.

Now that we have paracompactness, we can understand the proofs of the next two theorems (although
they are presented without proofs).

Theorem 2.10. For an Rn-bundle ξ over B paracompact, there exists a bundle map ξ → γn.

Theorem 2.11. Any two bundle maps f, g from an Rn bundle ξ to γn are bundle-homotopic.

Definition 2.12. Two bundle maps f, g : ξ → η are bundle-homotopic if there exists a continuous map

h : [0, 1]× E(ξ)→ E(η)

that is continous in both variables, with h0 = f , h1 = g. Moreover, ht : E(ξ) → E(η) is a bundle map for
all t ∈ [0, 1].

These two theorems imply the following:

Corollary 2.13. Any Rn bundle ξ over B paracompact determines a homotopy class of maps f̄ξ : B →
Gr(n).

Proof: Given any bundle map f : ξ → γn, let f̄ be the induced map of base spaces. To see that any other

bundle map g : ξ → γn will have an induced map homotopic to f̄ξ, consider the folowing commutative
diagram.

B Gr(n)

E(ξ) E(γn)

f̄ , ḡ

πξ πγ

f, g

Given a homotopy h between f and g, we may construct a homotopy h̄ by

h̄ : [0, 1]×B → Gr(n)
h̄t(b) = (πγ ◦ ht)(Fb) ∀ b ∈ B, t ∈ [0, 1]

Hence f̄ is homotopic to ḡ, and they are in the same class. �

Definition 2.14. Let A be a coefficient group or ring, and choose c ∈ Hi(Gr(n);A) and a vector bundle ξ.
Then c(ξ) = f̄∗ξ c ∈ Hi(B,A) is termed the characteristic cohomolgy class (or simply characteristic class) of
ξ determined by c.
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1.3 The CW-structure of Gr(n)

We begin with a motivating theorem.

Theorem 3.1. The space Gr(n,Rk) is a CW-complex with Schubert cells e(σ), for k finite and in the direct
limit k →∞.

To understand this theorem, we need to define what Schubert cells are, and that they actually are cells.
We begin by recalling the inclusion of spaces considered proviously:

R0 ⊂ R1 ⊂ · · · ⊂ Rn ⊂ · · · ⊂ Rk

=

{(v1, . . . , vn, 0, . . . , 0) : vi ∈ R}

For each n-dimensional vector subspace V ⊂ Rk, there exists a sequence of integers

0 = dim(V ∩ R0) 6 dim(V ∩ R1) 6 · · · 6 dim(V ∩ Rk) = n

with the property that dim(V ∩Ri+1)− dim(V ∩Ri) 6 1 for all i. This property can be seen by considering
the short exact sequence

0 V ∩ Ri V ∩ Ri+1 X 0
ι πi+1

Here ι is the standard inclusion map, and πi+1 is the projection of the (i+ 1)th coordinate of the preceding
space onto R. We note the following:

Im(ι) = V ∩ Ri =⇒ X ∼= (V ∩ Ri+1)/(V ∩ Ri)
ker(πi+1) = V ∩ Ri =⇒ dim(X) = dim(V ∩ Ri+1)− dim(V ∩ Ri)

1 or 0 = dim(V ∩ Ri+1)− dim(V ∩ Ri)

In the case that dim(V ∩ Ri) = dim(V ∩ Ri+1), then X = 0, and πi+1 is the zero map. Otherwise, it must
be that X = R, and so dim(V ∩ Ri+1)− dim(V ∩ Ri) = 1.

Let us now introduce some necessary definitions.

Definition 3.2. An n-frame in Rk is a linearly independent set S ⊂ Rk with |S| = n.

Definition 3.3. The Stiefel manifold Vn(Rk) ⊂ (Rk)×n is the collection of all n-frames in Rk. The manifold
V on (Rk) is the collection of all orthonormal frames in Rk.

Definition 3.4. The Schubert symbol σ = (σ1, . . . , σn) ∈ Zn+ is a sequence of positive integers that satisfies

1 6 σ1 6 σ2 6 · · · 6 σn 6 k

The Schubert cell is defined to be the set

e(σ) = {V ∈ Gr(n,Rk) : dim(V ∩ Rσi)− dim(V ∩ Rσi−1) = 1}

Note that for each i, dim(V ∩ Ri) is the same for all V ∈ e(σ). Moreover, we note that each V ∈ Gr(n,Rk)
lives in exactly one of the

(
k
n

)
sets e(σ).

Definition 3.5. Let Hn denote the open half-space in Rk given by

Hn = {(x1, . . . , xn, 0, . . . , 0) ∈ Rk : xn > 0}

Note that for V ∈ Gr(n), V ∈ e(σ) iff there exists a basis {v1, . . . , vn} of V with vi ∈ Hσi for all i.
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Lemma 3.6. Each n-plane V ∈ e(σ) has a unique orthonormal basis (v1, . . . , vn) ∈ Hσ1 × · · · ×Hσn .

Proof: The proof works by induction on n. For the base case n = 1, we have v1 ∈ V ∩ Rσ1 . This is a
1-dimensional space, and the vector must be normal and have positive entries. This completely defines the
vector v1.

For vi ∈ V ∩ Rσi , we have that the space is i-dimensional, and all the vectors vj for 1 6 j < i have been
defined as desired. As vi is orthogonal to all vj for 1 6 j < i, and it is normal with positive entries, we have
a completely defined vector. �

We now will show that the Schubert cells are actually cells.

Definition 3.7. Define the following objects:

e(σ) = cl(e(σ))

e′(σ) = V on (Rk) ∩ (Hσ1 × · · · ×Hσn)

e′(σ) = V on (Rk) ∩ (cl(Hσ1)× · · · × cl(Hσn))

The object e(σ) is called the Schubert variety. The object e′(σ) consists of orthonormal n-frames in Rk with
the ith coordinate in Hσi for all i.

Lemma 3.8.
1. e(σ) is a closed cell of dimension

∑n
i=1(σi − i) with int(e′(σ)) = e′(σ)

2. There exists a homeomorphism
q : e′(σ) → e(σ)

e′(σ) → e(σ)

Proof: Only a sketch of the proof is provided. This is done by induction on n. For n = 1, we observe that

e′(σ1) =
{
x1 = (x11, x12, . . . , x1σ1

, 0, . . . , ) :
∑

x21i = 1, x1σ1
> 0
}

= (closed hemisphere of dimension σi − 1)

∼= Dσi−1

= (cell of dimension σi − 1)

For the inductive case, let T (u, v) be the unique map that rotates Rk so that u goes to v, and everything
orthogonal to both u and v stays fixed. Let

bi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Hσi ⊂ Rk

where the 1 is in the ith position. For any n-fram (x1, . . . , xn), define the map

T = T (bn, xn) ◦ T (bn−1, xn−1) ◦ · · · ◦ T (b1, x1)

So bi 7→ xi by T for all i = 1, . . . , n. Now, for some σi+1 > σi, we let

D = {u ∈ cl(Hσi+1) : bi · u = 0 ∀ i}
= (the closed hemisphere of dimension σn+1 − n− 1)

∼= Dσn+1−(n+1)

= (cell of dimension σn+1 − (n+ 1))

Now we define a homeomrphism

q : e′(σ1, . . . , σn)×D → e′(σ1, . . . , σn+1)
((x1, . . . , xn), u) 7→ (x1, . . . , xn, Tu)

This maps also works for e′(σ)→ e(σ). �

With the developed tools, we may now prove Theorem 3.1. Let us restate it:
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Theorem 3.1. The space Gr(n,Rk) is a CW-complex with Schubert cells e(σ), for k finite and in the direct
limit k →∞.

Proof: It must be shown that the boundary of a cell e(σ) lies in a cell e(τ) of a lower dimension. The
boundary of e(σ) is e(σ)− e(σ) = q(e′(σ))− e(σ) by the previous theorem.

Then note that an n-plane V in the boundary has an orthonormal basis {v1, . . . , vn} with vi ∈ Rσi . As
V 6∈ e(σ), there is at least one vi ∈ Rσi−1 (all the other vi ∈ Rσi). So then the Schubert symbol (τ1, . . . , τn)
associated with V has τi < σi, so dim(τ) < dim(σ).

Hence Gr(n,Rk) is a CW-complex. Similarly, Gr(n) is a CW-complex, as V ∈ Gr(n,Rk) for some finite k.
In addition, the topology on Gr(n) is the direct limit of the topology on Gr(n,Rk). �

To conclude, we will introduce orientation.

Definition 3.7. An orientation of a real vector space V is an equivalence class of bases. Two ordered bases
are equivalent iff the change of basis matrix has positive determinant.

There are clearly only two such equivalence classes.

Remark 3.8. A choice of orientation for V corresponds to a choice of one of two possible generators of the
reduced homology Hn(V, V0;Z), where V0 is the set of non-zero vectors of V .

In the next lecture, we will discuss the Chern class, which deals with bundles that have a natural
orientation.
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1.4 Chern classes: Part 1

Last lecture we ended on orientation. Let’s deifne orientation on a fiber bundle.

Definition 4.1. Let ξ be a Rn-bundle. A pre-orientation on ξ is a choice of orientation on each fiber Fb. A
pre-orientation is an orientation if for each b ∈ B there exists an open neighborhood U 3 b with trivialization
h : π−1(U)→ U × Rn such that the restriction h|Fb

: Fb → b× Rn preserves orientation.

The space Rn in the image of h is given the orientation induced by the standard basis.

We now introduce complex bundles and bundles related to them, which will be used in the definition of
the Chern classes.

Definition 4.2. A complex vector bundle ω of complex dimension n (a Cn-bundle) over B consists of

1. the total space E
2. the projection map π : E → B
3. for each b ∈ B, fhe fiber π−1(b) = Fb has a complex vector space structure

Local triviality is satisfied by stating that for all b ∈ B, there exists an open neighberhood U 3 b in B such
that π−1(U) ∼= U × Cn, where ∼= is homeomorphism, and π−1(b) is mapped complex linearly onto b× Cn.

Definition 4.3. Given a Cn-bundle ω, the underlying R2n-bundle ωR has the structure of ω, except that
each fiber has the structure of a real vector space, and π−1(U) ∼= U × R2n.

Now we are ready to introducethe Chern class. The Euler class is used in the definition, but the exposition
of the Euler class is left for a later time.

Definition 4.4. Let ω be a Cn-bundle. The Chern classes ci(ω) ∈ H2i(B;Z) are defined by induction on
the complex dimension n of ω as follows:

· i < n : ci(ω) = (π∗0)−1ci(ω0)
· i = n: ci(ω) = e(ωR)
· i > n: ci(ω) = 0

The formal sum c(ω) = 1 + c1(ω) + · · ·+ cn(ω) is termed the total Chern class.

Remark 4.5. The bundle ω0 indicated above is the bundle that has E0, the set of all non-zero vectors in
E, as its base space. The relation between this bundle and ω is demonstrated in the following diagram:

B

E

E0 Xπ

ι

π ◦ ι

π0
ω

ω0

E0 = {(p, vp) : p ∈ B, vp ∈ Fb}

X = {(q, vq) : q = (p, vp) ∈ E0, vq ∈ Fq/Cvp}

This also shows where the map π0 is coming from. The induced map on cohomology, π∗0 , is used in the
following theorem.

Theorem 4.6. [Gysin]
Let ξ be an oriented Rn-bundle. Then there exists an exact sequence, with coefficients over Z, given by:

· · · Hi(B) Hi+n(B) Hi+n(E0) Hi+1(B) · · ·
^ e(ξ) π∗0 ^ e(ξ)

The proof of this theorem is not presented here. In may be found in Milnor and Stasheff, section 12.
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Remark 4.7. It still remains to show that the inverse of π∗0 is well-defined. We do this by showing that
Hi(B) ∼= Hi+1(B) ∼= 0 for −2n 6 i < 0.

Remark 4.8. Some facts about the Chern classes:
· If g : ω → ω′ is a bundle map, then c(ω) = f∗c(ω′) for f : B → B′ induced by g
· If εn is the trivial Cn bundle over B, then c(ω ⊕ εn) = c(ω)

Example 4.9. Consider CPn = Gr(1,Cn+1) = the base space of the complex line bundle γ1, a 1-dimensional
bundle. Since it is one dimensional, c1(γ1) = e(γ1). This allows us to write the Gysin sequence as:

· · · Hi(E0) Hi(CPn) Hi+2(CPn) Hi+2(E0) Hi+1(CPn) · · ·
^ c1(γ1) π∗0

Consider the space E0, which may be described as:

E0 = {(line through origin in Cn+1, non-zero vector in that line)} ∼= Cn+1 \ {0}

As Cn+1 looks like R2n+2, it follows that Cn+1 \ {0} has the same homotopy type as S2n+1. For this sphere,
we know that

Hi(Si;Z) =

{
Z if i = 0, 2n+ 1

0 else

This allows us to simplify the Gysin sequence above, as

0 Hi(CPn) Hi+2(CPn) 0
^ c1(γ1)

for all 0 6 i 6 2n − 2, so the two indicated groups are isomorphic for all such i. Since CPn is compact,
connected and orientable, its zeroth cohomology class is Z, so

Z ∼= H0(CPn) ∼= H2(CPn) ∼= · · · ∼= H2n(CPn)

From the cup product map, we have that H2i is generated by c1(γ1)i. Further, by adjusting the indeces of
the Gysin sequence, we get a similar equivalence for the odd groups:

0 ∼= H−1(CPn) ∼= H1(CPn) ∼= · · · ∼= H2n−1(CPn)

In the next lecture, we will discuss some interesting properties of the Chern classes.

10



1.5 Chern classes: Part 2

This lecture will be concerned with proving the product theorem, namely, that c(ω ⊕ φ) = c(ω)c(φ) for
ω, φ complex bundles over the same B paracompact. Before we can prove that, we need some auxiliary
statements. Compare the first with Theorem 2.10.

Lemma 5.1. Let ω be a Cn-bundle over B paracompact. Then there exists a bundle map ω → γn over
Gr(n,C∞) = Gr(n).

The proof to this is much the same as the proof to 2.10, and so is omitted here.

Lemma 5.2. The cohomology ringH•(Gr(n);Z) is a polynomial ring over Z generated by c1(γn), . . . , cn(γn).

The proof to this is quite long. The interested reader is reffered to Theorem 14.5 in [2].

Lemma 5.3. Let ω over B be a complex bundle and ε the trivial Cn-bundle over B. Then c(ω⊕ ε) = c(ω).

The proof to this is not as long, but is still omitted. We now move on to proving a statement.

Lemma 5.4. There exists a unique polynomial pm,n ∈ Z[c1, . . . , cm, c
′
1, . . . , c

′
n] so that for every Cm-bundle

ω and Cn-bundle φ, both over B paracompact:

c(ω ⊕ φ) = pm,n(c1(ω), . . . , cm(ω), c1(φ), . . . , cn(φ))

Proof: Recall that we have the canonical vector bundles γm, γn over Gr(m) and Gr(n), respectively. So let
a new base space be Gr(m)×Gr(n). We get new bundles from maps induced by the two projections to each
factor of this space:

π1 : Gr(m)×Gr(n)→ Gr(m) induces π∗1 : γm → γm1
π2 : Gr(m)×Gr(n)→ Gr(n) induces π∗2 : γn → γn2

Lemma 5.1 guarantees the existence of bundle maps f1 and f2 as below. We will first prove this theorem for
bundles γm and γn, and then extend the result.

ω γm γm1
f1 π∗1

φ γn γn2
f2 π∗2

So γm1 and γn2 are both bundles over Gr(m)×Gr(n). Hence the Whitney sum bundle γm1 ⊕ γn1 is isomorphic
to the bundle γm × γn, as the fibers are Fm × Fn ∼= Fm ⊕ Fn.

Consider the cohomology cross product (see Definition 3.2 in Section 2.3) given by

× : Hk(Gr(m);Z)⊗Z H
`(Gr(n);Z) → Hk+`(Gr(m)×Gr(n);Z)

a⊗Z b 7→ π∗1(a) ^ π∗2(b)

The fact that × is actually an isomorphism follows from the Künneth fomula (Theorem 3.3 in Section 2.3).
By Lemma 5.2, the space Hk+`(Gr(m)×Gr(n);Z) is generated by

{π∗1ci(γm) = ci(γ
m
1 ) : 1 6 i 6 m} ∪ {π∗2cj(γn) = cj(γ

n
2 ) : 1 6 j 6 n}

Again using Lemma 5.2, we have that the total Chern class of γm1 ⊕ γn2 is given by the unique polynomial

c(γm1 ⊕ γn2 ) ∈ Z[c1(γm1 ), . . . , cm(γm1 ), c1(γn2 ), . . . , cn(γn2 )]
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Now let us extend this result. Let ω be a Cm-bundle and φ a Cn-bundle, both over B paracompact. By
Theorem 5.1, there exist maps f : B → Gr(m) and g : B → Gr(n) that induce bundle maps f∗ and g∗, with
f∗(γm) ∼= ω and g∗(γn) ∼= φ. Define a map

h : B → Gr(m)×Gr(n)
b 7→ (f(b), g(b))

This gives a commutative diagram:

Gr(m)×Gr(n)

B

Gr(m) Gr(n)

π1 π2

f g

h

Therefore h induces a bundle map h∗ with h∗(γm1 ) ∼= ω and h∗(γn2 ) ∼= φ. By the axioms of Chern classes
(and characteristic classes in general), the total class of ω ⊕ φ is given by

c(ω ⊕ φ) = h∗c(γm1 ⊕ γn2 ) ∈ Z[h∗(c1(γm1 )), . . . , h∗(cm(γm1 )), h∗(c1(γn2 )), . . . , h∗(cn(γn2 ))]

= Z[c1(h∗(γm1 )), . . . , cm(h∗(γm1 )), c1(h∗(γn2 )), . . . , cn(h∗(γn2 ))]

= Z[c1(ω), . . . , cm(ω), c1(φ), . . . , cn(φ)]

This concludes the proof. �

Before we begin the main proof, recall that a trivial bundle over B has the whole space B as a neighbor-
hood for every local coordinate system.

Theorem 5.5. Let ω be a Cn-bundle and φ a Cn bundle, both over B. Then c(ω ⊕ φ) = c(ω)c(φ).

Proof: As previously, we will prove this for canonical vector bundles γm, γn and extend to the general case.

The proof will proceed by induction on m+n. The base case is immediate, so suppose that c(γm−1⊕ γn) =
c(γm−1)c(γn), so

c(γm−1 ⊕ γn) = (1 + c1(γm−1) + · · ·+ cm−1(γm−1))(1 + c1(γn) + · · ·+ cn(γn)) (1)

Let ε be the trivial line bundle over Gr(m−1), and let γm−1⊕ε and γn be bundles over Gr(m−1)×Gr(n).
By Lemma 5.4, we have that

c(γm−1 ⊕ ε⊕ γn) = pm,n(c1(γm−1 ⊕ ε), . . . , cm(γm−1 ⊕ ε), c1(γn), . . . , cn(γn))

By Lemma 5.3, we have that ci(γ
m−1 ⊕ ε) = ci(γ

m−1) for all i, so

c(γm−1 ⊕ γn) = c(γm−1 ⊕ ε⊕ γn) = pm,n(c1(γm−1), . . . , cm−1(γm−1), 0, c1(γn), . . . , cn(γn)) (2)

For ease of notation, set ci = ci(γ
m−1) and c′j = cj(γ

n) for all i, j. Compare equations (1) and (2) in this
new notation for

pm,n(c1, . . . , cm−1, 0, c
′
1, . . . , c

′
n) = (1 + c1 + · · ·+ cm−1)(1 + c′1 + · · ·+ c′n)

Let cm be a new indeterminate. Then in Z[c1, . . . , cm−1, cm, c
′
1, . . . , c

′
n] we have that

pm,n(c1, . . . , cm−1, cm, c
′
1, . . . , c

′
n) ≡ (1 + c1 + · · ·+ cm−1 + cm)(1 + c′1 + · · ·+ c′n) (mod cm)
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Repeat the inductive step with c(γm⊕γn−1) to get that, for some new indeterminate c′n, in Z[c1, . . . , cm, c
′
1, . . . , c

′
n−1, c

′
n],

pm,n(c1, . . . , cm, c
′
1, . . . , c

′
n−1, c

′
n) ≡ (1 + c1 + · · ·+ cm)(1 + c′1 + · · ·+ c′n−1 + c′n) (mod c′n)

The fact that cm has been defined from the beginning here does not invalidate the first congruence, as it is
presented modulo cm. Note that Z[c1, . . . , cm−1, cm, c

′
1, . . . , c

′
n] is a unique factorization domain, so

pm,n(c1, . . . , cm, c
′
1, . . . , c

′
n) ≡ (1 + c1 + · · ·+ cm)(1 + c′1 + · · ·+ c′n) (mod cmc

′
n)

=⇒ pm,n(c1, . . . , cm, c
′
1, . . . , c

′
n) = (1 + c1 + · · ·+ cm)(1 + c′1 + · · ·+ c′n) + qcmc

′
n

for some q ∈ Z[c1, . . . , cm−1, cm, c
′
1, . . . , c

′
n]. However, dim(q) = 0, as otherwise we would have ci(γ

m−1⊕ ε⊕
γn) 6= 0 for some i > 2(m+ n), contradicting the definition of the Chern classes. So q is an integer. By the
uniqueness in Lemma 5.4, we have that

c(γm ⊕ γn) = pm,n(c1, . . . , cm, c
′
1, . . . , c

′
n)

this proof is left unfinished
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2 Additional material

2.1 Topology

Definition 1.1. Let ξ be a fiber bundle with projection map π : E → B. Then a section of ξ is a continous
map s : B → E such that for all b ∈ B, π(s(b)) = b.

2.2 Cellular and simplicial homology

The following definition is taken nearly verbatim from [3], page 118.

Definition 2.1. Let X be a topological space. Then X is termed a CW-complex if

X =

∞⋃
i=1

Xi where

X0 = a discrete space

Xi+1 = Xi ∪ϕi

( ⊔
α∈Ai

Di+1
α

)
for ϕi :

⊔
α∈Ai

∂Di+1
α → Xi continuous

The object Di is the closed unit i-disk, with Di ⊂ Xi termed the closed cell of dimension i, and int(Di) ⊂ Xi

termed the open cell of dimension i. The following conditions must also be satisfied:

1. each closed cell intersects finitely many open cells
2. S ⊂ X is closed if and only if S ∩Di

α is closed for all α ∈ Ai and i = 1, 2, . . .

Definition 2.2. A simplex is

Definition 2.3. relative homology

Suggested reading: [3]

2.3 Cohomology

Definition 3.1. The cup product is a product on cocycles, the elements of cohomology groups.

cp ∈ Cp, cq ∈ Cq =⇒ cp ^ cq ∈ Cp+q

〈cp ^ cq, (v0, . . . , vp+q)〉 = 〈cp, (v0, . . . , vp)〉 · 〈cq, (vp, . . . , vp+q)〉

Definition 3.2. Let X,Y be topological spaces with natural projection maps:

X × Y π1−−−−→ X X × Y π2−−−−→ Y

These maps induce homomorphisms on the respective cochains groups over the base ring R:

C∗(X;R)
π∗1−−−−→ C∗(X × Y,R) C∗(Y ;R)

π∗2−−−−→ C∗(X × Y,R)

Define the cochain cross product1 × on Ck(X;R)⊗R C`(Y ;R) by

Ck(X;R)⊗R C`(Y ;R) Ck(X × Y ;R)⊗R C`(X × Y ;R) Ck+`(X × Y ;R)
π∗1 ⊗ π∗2 ^

×

We see that, given a k-cocycle ϕ : Ck(X)→ R and an `-cocycle ψ : C`(X)→ R, the action is

× : ϕ⊗ ψ 7→ π∗1(ϕ) ^ π∗2(ψ)

The cross product may be extended to the cohomology groups H∗(X;R) and H∗(Y ;R) in a canonical way.

Theorem 3.3. [Künneth]
Let X, Y be topological spaces.

Suggested reading: [4]

1see http://folk.uio.no/rognes/kurs/mat4540h11/at2.pdf, page 44 for the source of this definition
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