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Abstract

Chern’s characteristic class may be defined by several different ways,

including algebraic topology, differential geometry, and sheaf theory. All

these approaches are presented, with the main goal to show that even

though the definitions lie in different spaces, they all satisfy the Chern class

axioms and are isomorphic by various theorems. To reach this goal, strong

background machinery is constructed, including the complex Grassmannian

as a CW-complex, a detailed setup for the splitting principle, and a thorough

proof of the Chern–Weil theorem.

Kopsavilkums

Černa harakteristiskās klases var definēt vairākos veidos, tostarp ar r̄ıkiem

no algebriskās topoloǧijas, diferenciālās ǧeometrijas un kūlu (jeb sheaf) teori-

jas. Galvenais projekta mērķis ir pasniegt š̄ıs atšķir̄ıgās defin̄ıcijas un pierād̄ıt,

ka apmierinot ı̄pašās Černa klašu aksiomas, defin̄ıcijas dod vienādus objek-

tus. Lai nonāktu l̄ıdz šim mērķim, dažādas struktūras un mehānismi tiek

konstruēti, tostarp kompleksais Grasmaniāns, pamati šķeľsanās principam un

detalizēts pierād̄ıjums Černa–Veja teorēmai.
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1 Background, motivation, and layout

Characteristic classes provide information to aid in distinguishing vector bundles on manifolds. The
information encoded in the classes allows them to discern manifolds by their tangent bundles.

Characteristic classes were first introduced in the mid-1930s, independently by Eduard Stiefel and Hassler
Whitney, although without most of the homological language, which was being developed concurrently (see
Chapter IV in Part 3 of [Die89] for more history). The language of homology and Grassmannians was
introduced to these ideas in 1942 by Lev Pontrjagin, even though he only considered tangent bundles. By
1945, Shiing-Shen Chern had applied Pontrjagin’s ideas to complex vector bundles, using instead cohomology,
but it was only in 1952 when this structure was applied to arbitrary vector bundles, by Wu Wen Tsün.

However, the language used within to describe characteristic classes had already been developed by this
time. The cell structure of the Grassmannian described in §4.2 was first introduced by Charles Ehresmann
in the early 1930s, using the structure of Schubert symbols and cells, defined by Hermann Schubert in 1879.

This paper will not proceed historically, but by necessity - when new structures need to be used, they
will be defined, all subordinate to the goal of defining Chern classes from several different perspectives. Due
to the wide approach taken, some sections are rooted firmly in a specific mathematical area, while others
are abstract and wide-reaching. The three main subjects from which structures are taken are given in the
diagram below. Due to the varied approach, a broader, theory independent (sometimes category theoretic),
view is often taken to describe objects, which may be specialized to any one of the three subjects.

topological

Section 2.4
Section 3.1
Section 4.1
Section 4.2

differential geometric

Section 2
Section 4.3
Section 6.1

sheaf theoretic

Section 4.4

theory independent

Section 2.4
Section 3.2
Section 5.2
Section 5.3

Section 5.4 Section 5.4

A general knowledge of differential geometric and topological concepts is assumed, though the more
complicated relevant ones will be reviewed in the succeeding section. Most of the geometric definitions come
from [MS74], but notation is as in the (somewhat) more current [BT82] and [Huy05]. The proofs of several
theorems are given in sketch forms, though sources for complete justifications are always given.

Note: Every manifold is assumed to be connected and smooth, unless otherwise noted.

2 Auxiliary objects

2.1 Vector bundles

Definition 2.1.1. Let M be a topological manifold and K a field. A K-vector bundle over M is a triple
(E,M, π), usually denoted by just E, where

1. E is a topological space called the total space,
2. π : E →M is a continuous map called the projection map,
3. for each p ∈M , the fiber Ep := π−1(p) has a vector space structure, and
4. for each p ∈M , there exists a neighborhood U 3 p, a homeomorphism ϕ : π−1(U)→ U ×Kn so that

v ∈ π−1({p}) 7→ ϕ(p, v) ∈ Kn is a linear isomorphism (this is called the local triviality condition).

Given a cover {Uα}α∈I of M , a pair (Uα, ϕα) as in condition 4. is termed a local trivialization for (E,M, π).
Since Ep ∼= Kn for all p ∈M , the bundle E is called a K-vector bundle of rank n.

Let ϕα, ϕβ be homeomorphisms corresponding to local trivializations. Then the map ϕβ ◦ ϕ−1α is a
diffeomorphism of (Uα ∩ Uβ)×Kn onto itself such that (ϕβ ◦ ϕ−1α )(p, v) = (p, gαβ(p)v) for p ∈ Uα ∩ Uβ and
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gαβ(p) a linear isomorphism of Kn onto itself. That is, we have gαβ : Uα ∩ Uβ → GL(n,K). A general
scenario is described in the diagram below.

M

E

p q

Ep Eq

{   π−1(Uα)
π−1(Uβ)

q

Uβ ×Kn

(Uα ∩ Uβ)×Kn

p

Uα ×Kn

(Uα ∩ Uβ)×Kn

ϕα
ϕβ

(
idUα∩Uβ , gαβ

)
= ϕβ ◦ ϕ−1α


(Uα∩Uβ)×Kn

: (Uα ∩ Uβ)×Kn → (Uα ∩ Uβ)×Kn

The two curves above the thickened manifold M are “sections,” or smooth functions s : U → E such
that (π ◦ s)(u) = u for all u ∈ U . They are taken by ϕα and ϕβ , respectively, to constant sections (that is, s
is constant) on the bundles Uα ×Kr and Uβ ×Kr, respectively. Hence the “transition function” gαβ takes
one basis of a vector space to another basis, and so the collection of the gαβ is enough to uniquely describe
the whole vector bundle. Formally, we have the following definition:

Definition 2.1.2. Let E be a vector bundle over a manifold M . In the context of the diagram above, given
a cover (Uα, ϕα)α∈A of M by local trivializations of E, the maps gαβ : Uα ∩Uβ → GL(r,K), for all α, β ∈ A
with Uα ∩ Uβ 6= ∅ are called the transition functions for this cover by trivializations.

In this text, the field K is always R or C. Moreover, the fiber Ep may have more than just the structure
of a vector space, for example that of an algebra or a graded ring.

Often the expression “π : E →M” or “E
π−−→M” is used for (E,Mπ), or when the context supplies the

details, we just write E. There is no universal convention for which symbol to use when referencing a vector
bundle, though using just E is widely accepted. Older texts (such as [MS74]) refer to the triple (E,M, π) by
another symbol ξ, some write only the fiber Ep, or only the projection map π. Whichever notation is used,
some information is hidden.

Next we introduce some special bundles.

Definition 2.1.3.
· trivial bundle: Given a topological space M , the trivial bundle Kn over M is a K-vector bundle of rank

n with total space M ×Kn and projection map π(p, v) = p. The local triviality condition is satisfied by
U = M and ϕU = idπ−1(U) for all p ∈M .

· subbundle: Given a vector bundle π : E → M , a subbundle of E is a vector bundle τ : F → M such
that F is a submanifold of E and the fiber Fp = F ∩Ep has the vector space structure of a subspace of Ep.
Equivalently, π|F : F →M is the subbundle.

· tangent bundle: Given an n-dimensional manifold M , the tangent bundle TM is a real rank n vector
bundle given by TM =

⊔
p∈M TpM , for TpM the tangent space to M at p. The tangent space is the fiber,

so (TM)p = TpM .

· dual vector bundle: Given a K-vector bundle E of rank n over M , the dual vector bundle E∗ of E is the
vector bundle whose fibers are the dual vector spaces to the fibers of E. That is, E∗p = (Ep)

∗
= Hom(Ep,K).
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Definition 2.1.4. Let E be a K-vector bundle of rank n over M and f : N → M a continuous map. Let
F = {(q, e) ∈ N × E : f(q) = π(e)} be the total space of a bundle τ : F → N with projection map
τ(q, e) = q. Then F is called the pullback bundle or induced bundle of E by f . This relationship is denoted
by F = f∗E, and represented as in the commutative diagram below, with an induced map of total spaces
ψ(q, e) = e.

N M

F E

f

τ π

ψ

(2.1.1)

The pullback bundle is indeed a bundle, as the fiber in F over q, where f(q) = p, is given by Fq = Ep, and
the triviality condition around q ∈ N is satisfied by f−1(Up), with ϕF (q, e) = (q, ϕE(p, e)), so ϕF = f∗ϕE .

Definition 2.1.5. Let E
π−−→ M be a K-vector bundle of rank n and F

τ−−→ N a K-vector bundle of rank
m. A continuous map ψ : F → E that takes every fiber τ−1({q}) linearly isomorphically to another fiber
π−1({p}) is called a bundle map.

Given a bundle map ψ : F → E, a map between base spaces f : N → M may be defined by letting
f(q) = p whenever ψ(τ−1({q})) = π−1({p}), so that the diagram (2.1.1), with these new definitions, still
commutes. Hence every bundle map induces a pullback bundle.

Definition 2.1.6. Let E be a rank n vector bundle over M with transition functions gαβ , and F a rank m
vector bundle also over M with transition functions hαβ .
· direct sum of vector bundles: The direct sum, or Whitney sum, of E and F is the bundle E ⊕ F .

If π1 : E ⊕ F → E and π2 : E ⊕ F → F are bundle maps, then the transition functions of E ⊕ F are

gαβ ⊕ hαβ :=
[
π∗1gαβ 0

0 π∗2hαβ

]
.

· tensor product of vector bundles: The tensor product of E and F is the bundle E ⊗ F . The transition
functions of E ⊗ F are π∗1gαβ ⊗ π∗2hαβ .

· exterior product of vector bundles: The exterior product, or wedge product, of E and F is the bundle
E
∧
F . The transition functions of E

∧
F are the 2-forms gαβ ∧ hαβ .

· underlying real vector bundle: Given a complex rank n vector bundle E over M , the underlying real
vector bundle ER of E is the real rank 2n vector bundle over M whose fibers ER

p are the associated real
vector spaces (given by the restriction of scalars) of Ep.

· complexification of a vector bundle: Given a real rank n vector bundle E over M , the complexification
of E is the complex rank n vector bundle E ⊗C with fibers Ep ⊗R C.

Note that the complexification of the underlying real bundle of E is bundle isomorphic to the original
bundle E.

Definition 2.1.7. Let M be a differentiable manifold of dimension n. The complexified tangent bundle
π : TCM →M is the vector bundle TM ⊗C. Equivalently, it consists of

1. the total space TCM = {(p, vp) : p ∈M,vp ∈ TpM ⊗C},
2. the projection map π : TCM →M given by π(p, vp) = p,
3. fibers Ep ∼= Cn, with
4. local triviality satisfied by induced coordinate charts U⊗RC and induced homeomorphisms ϕ⊗C.

The complexified cotangent bundle T ∗CM = (TCM)∗ = (T ∗M) ⊗C is a vector bundle whose fibers are the
dual spaces, so (T ∗CM)p = (TCM)∗p.

Note that the complexified tangent bundle is the complexification of the tangent bundle.

3



2.2 Grassmannian manifolds

In this section we construct complex finite dimensional and infinite dimensional Grassmannian manifolds,
since characteristic classes are often first defined on vector bundles over these manifolds. When considering
real instead of complex vector bundles, a very simlar analysis may be used.

Definition 2.2.1. Let V be a complex vector space. The (complex) Grassmannian manifold Gk(V ) is the
set of all k-dimensional vector subspaces of V .

Most of the analysis will center around V = Cn and V = C∞. To describe the topology of the Grass-
mannian, we first introduce the (complex) Stiefel manifold Vk(Cn) ⊂ (Cn)k, defined as the set of all ordered
k-frames in Cn (that is, ordered sets of k linearly independent vectors in Cn). The Stiefel manifold is an
open subset of Cnk in the Euclidean topology. Let ∼ be the equivalence relation on Vk(Cn) such that
(x1, . . . , xk) ∼ (y1, . . . , yk) if and only if span{x1, . . . , xk} = span{y1, . . . , yk}. It follows directly that

Gk(Cn) ∼= Vk(Cn)/ ∼, (2.2.1)

and we give the Grassmannian the quotient topology of Vk(Cn). Given this topology, Gk(Cn) turns out to
be a compact manifold.

Proposition 2.2.2. (adapted from Lemma 5.1 in [MS74]) The space Gk(Cn) is a compact topological
manifold.

Proof: First we show this space is Hausdorff (that is, satisfies the conditions of the T2 axiom). However,
instead of showing that X,Y ∈ Gk(Cn) have disjoint neighborhoods, we show that there exists a continuous
function f : Gk(Cn) → [0, 1] such that f(X) = 0 and f(Y ) = 1. The existence of such a function satisfies
the conditions of the T21/2 axiom, from which the Hausdorff property follows immediately. So let (x1, . . . , xk)
be an ordered basis for X, and define a map ϕ = ϕ2 ◦ ϕ1 by

ϕ1 : Vk(Cn) →
∧k ×∧k

(y1, . . . , yk) 7→ (x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk)

and

ϕ2 :
∧k ×∧k → R

(α, β) 7→ min

{ α

|α|
+

β

|β|

 , α

|α|
− β

|β|

} .
The composition of the two maps is independent of the choice of basis (x1, . . . , xk) made at the beginning
because any other basis (x′1, . . . , x

′
k) is related to the first basis through the wedge product, as x′1∧· · ·∧x′k =

λx1 ∧ · · · ∧ xk for some scalar λ. In fact, λ is the determinant of the change of basis matrix between these
two bases. The arguments are normalized by ϕ2 because λ has no effect on the image, up to a sign. Taking
the minimum of the two values takes away this effect, and so gives a well-defined map when passing to the
quotient (in the context of (2.2.2) below). The composition is continuous as the operations used are all
continuous. Then by the universal property of quotients, the map ϕ̂ is continuous and the diagram

Gk(Cn)

Vk(Cn)
∧k ×∧k Rϕ1 ϕ2

ϕ

ϕ̂

(2.2.2)

commutes. The image of ϕ in R is in [0,
√

2] by the definition of ϕ2, and hence is the same for ϕ̂. Set
f = ϕ̂/cY , for an appropriate normalizing constant cY ∈ [1,

√
2] (note that cY =

√
2 when Y ⊂ X⊥). The

map f fulfills the conditions of the T21/2 axiom, so Gk(Cn) is Hausdorff.
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Next we show that Gk(Cn) is locally Euclidean of dimension 2k(n− k), that is, that every X ∈ Gk(Cn)
has an open neighborhood Uk ∼= Ck(n−k). Let UX = {Y ∈ Gk(Cn) : Y ∩ X⊥ = {0}}. Then for each
Y ∈ UX , Y ⊕X⊥ = Cn. Define TY : X → X⊥ for every Y ∈ UX by setting

TY (x) = ProjX⊥ (ProjX |Y )
−1

(x).

Note whenever Y ∩X⊥ = {0}, there is a unique y ∈ Y such that x = ProjX(y), so TY is well-defined. The
decomposition Y ⊕X⊥ = Cn for any Y ∈ UX is given by x = y− x′, and is described in the diagram below.

X

X⊥ Y

x

x′
y

(2.2.3)

There is a continuous bijection between Y ∈ UX and linear transformations from X to X⊥. Let (x1, . . . , xk)
be an orthonormal basis of X and (x′1, . . . , x

′
n−k) be an orthonormal basis of X⊥. Then the bijection is given

by the composition of maps from the diagram

UX π−1(UX) Hom(X,X⊥).
π [ x1+Tx1 ··· xk+Txk ] 7−→T

Y 7→
(
x 7→ ProjX⊥ (ProjX |Y )

−1
(x)
)

(2.2.4)

The continuity of Hom(X,X⊥) → UX is clear, but the reverse is not. To show Y 7→ TY is continuous,
we go through several intermediate steps. First, we restrict to orthonormal k-frames in π−1(UX), and show
that on that subspace (y1, . . . , yk) 7→ Tspan{y1,...,yk} is continuous. Let P be the k × k matrix representing
ProjX |span{y1,...,yk}. Note that Pij = h(yi, xj), where h is the standard Hermitian inner product, given by

h(z, w) =
∑n
j=1 z

jwj for z = (z1, . . . , zn) and w = (w1, . . . , wn). So the map (y1, . . . , yk) 7→ P is continuous.

Recall that the entries of the matrix P−1 are rational functions in entries of the matrix P . It follows
immediately that the map (y1, . . . , yk) 7→ (P )−1 is continuous. The formula for (ProjX |span{y1,...,yk})−1 is∑k
i,j=1(P−1)ijh( · , xj)yi. Finally, the formula for Tspan{y1,...,yk} is then given by

n−k∑
`=1

k∑
i,j=1

h(yi, x
′
`)(P

−1)ijh( · , xj)x′`,

and (y1, . . . , yk) 7→ Tspan{y1,...,yk} is continuous in (y1, . . . , yk). However, all this was done with an orthonor-
mal basis, so we have only showed continuity on the set of orthonormal k-frames in π−1(UX). This is enough,
as UX has the quotient topology of Vk/ ∼, for ∼ as in equation (2.2.1). Hence we have continuity on all of
UX , and since X⊥ ∼= Cn−k, it now follows that

UX ∼= Hom(X,X⊥) ∼= Hom(Ck,Cn−k) ∼= Ck(n−k).

Therefore Gk(Cn) is locally Euclidean. The Grassmannian Gk(Cn) is second-countable because Vk(Cn) is
second-countable, and quotienting by an equivalence relation retains second-countability. To see that the
Stiefel manifold is second-countable, note that there are countably many tuples (a1 + ib1, . . . , ak + ibk), for
all aj and bj rational. The collection of balls of all positive rational radii centered at these points forms
a countable base of topology for Vk(Cn). Hence Gk(Cn) is a topological manifold of complex dimension
k(n− k).

For compactness, consider the orthonormal (complex) Stiefel manifold V ok (Cn) ⊂ (Cn)k, defined as the
set of all orthonormal ordered k-frames. That is, the set of ordered sets of k orthonormal vectors in Cn,
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with respect to the standard Hermitian inner product. Note that for any pair of V,W ∈ V ok (Cn), there
is a unitary transformation relating V to W . Indeed, let V = (v1, . . . , vk) and W = (w1, . . . , wk), with
E = (e1, . . . , en) the standard ordered basis. Let A,B ∈ U(n,C) be unitary matrices that take V,W ,
respectively, to (e1, . . . , ek). Then

V = A−1BW,

and A−1B is still unitary. Thus the action is transitive. Applying a unitary transformation to any V ∈
V ok (Cn), results in some other V ′ ∈ V ok (Cn), since the transformation rotates the basis vectors orthogonally.
A stabilizer of E is of the form

S =


1 0 0

. . .

0 1 0
0 0 ∗


} k rows

n− k rows

,

so the stabilizer subgroup of V ok (Cn) is U(n− k,C). Hence

V ok (Cn) ∼= U(n,C)/U(n− k,C). (2.2.5)

The space U(n,C) is compact and connected. The quotient of a compact space is still compact, so V ok (Cn)
is compact. Finally, take the composition ι : V ok (Cn) ↪→ Vk(Cn) → Gk(Cn) that takes an ordered k-frame
to the subspace it spans to get that ι(V ok (Cn)) = Gk(Cn) is compact. �

In fact, equation (2.2.1) now essentially says that Gk(Cn) ∼= V ok (Cn)/U(k,C), so applying equation
(2.2.5) we get that

Gk(Cn) ∼= U(n,C)/
(
U(k,C)× U(n− k,C)

)
.

Knowing that dim(U(n,C)) = n2, we immediately get that dim(Gk(Cn)) = 2k(n− k).

The finite-dimensional Grassmannian is used to motivate and define a more important space, which
results from taking the direct limit of Gk(Cn) as n → ∞. This new space is not a topological manifold,
since locally it does not look like Cn for any finite n. Formally, let C∞ := lim−→n

[Cn] =
⊕

n>1 C.

Definition 2.2.3. The infinite (complex) Grassmannian manifold Gr(k) = Gk(C∞) is the set of all k-
dimensional vector subspaces of C∞.

Writing Gk(C∞) as the union of Gk(Cn) for all n > k does not explain the topology on this space, so use
the direct limit construction. Take the natural inclusion maps ιnm : Gk(Cn)→ Gk(Cm) for all m > n ∈ Z>1

and define an equivalence relation ∼ such that X ∈ Gk(Cn) ∼ Y ∈ Gk(Cm) if and only if ιn`(X) = ιm`(Y ),
for ` = max{n,m}. Then

Gk(C∞) = lim−→
n>k

[Gk(Cn)] :=
⊔
n>k

Gk(Cn)

/
∼ .

From this construction, it follows that U ⊂ Gk(C∞) is open if and only if U ∩Gk(Cn) is open for all n > k.

2.3 Tautological bundles

There is a natural type of bundle associated to the Grassmannian, for which Gk(Cn) is the base space.

Definition 2.3.1. The tautological complex vector bundle γk(Cn) over Gk(Cn) consists of

1. the total space E = {(X,x) : x ∈ X ∈ Gk(Cn)}, topologized as a subspace of Gk(Cn)×Cn,
2. the projection map π : E → Gk(Cn) defined by π(X,x) = X,
3. fibers EX with the vector space structure of X, with
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4. local triviality satisfied by taking, for each X ∈ Gk(Cn), the same open neighborhood as in the proof
of Proposition 2.2.2 above, namely UX = {Y ∈ Gk(Cn) : Y ∩X⊥ = {0}} and defining a map ϕ by

ϕ : π−1(UX) → UX ×X,
(Y, y) 7→ (Y, ProjX |Y (y)).

This map is continuous. Since ϕ−1(Y, x) = (Y, (ProjX |Y )
−1

(x)) as in diagram (2.2.3), the map ϕ is indeed
a homeomorphism. The continuity of ϕ−1 follows as it’s two components are continuous, as described in the
discussion following (2.2.4).

Theorem 2.3.2. (adapted from Lemma 5.3 in [MS74]) Let E be a complex rank k bundle over a compact
topological manifold M with projection map π. Then there exists a bundle map ϕ : E → γk(CN ) for some
N ∈ N.

Proof: Since the n-dimensional manifold M is compact, there exists a cover U1, . . . , Ur of M so that each Ui
is contained within some local trivialization of E (so π|Ui : E|Ui → Ui is trivial for all i), and so that there
exists a cover V1, . . . , Vr of M with cl(Vi) ⊂ Ui for all i. To see why this is possible, see Appendix A. Next,
construct continuous maps

λi : M → [0, 1],

x 7→


1 if x ∈ cl(Vi),

0 if x 6∈ Ui,
αi(x) else,

for an appropriate continuous function αi, for all i. The graph of λi is as in the diagram below.

M

R

1

Vi

Ui

λi

Since each Ui is in some trivialization, there is an associated map hi : π−1(Ui) → Ck such that hi|π−1({p})
is linear for every p ∈ Ui. Define new maps

gi : E → Ck,

e 7→

{
0 if π(e) 6∈ Ui,
λi(π(e))hi(e) else.

for all i. The graph of gi is as in the diagram below.

E

Ck

π−1(Vi)

π−1(Ui)

gi
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This map gi is continuous and linear on each fiber π−1({p}) for every p ∈ Vi. Finally, define a function

ϕ : E → (Ck)r,
e 7→ (g1(e), . . . , gr(e)).

For N = kr, the map ϕ : E → γk(CN ) is continuous and induces a bundle map f(e) = ([ϕ(Eπ(e))], ϕ(e)).
Then f is injective on the fibers because because the maps gi are injective whenever gi( · ) = λi(π( · ))hi( · ),
since there is at least one hi injective on the fiber. By linearity and equality of ranks, f is an isomorphism
on fibers. �

Definition 2.3.3. The universal (complex) vector bundle γk over Gk(C∞) is defined to be the direct limit

γk := lim−→
n>k

[
γk(Cn)

]
.

The associated objects are defined similarly as for the tautological complex vector bundle in Definition
2.3.1, except with C∞ instead of Cn. However, to prove local triviality and that sets in the direct limit
topology are open, a short lemma, given by Lemma 5.4 in [MS74]. There is also a result similar to Theorem
2.3.2 for the universal bundle, proved using similar steps. The interested reader is directed to Section 5.8 in
[MS74], where this result is proven.

2.4 Cohomology

At the risk of alienating readers unversed in higher category theory, a very general view of cohomology
theories is presented below. The faint of heart may skip ahead to Definition 2.4.3, where the relevant
cohomology groups are introduced, and should keep in mind that without a decoration, Hn is any one of
Hn
S (singular cohomology group), Hn

dR (de Rham cohomology group), or Ȟn (Čech cohomology group).

The category C used below is either Top, which contains topological spaces as objects, or Diff, which
contains smooth manifolds as objects. In fact, both Top and Diff are (∞, 1)-categories.

Definition 2.4.1. Let X be an object in a category C. Broadly speaking, a cohomology theory on X is the
(∞, 0)-category C(X,A) of morphisms between X and A, for some other object A in C. Objects in C(X,A)
are cocycles c : X → A, and morphisms are coboundaries δ : c → c′. Two cocyles are termed cohomologous
if there is a coboundary between them.

The object C(X,A) may be viewed as the hom-space C(X,A), which is an ∞-groupoid. This definition
is a simplification of the vastly more general one in §2.4 of [NSS14] and a slight generalization of the more
concrete one in Chapter VII of [ES52]. In our context, there will always be an appropriate object An in C such
that there is a sequence of abelian groups Hn(X;R) = π0(C(X,An)). For example, when An = K(R,n), the
Eilenberg–MacLane space with only nontrivial homotopy group πn being R, we recover singular homology,
as

π0(Top(X,K(R,n))) = Hn
S (X;R).

For other relevant cohomology theories, a suitable choice of An always exists.

Definition 2.4.2. Let An be a suitable object in C for all n ∈ Z>0. If An is also an object of an ∞-loop
space (which it always will be in our context), then An has the structure of some ring R, where we assume
the same ring structure for all n. Then Hn(X;R) := π0(C(X,An)) is a group called the nth cohomology
group of X with coefficients in R, and

H∗(X;R) :=

∞⊕
n=0

Hn(X;R)

is called the cohomology ring of X with coefficients in R. Multiplication is defined by the cup product ^,
for which α ∈ Hn(X;R) and β ∈ Hm(X;R) imply that α ^ β ∈ Hn+m(X;R).
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Next we introduce the specific cohomology theories used, with definitions mainly coming from Chapter
5 in [Pra07] and Appendix A in [MS74]. The Čech cohomology theory will be also be used, in Section 4.4,
but because of the long setup, it is left until that section.

Definition 2.4.3. Let X be a topological space, R a commutative ring, and n ∈ N. Define the following
terms:

· n-simplex: the smallest convex set in Rn+1 containing n+ 1 points not all in a hyperplane, written ∆n.

· n-chain of X: a map σn : ∆n → X.

· nth chain group of X: the free R-module generated by all σn, written Cn(X).

· nth cochain group of X: group of all maps from n-simplices to R, written Cn(X) := Hom(Cn, R).

· cup product: the map ^: Cn(X)× Cm(X)→ Cn+m(X).

Definition 2.4.4. Let X be a topological space with cochain groups Cn = Cn(X), and R a commutative
ring. The nth singular cohomology group of X is the quotient

Hn
S (X;R) := ker(δ : Cn → Cn+1)/im(δ : Cn−1 → Cn),

: = : =

Zk Bk

where elements of Zk are called k-cocycles and elements of Bk are called k-coboundaries. The group operation
is the cup product. Given a subspace Y ⊂ X, let Cn(X,Y ) := Cn(X)/Cn(Y ) be the nth relative cochain
group. Then the nth relative cohomology of X with respect to Y is the quotient

Hn
S (X,Y ;R) := ker(δ : Cn(X,Y )→ Cn+1(X,Y ))/im(δ : Cn−1(X,Y )→ Cn(X,Y )).

The relative cohomology used most often here is Hn
S (E,E0; Z), where E0 represents the set of all non-zero

elements in the vector bundle E.

Definition 2.4.5. Let ω be a differential k-form on a manifold M and Ωk(M) the set of all differential
k-forms on M . Then ω is closed if dω = 0 and exact if ω = dη for some other form η on M . Then the kth
de Rahm cohomology group is

Hk
dR(M) = {ω ∈ Ωk(M) : ω is closed}

/
{ω ∈ Ωk(M) : ω is exact}.

The implicit ring R in de Rham cohomology theory is R = R.

3 Characteristic classes of vector bundles

In this section we introduce the main characteristic classes that will be discussed in the rest of the paper.
Broadly speaking, they are sequences of cohomology classes assigned to vector bundles. If the sequence is
finite, then the last element in the sequence is called the top class of the vector bundle.

3.1 The Euler class

First we present orientation on a vector space and extend it to orientation on a real vector bundle, by
consistently orienting the fibers of the bundle. Here, let M be a real topological manifold and π : E →M a
real rank n vector bundle.

Definition 3.1.1. An orientation of a vector space V is an equivalence class of bases. Two ordered bases
are equivalent if and only if the change of basis matrix has positive determinant. A pre-orientation on a
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vector bundle E is a choice of orientation on each fiber Ep. A pre-orientation on E is an orientation on E
if for each p ∈M there exists an open neighborhood U 3 p and a trivialization ϕ : π−1(U)→ U ×Rn such
that the restriction ϕ


Ep

: Ep → {p} ×Rn preserves orientation, with Rn given the standard orientation

(corresponding to the standard ordered basis). Finally, a bundle for which an orientation exists is called an
orientable bundle.

Note there are only two orientation equivalence classes on a vector space. Also observe that an orientation
on a vector bundle, if it exists, is continuous (though pre-orientations need not be continuous). Hence E is
orientable if and only if along every closed path on E there exists a continuous orientation.

3.1.1 Example: a non-orientable vector bundle on the torus

It is a well-known fact that the tangent bundle TM is orientable if and only if M is orientable as
a manifold. However, not all vector bundles on an orientable manifold M are orientable. Consider the
orientable space M = T 2, the two-dimensional torus

T 2 =

with coordinates (θ, ϕ) as described in the diagrams below.

x

z

on the plane y = 0

ϕa
y

x

on the plane z = 0

θ

b

Assume that the inner and outer radii (a and b, respectively) have been fixed. Locally, we may parametrize
T 2 by a function f of the two coordinates θ, ϕ, given by

f(θ, ϕ) =

(b+ a cos(ϕ)) cos(θ)
(b+ a cos(ϕ)) sin(θ)

a sin(ϕ)

 .

Then the tangent space at (θ, ϕ) is given by the span of dθf(θ, ϕ) and dϕf(θ, ϕ). By slightly modifying the
tangent bundle, another real rank 2 vector bundle π : E → M may be defined: take dθ,ϕf(θ, ϕ/2) instead
of dθ,ϕf(θ, ϕ) so that the tangent plane at (θ, ϕ) is the fiber at (θ, ϕ/2). Since the tangent plane at (θ, ϕ) is
defined irrespective of a and b, set a = 1 and b = 2. Then the fiber Eθ,ϕ = π−1((θ, ϕ)) is generated by the
2-tuple

(vθ,ϕ, wθ,ϕ) =

−(2 + cos(ϕ/2)) sin(θ)
(2 + cos(ϕ/2)) cos(θ)

0

 ,

− sin(ϕ/2) cos(θ)/2
− sin(ϕ/2) sin(θ)/2

cos(ϕ/2)/2

 . (3.1.1)

The vector bundle E is smooth because trigonometric functions are smooth, and because the vector spaces
at the endpoints of the two fundamental non-contractible paths (along curves that fix ϕ or fix θ) are the
same. Indeed, on the curve ϕ = 0, E gives the tangent planes of T 2, and on the curve θ = 0, E also gives
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the tangent planes of T 2, but the plane for ϕ is given at 2ϕ. Some snapshots (fibers at certain points) of E
are given in the diagrams below.

x

y

z

on the curve ϕ = 0

x

y

z

on the curve θ = 0

The diagram on the right gives some intuition why the bundle is not orientable. To prove this intuition is
correct, we use the notion of a section of the vector bundle E, which is a continuous function s : U → E
such that (π ◦ s)(u) = u for all u ∈ U ⊂M .

Suppose that E is orientable, which means that there exists a non-zero section ω of
∧2

E. Let γθ :
[0, 1]→ T 2 be a path on T 2, given by γθ(t) = f(θ, 2πt) for any fixed θ. Then γ∗θω is a nowhere-zero section
of the pullback bundle γ∗θE, described in the diagram below.

[0, 1] T 2

γ∗θE E

γ

Then vθ,ϕ ∧ wθ,ϕ is another nowhere-zero section of γ∗θE, and so is vγθ(t) ∧ wγθ(t) for all t ∈ [0, 1]. Since the
fibers are 1-dimensional, there is always some function χ such that χω = ζ, for any section ζ. Hence define
a map

F : [0, 1] → R \ {0},
t 7→ χt,

where χtω = vγθ(t) ∧ wγθ(t).

Next note that

(
vγθ(0), wγθ(0)

)
=

3

− sin(θ)
cos(θ)

0

 ,
1

2

0
0
1

 and
(
vγθ(1), wγθ(1)

)
=

− sin(θ)
cos(θ)

0

 ,
1

2

 0
0
−1

 .

Since the path γθ(t) starts and ends at the same point, we have that F (0) = −F (1). However, since F is
continuous, it follows that either ω is not a nowhere-zero section or vγθ(t) ∧ wγθ(t) is not a nowhere-zero

section (the latter implying that ω is not a nowhere-zero section). Hence no non-zero section exists on
∧2

E,
meaning that E is a non-orientable vector bundle. This completes the example.

Remark 3.1.2. Definition 3.1.1 implies that each fiber Ep of an oriented vector bundle has a “preferred”
generator up ∈ Hn

S (Ep, (Ep)0; Z) in the relative singular cohomology group. The idea is explained more in
§9 of [MS74], and follows from representing n-cocycles in Zn(E,E0; Z) by a special orientation-preserving
embedding of an n-simplex into F . Constructing the n-simplex in a canonical manner gives one of two
choices for the orientation of this embedding. Theorem B.3 below or Theorem 9.1 in [MS74] prove that there
exists a unique element u ∈ Hn

S (E,E0; Z) such that

u|(Ep,(Ep)0) = up
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for all p ∈ M . Then, the natural inclusion ι : (E, ∅) → (E,E0) induces a map ι∗ : H∗S(E,E0,Z) →
H∗S(E; Z) on the cohomology ring. Similarly, the projection map π : E → M induces a map π∗ on the
respective cohomology rings, which gives a canonical isomorphism π∗ : Hn

S (M ; Z)→ Hn
S (E; Z) because π is

a deformation retract from E to M .

Definition 3.1.3. In the context of the description above, the Euler class e(E) of a vector bundle E is

e(E) =
(
π∗|HnS

)−1
(ι∗(u)). (3.1.2)

Theorem 9.1 in [MS74] also proves that Hi
S(E,E0; Z) = 0 for all i 6= n. A basic property of the Euler class

is that it is natural, which means that whenever F = f∗E for some bundle F over N and map f : N →M ,
we have e(F ) = f∗(e(F )). The naturality of the Euler class is not proven here, but the interested reader is
refered to Theorems 11.7.11 and 11.7.15 in [AGP02]. The proofs use another class, the Thom class, which
we omit here.

3.2 The Chern class

A common definition of the Chern class is the inductive approach in §14 of [MS74], which uses the Euler
class (an approach presented in Section 4.1). We use the axioms laid out in §3 in Chapter 17 of [Hus75].
Note that the Euler and Stiefel–Whitney classes are described here in terms of singular cohomology HS , but
the axioms of the Chern class below are given independent of cohomology theory. We do this because the
axioms will be checked against different definitions from different cohomology theories.

Remark 3.2.1. Let E be a complex vector bundle over M , R either Z or R, and H a cohomology theory on
M over R. Then there exists an element c(E) ∈ H∗(M ;R), called the total Chern class of E, that satisfies
the following axioms.

(C0) For i > 0, there exist elements ci(E) ∈ H2i(E;R), called the Chern classes of E, such that
c(E) = c0(E) + c1(E) + · · ·+ crank(E)(E), with c0(E) = 1 and ci(E) = 0 for i > rank(E).

(C1) (Naturality) If f : N →M is continuous, then c(f∗E) = f∗(c(E)).

(C2) (Whitney product formula) If F is a vector bundle over M , then c(E ⊕ F ) = c(E) ^ c(F ).

(C3) For the tautological line bundle γ1 over G1(C2) = CP1, c1(γ1) is the negative of the preferred
generator of H2(CP1;R).

In some texts, the opposite convention for (C3) is used. That is, c1(γ1) is just the preferred generator
of H2(CP1;R). In differential and algebraic geometry, the convention of taking the negative generator is
standard, so we keep with that convention here. For more on the conventions, see the remark after the same
axioms in §7 of Chapter 23 in [May99].

As described in §3 of Chapter 17 of [Hus75], the last axiom (C3) may be replaced by a condition that
c1(γ1(C∞)) be the negative of the preferred generator of H2(CP∞;R). The two axioms are equivalent, by
considering the inclusion map CP1 ↪→ CP∞ and applying axiom (C1). An analogous result holds for the
Stiefel–Whitney class.

The definitions given in the succeeding sections are shown to conform to these axioms. Then, with the
theorems presented in §5, these axioms uniqely define the Chern classes.

3.3 The Stiefel–Whitney class

The Stiefel–Whitney classes of a vector bundle may be viewed as the real analogues of the Chern classes.
They are included to show the similarities when considering real instead of complex vector bundles, with the
setup as in §4 of [MS74].
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Remark 3.3.1. Let E be a real vector bundle over M . Then there exists an element w(E) ∈ H∗S(M ; Z/2Z),
called the total Stiefel–Whitney class of E, that satisfies the following axioms.

(W0) For i > 0, there exist elements wi(E) ∈ Hi
S(E; Z/2Z), called the Stiefel–Whitney classes of E, such

that w(E) = w0(E) + w1(E) + · · ·+ wrank(E)(E), with w0(E) = 1 and wi(E) = 0 for i > rank(E).

(W1) (Naturality) If f : N →M is continuous, then w(f∗E) = f∗(w(E)).

(W2) (Whitney product formula) If F is a vector bundle over M , then w(E ⊕ F ) = w(E) ^ w(F ).

(W3) For the real tautological line bundle γ1 over G1(R2) = RP1, which is defined in the same way as
the complex bundle, w1(γ1) is the generator of H1

S(RP1; Z/2Z).

4 Existence of characteristic classes

In this section we prove, in four different ways, that the Chern classes exist. Some of the approaches may
be used to show that the Stiefel–Whitney classes exist.

A common proof of existence (given in §20 of [BT82], §1 in Chapter 17 of [Hus75], and §4.D of [Hat02])
is to use the Leray–Hirsch theorem on the projectivization of a vector bundle. Although the theorem is
mentioned in §5.2 to help prove uniqueness, a proper proof of the theorem is omitted, so it is not presented
here as a tool to show existence.

4.1 Existence 1: The Gysin sequence

This is Chern’s original approach, and mostly follows Milnor and Stasheff from §14 of [MS74]. The
cohomology theory used is singular cohomology.

To begin, fix a Hermitian metric h on the complex rank n vector bundle π : E →M . Over E0 associate
another bundle π0 : F → E0, where as before E0 = {e ∈ E : e 6= 0} is the set of all non-zero vectors of E.
The relation between these bundles is demonstrated in the diagram

M

E

E0 Fπ

ι

π0 = π ◦ ι

π1
with

E0 = {(p, vp) : p ∈M, vp ∈ Ep is non-zero},

F = {(q, vq) : q = (p, vp) ∈ E0, vq ∈ (Cvp)
⊥},

Fq = (Cπ2(q))⊥,

where π2((p, vp)) = vp is the projection map onto the second component of elements in E. The map ι
is the inclusion map. As Cvp is the complex vector space spanned by some non-zero vp, we have that
(Cvp)

⊥ ∼= {x ∈ Ep : h(vp, x) = 0}, giving F → E0 a Cn−1-bundle structure. Next, we construct an exact
sequence associated to the underlying real bundle of E.

Theorem 4.1.1. (adapted from Theorem 12.2 in [MS74]) Every vector bundle E gives rise to an associated
long exact sequence, called the Gysin sequence, given by

· · · Hj−1
S (E0; Z) Hj−2n

S (M ; Z) Hj
S(M ; Z) Hj

S(E0; Z) Hj−2n+1
S (M ; Z) · · · ,ee π∗0

(4.1.1)

where e : v 7→ v ^ e is the cup product with the Euler class e of ER.

Proof: Start with the long exact sequence for relative homology (described in §3.1 of [Hat02]), given by

· · · Hj−1
S (E0; Z) Hj

S(E,E0; Z) Hj
S(E; Z) Hj

S(E0; Z) Hj+1
S (E,E0; Z) · · · .

δδ
(4.1.2)
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Consider E as a real oriented bundle, as described in Definition 2.1.3. Since E has rank n, the underlying
real bundle ER has rank 2n. For every j ∈ Z, the Thom isomorphism theorem (see §10 in [MS74]) states
that the map · ^ u : Hj−2n

S (E; Z) → Hj
S(E,E0; Z) is an isomorphism, where u ∈ H2n

S (E,E0; Z) is the
unique element whose restriction to (Ep, (Ep)0) for every p ∈M gives the preferred generator uEp (this term
is precisely defined in Definition B.2). Hence we have an isomorphism

α : Hj−2n
S (E; Z) → Hj

S(E,E0; Z),
v 7→ v ^ u,

for u as in Remark 3.1.2. Recall from Definition 2.4.2 that ^ takes p-cocycles and q-cocycles to (p + q)-
cocycles. Via the restriction from (E,E0) to (E, ∅), the map α induces another map

β := α

E

: Hj−2n
S (E; Z) → Hj

S(E; Z),
v 7→ (v ^ u)|E = v ^ (u|E).

Applying α to groups of the sequence (4.1.2) gives a new sequence

· · · Hj−1
S (E0; Z) Hj−2n

S (E; Z) Hj
S(E; Z) Hj

S(E0; Z) Hj−2n+1
S (E; Z) · · · ,

ββ

This sequence is still exact because α is an isomorphism. Next, consider the cohomology ring map π∗ :
H∗S(M ; Z)→ H∗S(E; Z), which is an isomorphism because E deformation retracts to M and cohomology is a
homotopy invariant. Definition 3.1.3 defines the Euler class exactly in terms of this isomorphism, so letting
e represent the map v 7→ v ^ e(ER), which is just the composition (π∗)−1 ◦ β, the sequence attains the
desired form of (4.1.1). �

The whole process of the proof above is described in the diagram below.

· · · Hj−1
S (E0; Z) Hj

S(E,E0; Z) Hj
S(E; Z) Hj

S(E0; Z) Hj+1
S (E,E0; Z) · · ·

δδ

· · · Hj−1
S (E0; Z) Hj−2n

S (M ; Z) Hj
S(M ; Z) Hj

S(E0; Z) Hj−2n+1
S (M ; Z) · · ·

α ◦ π∗ α ◦ π∗= =π∗

eπ∗0 π∗0

Observe that for 0 6 j < 2n, every third group of the bottom level, which is (4.1.1), vanishes, as
Hj−2n
S (M ; Z) ∼= 0, since a negative index of a cohomology group means the group is trivial. It follows

that Hj
S(M ; Z) ∼= Hj

S(E0; Z), so π∗0 is an isomorphism for all such j. We now have enough information to
describe an inductive construction of the Chern classes.

Definition 4.1.2. Let E be a complex rank n bundle over M and π1 : F → E0 as in the beginning of this
section. For every non-negative integer j, define the jth Chern class of E to be

cj(E) :=


(π∗0)

−1
(cj (F )) if j < n,

e
(
ER
)

if j = n,

0 if j > n.

(4.1.3)

Hence simply by knowing the Euler class, we may determine the Chern class by reducing it to a smaller case
through the rank (n− 1) bundle F → E0.

Proposition 4.1.3. The axiomatic properties of the Chern classes are satisfied by the above definition.
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Proof: First consider axiom (C0). By the definition of (4.1.3) and Definition 3.1.3, the top Chern class is

cn(E) = e(ER) =
(
π∗|H2n

S

)−1
(ι∗(u)) ∈ H2n

S (M ; Z),

so it lies in the correct space. For the other cases, first let j = n − 1. Since F
π1−−→ E0 has rank n − 1,

cn−1(F ) is the top Chern class, so

cn−1(E) = (π∗0)
−1

(cn−1(F )) = (π∗0)
−1 (

e
(
FR
))

= (π∗0)
−1
((

π∗1 |H2n−2
S

)−1
(ι∗(u))︸ ︷︷ ︸

∈ H2n−2
S (F ;Z)

)
︸ ︷︷ ︸

∈ H2n−2
S (E0;Z)

∈ H2n−2
S (M ; Z),

and the (j − 1)th Chern class also lies in the correct space. The process is analogous for all 0 < j < n− 1.
Finally, consider j = 0. After n−1 applications of the definition in (4.1.3), we finally get some complex rank
0 bundle G. Further, the map ι from the definition of the Euler class of equation (3.1.2) becomes the identity,
since Ep = (Ep)0. Having rank 0 also means the total space is the base space, so the map π∗ in equation
(3.1.2) is also the identity, meaning that e(GR) = u. As GR takes its top Chern class from H0

S(G; Z), and
the only non-zero cohomology group (the 0th one) gives the number of connected components of E (and M
is assumed to be connected, so G is connected as well), we have that H0

S(GR; Z) = Z. Next, from Remark
3.1.2 and Definition 3.1.1, we may make a choice as to which generator u is, so we choose u = 1. Hence

c0(E) = (π∗0)
−1

(c0(G)) = (π∗0)
−1 (

e
(
GR
))

= (π∗0)
−1

(1) = 1,

so the conditions of axiom (C0) are satisfied. For axiom (C1), let f : N → M be smooth and F = f∗E.
Then (C1) for Chern classes below the top class follows by considering the indicated part of the commutative
diagram below, as the maps π∗0 and τ∗0 are isomorphisms, formed by two copies of the sequence (4.1.1). The
map ϕ is the map between the total spaces of E and F , determined by the bundle map f , as in Definition
2.1.4.

· · · Hj−1
S (E0; Z) Hj−2n

S (M ; Z) Hj
S(M ; Z) Hj

S(E0; Z) Hj−2n+1
S (M ; Z) · · · .

· · · Hj−1
S (F0; Z) Hj−2n

S (N ; Z) Hj
S(N ; Z) Hj

S(F0; Z) Hj−2n+1
S (N ; Z) · · · .

f∗ f∗ f∗ϕ∗|E0
ϕ∗|E0

ββ π∗0

τ∗0

In the case of the top dimension, the result follows from the naturality of the Euler class. Next, axiom (C3)
is a direct consequence of the definition in equation (4.1.3) for E = γ1(C2) and j = n = 1, since the non-zero
Euler class generates the space H2

S(CP1; Z) by Remark 3.1.2. The last one, axiom (C2), which states that
c(E ⊕ F ) = c(E) ^ c(F ), requires some polynomial algebra which is not introduced here. The interested
reader is directed to Lemma 14.8 in §14 of [MS74]. �

4.2 Existence 2: The CW structure of the Grassmannians

Here we construct Gk(C∞) as a CW-complex using Schubert cells and direct limits so that the singular
cohomology may be computed. This result shows the existence of Chern classes on the tautological k-plane
bundle γk over Gk(C∞), which then may be extended, by Theorem 2.3.2 and naturality, to Chern classes
on arbitrary bundles. The approach takes mainly from §5 in Chapter 1 of [GH94] and §6 of [MS74].

Definition 4.2.1. An ordered collection of subspaces F = (V0, V1, . . . , Vm) of Cn is called a flag of Cn if

{0} = V0 ( V1 ( · · · ( Vm = Cn.

If m < n, then F is called a partial flag of Cn, and if m = n, then F is called a complete flag of Cn.
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Definition 4.2.2. A Schubert symbol σ = (σ1, . . . , σk) is an ordered k-tuple of strictly increasing, non-
negative integers. To every Schubert symbol σ and flag F associate a Schubert cell

e(σ, F ) := {X ∈ Gk(Cn) : dim (X ∩ Vσi) = i for all i = 1, . . . , k} . (4.2.1)

When there is no confusion about the flag, we omit F and write e(σ). The closure e(σ) := cl(e(σ)) is called
the Schubert variety.

Let (x1, . . . , xn) be the standard ordered orthonormal basis for Cn and write Vi = span{x1, . . . , xi}.
With V0 := {0}, the collection (V0, V1, . . . , Vn) is a flag for Cn and will be the only flag used from here on.
Next, an open n-cell in this context may be thought of as Rn, so Cn is an open 2n-cell.

The implied cell structure of e(σ) is described in the succeeding lemma. In our context, the only relevant
Schubert symbols are k-subsequences of (1, 2, . . . , n). The fact that e(σ) is a variety is not proved here, and
the interested reader is directed to Chapter I of [Rya87] or the briefer (but more relevant) §5 in Chapter 1
of [GH94].

4.2.1 Example: the cell structure of G2(C4)

To motivate theorems later in this section, consider the example of G2(C4). There are six Schubert symbols
for this space, namely

σ1 = (1, 2), σ2 = (1, 3), σ3 = (1, 4), σ4 = (2, 3), σ5 = (2, 4), σ6 = (3, 4).

The associated Schubert cells, all subsets of G2(C4), are

e(σ1) = {X : dim(X ∩ V1) = 1, dim(X ∩ V2) = 2, dim(X ∩ V3) = 2, dim(X ∩ V4) = 2},
e(σ2) = {X : dim(X ∩ V1) = 1, dim(X ∩ V2) = 1, dim(X ∩ V3) = 2, dim(X ∩ V4) = 2},
e(σ3) = {X : dim(X ∩ V1) = 1, dim(X ∩ V2) = 1, dim(X ∩ V3) = 1, dim(X ∩ V4) = 2},
e(σ4) = {X : dim(X ∩ V1) = 0, dim(X ∩ V2) = 1, dim(X ∩ V3) = 2, dim(X ∩ V4) = 2},
e(σ5) = {X : dim(X ∩ V1) = 0, dim(X ∩ V2) = 1, dim(X ∩ V3) = 1, dim(X ∩ V4) = 2},
e(σ6) = {X : dim(X ∩ V1) = 0, dim(X ∩ V2) = 0, dim(X ∩ V3) = 1, dim(X ∩ V4) = 2}.

The totality of this list implies that as sets, G2(C4) =
⋃6
i=1 e(σ

i), where the sets in the union intersect
trivially. As an example, we now take σ5 and construct a special basis for arbitrary X contained in it.
First, since dim(X ∩ V2) = 1, fix v1 ∈ X ∩ V2 so that 〈v1, x2〉 = 1. Such a v1 must exist because x1 6∈ X,
as X ∩ V1 = {0}. However, as X ∩ V2 6= {0}, for some a2 6= 0 the equation a1x1 + a2x2 = 0 holds. Set
v1 = a1

a2
x1 + x2, so

v1 = ( ∗ , 1 , 0 , 0 ).

The first coordinate could be anything, since V2 = span{(1, 0, 0, 0), (0, 1, 0, 0)}, but the last two coordinates
must be zero. Next, as X ∩ V4 is 2-dimensional, and v1 ∈ X ∩ V4, choose a vector v2 such that (v1, v2)
generates X ∩ V4, with 〈v2, x2〉 = 0 and 〈v2, x4〉 = 1. The first condition may be guaranteed by translating
by v1 and the second condition may be guaranteed by scaling. Then

v2 = ( ∗ , 0 , ∗ , 1 ),

with the first and third coordinates taking any values, as above. By a slight abuse of notation, e(σ5) is{[
v1
v2

]}
=

{[
∗ 1 0 0
∗ 0 ∗ 1

]
: ∗ ∈ C

}
, (4.2.2)

the elements of which all have rank 2. The cell is not the described set, but actually homeomorphic to the
union of the rowspaces of the matrices in the set. There is a homeomorphism between {[ v1v2 ]} and C3, given
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by allowing the three entries ∗ to be the the three defining components of C3. Next, we begin the more
difficult task of showing that e(σ5) is a cell in the larger CW-complex of G2(C4).

The dimension of the cell e(σ5) is 6, because 5 of the 8 entries in the matrix in (4.2.2) are specified,
while the other three are free to vary, so e(σ5) ∼= C3 ∼= D6. We may similarly construct the matrices and
determine dimension for all the Schubert cells:

σ1 = (1, 2) σ2 = (1, 3) σ3 = (1, 4) σ4 = (2, 3) σ5 = (2, 4) σ6 = (3, 4)

matrix [ 1 0 0 0
0 1 0 0 ] [ 1 0 0 0

0 ∗ 1 0 ] [ 1 0 0 0
0 ∗ ∗ 1 ] [ ∗ 1 0 0

∗ 0 1 0 ] [ ∗ 1 0 0
∗ 0 ∗ 1 ] [ ∗ ∗ 1 0

∗ ∗ 0 1 ]

dimension 0 2 4 4 6 8

(4.2.3)

Note the correspondence between the elements of each 2-tuple and the position of the columns [ 10 ] and
[ 01 ] in the associated matrix. To be part of a CW-complex (see [Pra06], §3 in Chapter 3, for a complete
description), the space must have all of its closed cells intersecting finitely many open cells (the closure
finite “C” condition) and all intersections of closed sets with other closed sets must also be closed (the weak
topology “W” condition). Moreover, every point in the boundary of e(σ5) must be contained in some smaller
dimensional cell e(σi).

The satisfaction of the C and W conditions is left to the general case below. To find the boundary, first
we find the closure. Since ∗ can be anything, set the one in row 2, column 3 to n and multiply this matrix
by an elementary matrix to get[

1 0
0 1/n

] [
∗ 1 0 0
∗ 0 n 1

]
=

[
∗ 1 0 0
∗ 0 1 1/n

]
.

Note that the resulting matrix is contained in e(σ5) for all n. In the limit, we have

cl(e(σ5)) ⊃ lim
n→∞

[∗ 1 0 0
∗ 0 1 1/n

] =

[
∗ 1 0 0
∗ 0 1 0

]
∼= e(σ4).

Next, perform a similar elementary matrix operation on σ5 and specify two ∗ elements for[
1 0
∗ 1

] [
∗ 1 0 0
∗ 0 ∗ 1

]
=

[
∗ 1 0 0
∗ ∗ ∗ 1

]
∗1,1→n, ∗2,1→0−−−−−−−−−−→

[
n 1 0 0
0 ∗ ∗ 1

]
.

Finally, multiply by a similar elementary matrix and take the limit, so

cl(e(σ5)) ⊃ lim
n→∞

[1/n 0
0 1

] [
n 1 0 0
0 ∗ ∗ 1

] = lim
n→∞

[1 1/n 0 0
0 ∗ ∗ 1

] =

[
1 0 0 0
0 ∗ ∗ 1

]
∼= e(σ3).

Similar operations may be applied to σ5 to get e(σ2) and e(σ1) in the closure. However it is not possible
to get e(σ6) this way, because the minor of the last two columns of e(σ5) will always have rank at most 1,
and in e(σ6) they have rank 2 (and elementary matrix operations preserve rank). The boundary then is the
closure, the five cells e(σi) for i = 1, . . . , 5, minus the interior, which is just the cell e(σ5) itself. That is,

bd(e(σ5)) = e(σ1) ∪ e(σ2) ∪ e(σ3) ∪ e(σ4).

Using the table from (4.2.3), e(σ1) is a 0-cell, e(σ2) is a 2-cell, and e(σ2) and e(σ3) are 4-cells. Since these are
strictly smaller in dimension than the 6-cell e(σ5), part of the CW-complex structure is satisfied. However,
it still remains to describe the gluing maps between e(σ5) and the lower-dimensional cells, which is left to
the next section.

This completes the example, and we now generalize all of the statements made above.
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4.2.2 Generalization

Lemma 4.2.3. The space e(σ) is an open cell of dimension 2
∑k
i=1(σi − i), for |σ| = k.

Proof: From the description in (4.2.1) and letting T be the set of all ordered k-subsets of (1, . . . , n) (so every
t ∈ T is a Schubert symbol), it follows that Gk(Cn) =

⋃
σ∈T e(σ) as a set. It remains to describe the e(σ),

which will be done by choosing a special basis for an arbitrary X ∈ e(σ).

First, let v1 ∈ X ∩ Vσ1 be the normalized generator of X ∩ Vσ1 (which is a 1-dimensional space), so that
〈v1, xσ1〉 = 1. Since the xis are in the standard basis, it follows that

v1 =
(
∗ , . . . , ∗︸ ︷︷ ︸ , 1 , 0 , . . . , 0︸ ︷︷ ︸ ).

n− σ1 elements

σ1 − 1 elements

Next, take v2 ∈ X∩Vσ2 so that v1, v2 generateX∩Vσ2 with the conditions that 〈v2, xσ2〉 = 1 and 〈v2, xσ1〉 = 0.
The first condition may be guaranteed by an appropriate factor and the second by an appropriate translation
by v1. For similar reasons as above,

v2 =
( ︷ ︸︸ ︷
∗ , . . . , ∗︸ ︷︷ ︸ , 0 , ∗ , . . . , ∗︸ ︷︷ ︸ , 1 , 0 , . . . , 0︸ ︷︷ ︸ ).

σ2 − 1 elements

n− σ2 elements

σ2 − σ1 − 1 elements

σ1 − 1 elements

To make the construction completely clear, lastly consider v3 ∈ X ∩ Vσ3
. This element is chosen so that

v1, v2, v3 generate X ∩ Vσ3
with the conditions that 〈v3, xσ3

〉 = 1 and 〈v3, xσ2
〉 = 〈v3, xσ1

〉 = 0. These
conditions are guaranteed similarly as for v2. Then v3 may be described as

v3 =
( ︷ ︸︸ ︷
∗ , . . . , ∗︸ ︷︷ ︸ , 0 , ∗ , . . . , ∗︸ ︷︷ ︸ , 0 , ∗ , . . . , ∗︸ ︷︷ ︸ , 1 , 0 , . . . , 0︸ ︷︷ ︸ ).

σ3 − 1 elements

n− σ3 elements

σ3 − σ2 − 1 elements

σ2 − σ1 − 1 elements

σ1 − 1 elements

Continue in this manner, defining vi as the generator that completes the orthonormal generating set {v1, . . . , vi−1}
of X ∩ Vσi , with the condition that

〈
vi, xσj

〉
=
{

1 if j=i,
0 if j<i. Hence any X is the rowspace of the matrix

v1
v2
v3
...
...
vk


=



∗ · · · ∗ 1 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

... 0 ∗ · · · · · · ∗ 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · · · · ∗ 1 0 · · · 0


. (4.2.4)
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This matrix has rank k by the construction, so it describes a k-plane in Cn, i.e. an element of Gk(Cn). This
means that we have a bijection between certain k-planes and matrices of the same form as the matrix above.
Finally, note that vi has i+ (n− σi) fixed elements, so in general the matrix in (4.2.4) has

k∑
i=1

(i+ n− σi) = kn−
k∑
i=1

(σi − i)

fixed elements. Since M is a k × n matrix with entries in C, there exists a homeomorphism giving

e(σ) ∼= Ckn−(kn−
∑

(σi−i)) = C
∑

(σi−i). (4.2.5)

�

Theorem 4.2.4. (appears as Theorem 6.4 in [MS74] and Proposition 1.17 in [Hat09]) The spaces Gk(Cn)
and Gk(C∞) are CW-complexes containing only the e(σ) as cells.

Proof: For n finite, we first need to show that each point in the boundary of a 2`-cell lies within a 2m-cell
(since C is a 2-cell, all the e(σ) cells are even-dimensional), for some m < 2`. Generalizing from the intuition
in §4.2.1, the closure of a Schubert cell is given by

cl(e(σ)) = {X : dim(X ∩ Vσi) > i} =
⋃

τi6σi ∀ i

e(τ),

and the boundary is bd(e(σ)) = cl(e(σ)) \ e(σ). It follows that for every e(τ) ∈ bd(e(σ)), there is an index j
such that τj < σj . Since for all other indices i, τi 6 σi, and all else being equal, a matrix of the form (4.2.4)
with a standard basis column vector in row τj has strictly more fixed elements than a matrix with the same
vector in column σj .

To show the CW-structure, it is enough to describe a map q : B → Gk(Cn) from a ball B of dimension
dim(e(σ)) such that q|int(B) : int(B) → e(σ) is a homeomorphism onto its image. This is done by applying
rotations and scalings to the matrix in (4.2.4) to get orthonormal rows. This operation is described in detail
in the proof of Proposition 1.17 in [Hat09]. Although this source only considers the real case, the complex
case follows by considering the real and imaginary parts of each complex coordinate as separate coordinates
of the real case. That is, for every row in the matrix (4.2.4), add another row that is exactly the same,
except the fixed 1 is now 0 (as the repeated row represents the imaginary part and im(1) = 0), and then
apply the procedure of [Hat09].

For the infinite case, Gk(C∞) is constructed as the direct limit of the sequence X0 ↪→ X1 ↪→ X2 ↪→ · · ·
with each finite skeleton constructed as above. The closure finite condition is satisfied in the direct limit,
because the definition of the Schubert cells and (4.2.4) give that intersections occur only in smaller dimensions
than the dimension of the cell. Hence the property is inherited from the finite case. The weak topology
condition follows similarly. �

Now that we have the CW-complex structure for Gk(C∞), we may calculate the singular cohomology.
We need some combinatorics for this, so recall the q-binomial ceofficients, given by(

n

k

)
q

=

k∏
i=1

1− qn−i+1

1− qi
,

with the case q = 1 recovering the usual binomial coefficients. Note that
∏k
i=1(1− qn−i+1) has factors 1− qi

for all i = 1, . . . , k, so the usual binomial coefficients are well-defined.

Lemma 4.2.5. The space Gk(Cn) has
(
n

n−k
)

cells, of which

p(n, k, r) := [qr]

(
n

n− k

)
q

= [qr]

(
n

k

)
q

have dimension 2r.
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The proof of this lemma is omitted, and the reader is directed to [Sta12], Propositions 1.7.2 and 1.7.3.

Example 4.2.6. Consider again the case G2(C4). Then

2∏
i=1

1− q4−i+1

1− qi
=

1− q4

1− q
· 1− q3

1− q2
=

(1− q)2(1 + q)(1 + q2)(1 + q + q2)

(1− q)2(1 + q)
= 1 + q + 2q2 + q3 + q4.

This matches exactly the calculated cell sizes in (4.2.3).

Proposition 4.2.7. As a Z-module, H∗S(Gk(Cn); Z) ∼= Z(nk).

Proof: To calculate the cohomology, first we need the homology, which may be calculated from the sequence
of cells that make up Gk(Cn). In this case, setting p(n, k, r) = [qr]

(
n
k

)
q
, we have the chain groups forming a

sequence

C2k(n−k) C2k(n−k)−1 C2k(n−k)−2 · · · C2 C1 C0 0.

= = = = = =

Zp(n,k,k(n−k)) 0 Zp(n,k,k(n−k)−1) Zp(n,k,2) 0 Z

From Lemma 4.2.3 we know that there are no cells of odd dimension in Gk(Cn), so Ci = 0 for i odd. From
cellular homology theory, the homology of the above chain complex is the homology of the Grassmannian.
That is, for i = 0, 1, . . . , k(n− k),

(HS)i(Gk(Cn)) = ker(Ci+1 → Ci)/im(Ci → Ci−1) =

{
Zp(n,k,i/2) if i is even,

0 if i is odd.
(4.2.6)

Then, by the universal coefficient theorem (see [Pra07], §4 in Chapter 4) over the ring Z,

Hi
S(Gk(Cn)) = Hom((HS)i(Gk(Cn)),Z)⊕ Ext(Hi−1(Gk(Cn)),Z).

The group Ext is zero because over Z, it contains only the torsion part of its argument, and the groups 0
and Zj for any integer j are torsion-free. The group Hom with coefficients in Z represents the free part of
the group it acts on, so Hom((HS)i(Gk(Cn)),Z) ∼= Zp(n,k,i/2) for i even, and is 0 otherwise. Hence

Hi
S(Gk(Cn); Z) = (HS)i(Gk(Cn)) =

{
Zp(n,k,i/2) if i is even,

0 if i is odd.

Finally, summing up over all the dimensions, recalling that
∑
p(n, k, i/2) = ( nk ), and applying Lemma 4.2.5,

we get that

H∗S(Gk(Cn); Z) ∼=
2k(n−k)⊕
i=0

Zp(n,k,i/2) = Z(nk).

�

In the infinite case, there is an integer sequence {ωk,r}∞r=0 that the dimensions of the 2r-cells ofH∗S(Gk(Cn); Z)
reach in the limit as n → ∞, although we do not prove that the limit exists. This generating function of
this integer sequence is

∏k
i=1(1− xi)−1, meaning that

ωk,r = [qr]

k∏
i=1

1

1− qi
. (4.2.7)

Theorem 4.2.8. As a ring, H∗S(Gk(C∞); Z) ∼= Z[a1, . . . , ak], and the ai are algebraically independent.
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Proof: (Sketch) This is a proof done by induction. The first step is to apply the Gysin sequence (4.1.1) for
M = G1(C∞) = CP∞ over a line bundle, and set a1 to be the preferred generator of H2

S(M ; Z). Then
ai1 follows as the only generator of H2i

S (M ; Z), for i 6 k. In the inductive case, apply the Gysin sequence
to M = Gn(C∞) to get a homomorphism Hi+2n

S (E0; Z) → Hi+2n
S (Gn−1(C∞); Z) → Hi+2n

S (Gn(C∞); Z),
which will define ak. The inductive hypothesis is enough to get that there are no relations among all the
generators. �

For a complete proof, the interested reader is directed to Theorems 14.4 and 14.5 of [MS74], where the
approach follows the steps described. The case for k = 1 is given for M = G1(Cm), and because of the
nice properties of limits and the Grassmannians, the result extends to G1(C∞). It should be noted that for
Gk(Cm), where k > 1, the generators ai are not algebraically independent, so the proof must pass to ∞ in
the base case.

Definition 4.2.9. In the context of Theorem 4.2.8, the ith Chern class of γk(C∞), for 1 6 i 6 k, is
ci(γ

k) := −ai, and let c0(γk) = 1. For an arbitrary Ck-bundle π : E → M , the ith Chern class of E is
ci(E) = f∗(ci(γ

k)), where f is induced by a bundle map from E into γk(Cn), which exists by Theorem 2.3.2.

Note that the bundle map is unique up to homotopy, hence the induced maps on cohomology groups are
the same for different bundle maps (see Proposition 1.5 in [Hat09]).

Proposition 4.2.10. The axiomatic properties of the Chern classes are satisfied by the above definition.

Proof: Axiom (C0) follows directly from the definition above. For axiom (C1), let f : N →M be continuous
and F = f∗E, with both E and F rank k bundles. Let h : M → Gk(C∞) be conitunous so that h∗(γk) = E,
and define g = h ◦ f : N → Gk(C∞) so that g∗(γk) = F also a bundle map. Then

f∗(c(E)) = f∗(h∗(c(γk))) = (h ◦ f)∗(c(γk)) = g∗(c(γk)) = c(F ).

For axiom (C2), the proof is left incomplete, with only the setup given. Suppose that E is a rank k bundle
and F is a rank ` bundle, with g : M → Gk(C∞) and h : M → G`(C

∞) continuous such that g∗(γk) = E
and h∗(γ`) = F . Since E ⊕ F is a rank k + ` bundle, there is a continuous map t : M → Gk+`(C

∞) such
that t∗(γk+`) = E ⊕ F . It is possible to show, the most difficult being the second equality, that

c(E ⊕ F ) = t∗(c(γk+`)) = g∗(c(γk)) ^ h∗(c(γ`)) = c(E) ^ c(F ).

Finally, the conditions of axiom (C3) are satisfied by the construction of c1 in the proof of Theorem 4.2.8, as

H∗S(G1(C2); Z) H0
S(G1(C2); Z) H1

S(G1(C2); Z) H2
S(G1(C2); Z) Z[x],= ⊕ ⊕ ∼=

= = =

Z 0 Z

where c0 ∈ H0
S is always 1, so x must be the (preferred) generator of H2

S . Therefore c1 = −x. �

4.3 Existence 3: Connections and curvature

Here we define the Chern class by means of differential geometry, introducing connections and curvature
in the process. The cohomology theory used is de Rham cohomology. A basic knowledge of smooth manifolds
is assumed. The approach follows the constructions found in Chapter 4.2 of [Huy05] and Chapter 3.3 of
[Wel80] with slightly adjusted notation.

4.3.1 Forms, connections, and curvature

Definition 4.3.1. Let M be a smooth manifold and π : E → M a K-vector bundle of rank r. A (smooth)
section of E is a smooth map s : M → E such that π ◦ s = idM for all p ∈M . That is, π(s(p)) = π(sp) = p,
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so sp ∈ Ep.

M

s

E

p q

sp
sq

Ep Eq

Define Γ(E) to be the space of smooth sections of E. It is an infinite-dimensional K-vector space: for
s1, s2 ∈ Γ(E), (s1 + s2)p = (s1)p + (s2)p, and for λ ∈ K, (λs)p = λsp.

Note that Γ(E) is a C∞-module, that is, if f ∈ C∞(M) and s ∈ Γ(E), then (fs)p = f(p)sp. Moreover,
the manifold M is diffeomorphic to the zero section 0 : M → E (where 0(p) = 0p ∈ Ep). In general, a section
can be thought of as a cross-section of all the fibers of E over M .

Definition 4.3.2. Let E be a vector bundle over a smooth manifold M . For any m ∈ Z>0, an E-valued
differential form of degree m, or an E-valued m-form, is a section of the vector bundle

∧m
(T ∗M)⊗E. That

is, an element
ω ∈ Am(M ;E) := Γ(

∧m
(T ∗M)⊗ E).

In local coordinates, we write ω = αi1···imdx
i1 ∧ · · · ∧ dxim in Einstein notation, for αi1···im ∈ E. Note

that A0(M ;E) is the space of smooth sections of E. When the context supplies the details, we sometimes
omit E and just write Am(E). Sometimes we write Am(M) to represent the simpler space Γ(

∧m
(T ∗M)).

Definition 4.3.3. A connection on a vector bundle E over M is a K-linear homomorphism ∇ : A0(M ;E)→
A1(M ;E) that satisfies the Leibniz rule

∇(f · s) = df ⊗ s+ f · ∇(s)

for any f ∈ C∞(M) and s ∈ A0(M ;E).

A section s ∈ A0(M ;E) is called parallel with respect to ∇ on E if and only if ∇s = 0. A special
connection is ∇ = d, the usual derivative, which is called the trivial connection.

Proposition 4.3.4. Let E2, E2 be bundles over M with sections s1, s2 and connections ∇1, ∇2 respectively.
Then ∇1 ⊗∇2, given by (∇1 ⊗∇2)(s1 ⊗ s2) = (∇1s1)⊗ s2 + s1 ⊗ (∇2s2), is a connection on E1 ⊗ E2.

Proof: Let f ∈ C∞(M), s1 ∈ Γ(E1), and s2 ∈ Γ(E2), so s1 ⊗ s2 ∈ Γ(E1 ⊗ E2). Then

(∇1 ⊗∇2)(f · (s1 ⊗ s2)) = (∇1 ⊗∇2)((f · s1)⊗ s2)

= (∇1(f · s1))⊗ s2 + (f · s1)⊗ (∇2s2) (by definition)

= (df ⊗ s1 + f · ∇1s1)⊗ s2 + (f · s1)⊗∇2s2 (as ∇1 is a connection)

= df ⊗ s1 ⊗ s2 + f · ∇1s1 ⊗ s2 + (f · s1)⊗∇2s2

= df ⊗ s1 ⊗ s2 + f · (∇1s1 ⊗ s2 + s1 ⊗∇2s2)

= df ⊗ (s1 ⊗ s2) + f · (∇1 ⊗∇2)(s1 ⊗ s2),

so the Leibniz rule is satisfied. For K-linearity, let f be multiplication by k ∈ K. Then the first term in the
last line above disappears, as dk = 0 for any constant k, and we are left with

(∇1 ⊗∇2)(k · (s1 ⊗ s2)) = k · (∇1 ⊗∇2)(s1 ⊗ s2).

Additivity of this operator follows from the additivity of ∇, since

(∇1 ⊗∇2)((s1 + s2)⊗ s) = (∇1(s1 + s2))⊗ s+ (s1 + s2)⊗ (∇2s)

= (∇1s1 ⊗ s+ s1 ⊗ (∇2s)) + (∇1s2 ⊗ s+ s2 ⊗∇2s)

= (∇1 ⊗∇2)(s1 ⊗ s) + (∇1 ⊗∇2)(s2 ⊗ s),
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and similarly in the second factor of s1 ⊗ s2, so K-linearity is satisfied. Hence ∇1 ⊗∇2 is a connection on
E1 ⊗ E2. �

Definition 4.3.5. Let ∇ be a connection on E. Let ω ∈ Ak(M) be a k-form, so dω ∈ Ak+1(M), and let
s ∈ Γ(E) be a section, so ∇s ∈ Γ(T ∗M ⊗ E). Define a K-linear operator d∇ by

d∇ : Ωk(E) → Ωk+1(E),
ω ⊗ s 7→ dω ⊗ s+ (−1)kω ∧∇s.

For k = 0 this definition corresponds to the definition of the connection∇, and the tensor product becomes
multiplication. We must check that d∇ is well-defined. For f ∈ C∞(M), we have that (fω)⊗ s = ω ⊗ (fs),
so expanding both sides by the definition of d∇, we have that

d∇((fω)⊗ s) = d(fω)⊗ s+ (−1)kfω ∧∇s = (df) ∧ ω ⊗ s+ fdω ⊗ s+ (−1)kfω ∧∇s

and
d∇(ω ⊗ (fs)) = dω ⊗ (fs) + (−1)kω ∧∇(fs) = f(dω)⊗ s+ (−1)kω ∧ (df ⊗ s+ f∇s).

Hence d∇ is well-defined.

Definition 4.3.6. Let π : E → M be a vector bundle with associated connection ∇. Then the curvature
F∇ of E is the map

F∇ : A0(M ;E) → A2(M ;E),
s 7→ (d∇ ◦ ∇)(s).

Unlike ∇, the curvature is not a differential operator, as it is A0(M ;E)-linear. Indeed,

F∇(f · s) = (d∇ ◦ ∇)(f · s)
= d∇(df ⊗ s+ f · ∇(s))

= d∇(df ⊗ s) + d∇(f · ∇(s))

= d(df)⊗ s− df ∧∇(s) + df ∧∇(s) + f · d∇(∇(s))

= 0 + 0 + f · F∇(s)

= f · F∇(s).

Next, note that given a trivialization domain U ⊂M (so E|U is trivial) with a local frame (e1, . . . , er), there
is always the trivial connection d : A0(U ;E|U ) → A1(U ;E|U ). Moreover, any other connection on E|U is
just d scaled by a matrix of one forms. In other words, any connection ∇ on E|U is of the form ∇ = d+ A
for A ∈ A1(End(E)). It follows that for such ∇, we have ∇ei = Ajiej . Here, and further, we use the Einstein
notation, which means that whenever a term has two repeated indices, one in the subscript and one in the
superscript, there is an implied sum over that index.

Lemma 4.3.7. Any connection is locally of the form ∇ = d + A for A a matrix of one forms and d the
trivial connection.

Proof: Let (e1, . . . , er) be a local frame corresponding to a local trivialization. An E-valued 0-form is a finite
sum of terms of the form ω ⊗ s, for ω ∈ A0(M ;E), s = siei ∈ Γ(E) and si smooth K-valued functions.
Then ω⊗ s = ω⊗ (siei) = (siω)⊗ ei, so apply the connection ∇ to ω⊗ s, recalling from the discussion after
Definition 4.3.6, that ∇ei = Ajiej . Hence

∇(ω ⊗ s) = ∇(siω ⊗ ei)
= d(siω)⊗ ei + (siω) ∧∇ei
= d(siω)⊗ ej + siω ∧Ajiej
= (d(sjω) + (Ajis

i) ∧ ω)ej

= (d+A ∧ ·)(ω ⊗ s).
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In other words, in a fixed local trivialization, ∇ = d+A ∧ ·. �

Remark 4.3.8. Note in the proof above we could have used ω ∈ Am(M), since no particular property of
A0 was used, so the same result holds for d∇. Hence locally, for s ∈ Γ(E), we may write

F∇(s) = (d+A ∧ ·)(d+A ∧ ·)(s)
= (d+A ∧ ·)(ds+As)

= d2s+ d(As) +A ∧ (ds) +A ∧ (As)

= (dA)s+ (A ∧A)s

= (dA+A ∧A)(s),

so F∇ = dA + A ∧ A. Let us now describe a way of relating A = Aα and Ã = Aβ . Let (e1, . . . , er) be the

local trivialization on Uα and (ẽ1, . . . , ẽr) the local trivialization on Uβ . First, write ẽi = ejg
j
i , for gji the

change of basis matrix, that is, a smooth map gji : U → GL(r,K). Then ∇ẽi = Ãji ẽj , so

∇ẽi = ∇(ejg
j
i ) and ∇(ejg

j
i ) = ∇(gji ej)

= Ãjiekg
k
j , = dgji ⊗ ej + gji∇ej

= dgki ⊗ ek + gjiA
k
j ⊗ ek

= Ãjig
k
j ⊗ ek.

Hence Ãjig
k
j = dgki + gjiA

k
j . Multiply both sides by (g−1)`k and sum over k to get that

Ã`i = (g−1)`kA
k
j g
j
i + (g−1)`kdg

k
i , or Ã = g−1Ag + g−1dg.

Now suppose {Uα}α∈I covers M with transition maps gαβ for E and connection matrices Aα of ∇ with
respect to the local trivializations (ϕα, Uα). Then Aα is a map Uα → GL(r,K), and the relation between
Aα and Aβ is given by

Aβ = g−1βαAαgβα + g−1βαdgβα. (4.3.1)

4.3.2 Polarized polynomials and the Chern–Weil theorem

Here π : E →M is a rank n complex vector bundle with a connection ∇. We begin with a slight digression
about homogeneous polynomials.

Definition 4.3.9. Given a complex vector space V , let P : V ×k → C be a k-multilinear symmetric map.
The polarization of P is the map

P̃ : V → C,
A 7→ P (A, . . . , A).

This map is a homogeneous polynomial of degree k, so P̃ (λA) = λkP̃ (A). When V = GL(n,C), the space
of complex n× n matrices, the map P is called invariant whenever, for A,B,B1, . . . , Bk ∈ GL(n,C),

P (AB1A
−1, . . . , ABkA

−1) = P (B1, . . . , Bk),

and similarly P̃ is called invariant when P̃ (ABA−1) = P̃ (B).

To define terms associated to the Chern class, first recall that the determinant of an element in GL(n,C)
is a homogeneous polynomial of degree n. Taking A ∈ GL(n,C), define degree k homogeneous polynomials
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σk in the entries of A by the sum

det(I +A) =
∑
s∈Sn

sgn(s)

n∏
i=1

(I +A)i,si

=
∑
s∈Sn

sgn(s)

n∏
i=1

(δi,si +Ai,si)

= σ0(A) + σ1(A) + · · ·+ σn(A). (4.3.2)

The first term σ0(A) is always 1, as for every s ∈ Sn only the identity permutation has i = si for all i. This
permutation contributes (1 + A1,1) · · · (1 +An,n) = 1 + (no terms without an Aj,j factor) to the sum. The
other terms are then grouped by degree to give the stated result. Note that all of the σk are invariant, since
the determinant is invariant.

Definition 4.3.10. Define the kth Chern form of a vector bundle E to be

ck(E,∇) = σk

(
iF∇
2π

)
∈ A2k(M ;E).

Definition 4.3.11. The kth Chern class of E is the cohomology class

ck(E) = [ck(E,∇)] ∈ H2k
dR(M).

The total Chern class of E is the formal sum

c(E) = c0(E) + c1(E) + · · ·+ cn(E).

To show that the above definition is well defined, we need to show that for any two connections ∇ and
∇̃ on E, [ck(E,∇)] = [ck(E, ∇̃)], and that the form is indeed closed (that is, ck(E) ∈ H2k

dR(M)). A slight
generalization of these statements is known as the Chern–Weil theorem.

Theorem 4.3.12. [Chern, Weil]
Let ∇ be any connection on a vector bundle E over M . Then

1. (appears as Corollary 4.4.5 in [Huy05]) for any k-multilinear symmetric invariant map P : GL(n,K)⊕k →
K, the K-valued 2k-form P̃ (aF∇) is closed for all a ∈ K, and

2. (appears as Lemma 4.4.6 in [Huy05]) if ∇, ∇̃ are two connections on E, then [P̃ (aF∇)] = [P̃ (aF∇̃)].

Both statements require some other results, which use d∇ as an operator on A∗(End(E)). The algebra
structure on A∗(End(E)) is defined by taking ω ⊗ T ∈ Ak(End(E)) and η ⊗ S ∈ A`(E) and writing

(ω ⊗ T ) ∧ (η ⊗ S) := (ω ∧ η)⊗ TS.

in Ak(M)

in A`(M)

in Γ(End(E))

in Γ(End(E))

in Ak+`(M)

The proof of the theorem also requires several lemmas, two of which are given in Appendix C, and the Bianchi
identity, which states that d∇F∇ = 0 (Lemma 4.3.5 in [Huy05]). The fact that for any B ∈ A1(End(E)),
the curvature of the connection ∇+B is locally given by F∇+B = F∇ + d∇B +B ∧B is a straightforward
exercise (also Lemma 4.3.4 in [Huy05]), following from the fact that ∇ + B = d + A + B locally whenever
∇ = d+A.

Proof: For 1., since P̃ (aF∇) = P (aF∇, . . . , aF∇) by definition and d(P̃ (aF∇)) = d(P (aF∇, . . . , aF∇)) = 0
by Lemma C.2 and the Bianchi identity, the result follows.
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For statement 2., we know ∇1 = ∇0 + B for some global B ∈ A1(End(E)). Define ∇t = ∇0 + tB for

t ∈ [0, 1], so ∇0 = ∇0 and ∇1 = ∇1. Let P (t) = P̃ (F∇t). We need to show that P (1)− P (0) is exact, so let

Ft := F∇t = F∇0+tB = F∇0 + td∇
0

B + t2B ∧B.

Using the usual commutator on 0-forms, define a new bracket operator [ · , · ] on End(E)-valued forms. For
ω ∈ Ak(M), η ∈ A`(M) and T, S ∈ Γ(End(E)), let

[ · , · ] : Ak(End(E))×A`(End(E)) → Ak+`(End(E)),
(ω ⊗ T, η ⊗ S) 7→ (ω ∧ η)⊗ [T, S].

By writing B = dxi ⊗Bi in some local coordinates (x1, . . . , xn) and matrices Bi, we then find that

[B,B] = [dxi ⊗Bi, dxj ⊗Bj ]
= dxi ∧ dxj [Bi, Bj ]
= dxi ∧ dxj(BiBj −BjBi)
= 2dxi ∧ dxjBiBj
= 2B ∧B.

Hence Ft = F∇0 + td∇
0

B + t2

2 [B,B]. Then

d

dt
Ft = d∇

0

B + t[B,B] =
(
d∇

0

+ [tB, ·]
)
B.

Given ∇t = ∇0 + tB, let B = βi ⊗Bi and C = γj ⊗ Cj for βi ∈ A1(M) and γj ∈ Ak(M). When k = 1, we
have that for a section s,

(∇tC)(s) = ∇t(Cs)− C ∧ (∇ts)
= (d+ tB∧)(Cs)− C ∧ (d+ tB)s

= dC ∧ s+ C ∧ ds+ tB ∧ Cs− C ∧ ds− C ∧ tBs
= (dC + tBC − CtB)s.

For general k, the negative sign becomes (−1)k, so

d∇tC = d∇t(γj ⊗ Cj)
= dγj ⊗ Cj + (−1)kγj ∧∇tCj

= dγj ⊗ Cj + (−1)kγj
(
dCj + tB ∧ Cj − Cj ∧ tB

)
= d∇0

(
γj ⊗ Cj

)
+ (−1)2ktB ∧ γj ⊗ Cj − (−1)kγj ⊗ Cj ∧ tB

= d∇0C + [tB,C].

Hence d∇t = d∇
0

+ [tB, ·] on A∗(End(E)), and so d
dtFt = d∇tB. Let

TP (∇1,∇0)︸ ︷︷ ︸
∈ A2k−1

K (M)

:= k

∫ 1

0

P (Ft, . . . , Ft, B)dt,

where the integrand is a (2k − 1)-form. It remains to show that d(TP (∇1,∇0)) = P (1)− P (0). Note

P (1)− P (0) =

∫ 1

0

(
d

dt
P (t)

)
dt

=

∫ 1

0

(
P

(
d

dt
Ft, . . . , Ft

)
+ · · ·+ P

(
Ft, . . . ,

d

dt
Ft

))
dt

= k

∫ 1

0

P (Ft, . . . , Ft, d
∇tB)dt,
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with the last equality following since P is symmetric on A2m(End(E)) for any m ∈ Z. Finally, using Lemma
C.2 and the Bianchi identity, we see that

d(TP (∇1,∇0)) = k

∫ 1

0

d(P (Ft, . . . , Ft, B))dt = k

∫ 1

0

P (Ft, . . . , Ft, d
∇tB)dt,

as desired. �

4.3.3 Line bundles and axiom satisfaction

We begin with some observations about the tensor products of line bundles, the second of which is
necessary to show that the current definition of Chern classes satisfies the conditions of the Chern class
axioms.

Proposition 4.3.13. For two line bundles L, L′ over M , c1(L ⊗ L′) = c1(L) + c1(L′). In particular,
c1(L⊗k) = kc1(L) for any k ∈ Z.

Proof: Let ∇ be a connection on L and ∇′ a connection on L′ (the existence of connections is a well-known

result). Let ∇̃ := ∇ ⊗ IL′ + IL ⊗ ∇′ be a connection on L ⊗ L′. Proposition 4.3.4 shows that ∇̃ indeed is
a connection, and the Chern–Weil theorem gives that any connection may be used for the definition of the
Chern class. The first Chern class of L⊗ L′ is then

c1(L⊗ L′) =

[
σ1

(
iF∇̃
2π

)]
=

[
trace

(
iF∇⊗IL′+IL⊗∇′

2π

)]
=

[
i

2π
trace (F∇ ⊗ IL′ + IL ⊗ F∇′)

]
=

[
i

2π
(trace (F∇) trace (IL′) + trace (IL) trace (F∇′))

]
=

[
i

2π
(trace (F∇) + trace (F∇′))

]
=

[
σ1

(
iF∇
2π

)
+ σ1

(
iF∇′

2π

)]
= c1(L) + c1(L′).

Induction is used to show that c1(L⊗k) = kc1(L). The case k = 1 is a tautology, so with the induction
hypothesis, the result for k > 0 follows immediately by letting L′ = L⊗k−1. Finally, since L⊗ L∗ is trivial,
the first Chern class of L⊗ L∗ is 0. This means that c1(L) = −c1(L∗), so having the result for k > 0 for L∗

means having the result for k < 0 for L. �

Proposition 4.3.14. For the kth tensor product of the tautological line bundle γ1 over G1(C2) = CP1,
the first Chern class c1((γ1)⊗k) is k times the negative of the preferred generator of H2

dR(CP1; R).

Proof: To get a connection ∇ on the tautological bundle γ1(C2), use two charts U0 = {z 6= ∞} and
U1 = {w = 1

z 6=∞} to cover CP1. Using observations from Proposition 4.3.13 and §6.1 below, the transition
function from U0 to U1 is z−1 on γ1, and is g = z−k on (γ1)⊗k. The connection ∇ has locally-defined matrices
(in this case 1× 1 matrices) A0, A1 on U0, U1, respectively. We claim that

∇0 =
kzdz

1 + zz
on U0 , ∇1 =

kwdw

1 + ww
on U1
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are local expressions for a globally defined ∇ (this is in fact called the Chern connection, as in Example
4.2.16 ii) of [Huy05]). The compatibility condition that must be satisfied, given by equation (4.3.1), is
A1 = g−1A0g + g−1dg. In this case we have

g−1A0g + g−1dg = zk
(
kzdz

1 + zz

)
z−k + zkd(z−k)

=
kzdz

1 + zz
− kzkz−k−1dz

=
−kw−1w−2dw

1 + (ww)−1
+ kww−2dw

=
−kdw

w(1 + ww)
+
kdw

w

=
−kdw + kdw + kwwdw

w(1 + ww)

=
kwdw

1 + ww

= A1

as desired. The next step is to find the curvature, for which we apply the equation described in Remark
4.3.8. Since A = A0 on U0 and U0 covers all of CP1 except for one point, the answer is the same if we just
integrate over U0 using A0. Then

F 0
∇ = dA0 +A0 ∧A0

= d

(
kz

1 + zz

)
∧ dz +

(
· · ·
)︸ ︷︷ ︸

0-form

dz ∧ dz

=
k(1 + zz)dz ∧ dz − kz (zdz + zdz) ∧ dz

(1 + zz)2

=
−kdz ∧ dz
(1 + zz)2

.

Rewriting, the curvature is

F 0
∇ =

−kd(x+ iy) ∧ d(x− iy)

(1 + (x+ iy)(x− iy))2
=

2ikdx ∧ dy
(1 + x2 + y2)2

, and c1((γ1)⊗k) =
−kdx ∧ dy

π(1 + x2 + y2)2

is the first Chern form. To compare the equivalence class of c1((γ1)⊗k) with the equivalence class of the
preferred generator, we integrate this form over the manifold1. The integral of the preferred class over CP1

1This is called the Chern number of the manifold, and integration over the manifold is evaluation of the fundamental class,
which exists because CP1 is orientable and compact.
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is 1, and the integral of c1((γ1)⊗k) is∫
CP1

c1((γ1)⊗k) =
−k
π

∫ ∞
−∞

∫ ∞
−∞

dx ∧ dy
(1 + x2 + y2)2

=
−k
π

∫ ∞
0

∫ 2π

0

rdθ ∧ dr
(1 + r2)2

= −2k

∫ ∞
0

rdr

(1 + r2)2

= −k
∫ ∞
1

du

u2

= −k −1

u

u=∞
u=1

= −k.

Since −1 is the value of the integral of the negative of the preferred generator, it follows that c1((γ1)⊗k) is
k times the negative of the preferred generator of H2

dR(CP1; R), as desired. �

Proposition 4.3.15. The axiomatic properties of the Chern classes are satisfied by the above definition.

Proof: Axiom (C0) follows by Definition 4.3.11 and by noting that first, c0(E) = 1 since the degree 0
homogeneous polynomial is 1. Second, cm(E) = 0 for all m > n whenever E is a rank n, since σm = 0. For
axiom (C1), suppose that f : N →M is a smooth map of base spaces and ∇ is a connection on E. Following
Example 4.2.6 v) of [Huy05] and Lemma 3 in Appendix C of [MS74], there is a pullback connection f∗∇
on f∗E. To define it, consider a trivialization domain Ui ⊂ M , on which we write ∇ = d + Ai for some
n×n matrix Ai of one forms, as we showed above. Then on the trivialization domain f−1(Ui), we have that
(f∗∇)|f−1(Ui)

= d+ f∗Ai. Hence on f−1(Ui), applying the result of Remark 4.3.8,

F(f∗∇)|f−1(Ui)
= Fd+f∗Ai = d(f∗Ai) + (f∗Ai) ∧ (f∗Ai) = f∗(dAi +Ai ∧Ai) = f∗(F∇|Ui ).

The local definitions glue to a global definition of f∗∇, so the curvature of a pullback connection is the
pullback of the curvature of the original connection globally. Hence

ck(f∗E, f∗∇) = σk

(
iFf∗∇

2π

)
= σk

(
if∗F∇

2π

)
= f∗σk

(
iF∇
2π

)
= f∗ck(E,∇),

where the third equality follows as P̃ (f∗A) = f∗P̃ (A) for any homogeneous polynomial P̃ . For axiom (C2),
the sum of line bundles E ⊕ G (here G is chosen as the other bundle, instead of F , to lessen confusion
with the curvature F ) has connection ∇E ⊕∇G, and curvature F∇E ⊕F∇G , which follows directly from the
definition of the curvature. Then applying the definitions above,

c(E ⊕G) = det

(
IE⊕G +

iF∇E ⊕ F∇G
2π

)
= det

((
IE +

iF∇E
2π

)
⊕
(
IG +

iF∇G
2π

))
= det

(
IE +

iF∇E
2π

)
det

(
IG +

iF∇G
2π

)
= c(E) ^ c(G).

Axiom (C3) follows from the case k = 1 of Proposition 4.3.14. �
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4.4 Existence 4: Sheaf theory

Unlike the previous section showing existence of the whole Chern class, here we only show existence of
the first Chern class, in Čech cohomology. This is enough, however, to define the whole Chern class, as the
splitting principle from Section 5.3 shows. We follow Chapter 5 of [Pra07], Chapter 2 of [Har77], and Chapter
1 of [Bre97] for the main definitions. The notes [Vak13] are recommended for an excellent introduction to
the wider concept of algebraic geometry.

4.4.1 Sheaves, presheaves, and other definitions

Definition 4.4.1. Let X be a topological space. Then F is a presheaf on X if

i. for every U ⊂ X, there is an abelian group F(U), with F(∅) = {0},
ii. for every V ⊂ U ⊂ X, there is a homomorphism resU→V : F(U) → F(V ) such that resU→U = idU ,

and
iii. for every W ⊂ V ⊂ U , the composition resV→W ◦ resU→V is equal to resU→W .

A presheaf F is a sheaf on X, if whenever {Vi}i∈I an open covering of U ,

i. if f ∈ F(U) and resU→Vi(f) = 0 for all i ∈ I, then f = 0, and
ii. if fk ∈ F(Vk) and resVi→Vi∩Vj (fi) = resVj→Vi∩Vj (fj) for all i, j ∈ I, then there exists f ∈ F(U) such

that resU→Vk(f) = fk for all k ∈ I.

Inclusion of open sets U ⊂ X creates a poset of open sets containing p ∈ X (with the natural restriction
maps). For q, r ∈ Fp with q ∈ F(U) and r ∈ F(V ), write q ∼ r if there exists W ⊂ U ∩ V with p ∈ W and
resU→W (q) = resV→W (r), which is an equivalence relation. Then the equivalence class [q] is called the germ
of q at p ∈ U . The stalk of a presheaf F at p ∈ X is defined as the direct limit

Fp := lim−→
U3p

[
F(U)

]
= {q ∈ F(U) : U ⊂ X, p ∈ U}/ ∼ .

The stalk Fp is also called the set of germs of F at p.

Definition 4.4.2. Suppose that F is a presheaf on a topological space X. The sheafification of F is a sheaf
F+ on X such that for all U ⊂ X

F+(U) :=

f : U →
⊔
p∈V
Fp :

f(p) ∈ Fp and for all p, there is some open V 3 p and
t ∈ F(V ) such that f = t as functions from V to

⊔
r∈V Fr

 .

Definition 4.4.3. Let X be a smooth manifold. For every U ⊂ X, let A(U) be the group of all complex-
valued differentiable functions on U , with function addition as the group action. The restriction maps resU→V
are defined naturally, by a restriction f |V to a subset. Then A is called the sheaf of germs of differentiable
functions on X. Analogously, A∗ is called the sheaf of germs of non-zero differentiable functions on X,
where the group operation is function multiplication.

Example 4.4.4. Consider the presheaf F for which F(U) = G for all non-empty U ⊂ X, and F(∅) = 0.
This sheaf is called the constant presheaf. The sheafification of such an F is called the constant sheaf, and
has the property that Fp = G at all the stalks.

For instance, when G = Z, the sheafification is denoted by Z, and Zp = Z for all p. Therefore Z is called
the sheaf of locally constant integer-valued functions.

Definition 4.4.5. Let F ,G be sheaves on a topological space X. A morphism of sheaves ψ : F → G is a
collection of homomorphisms{

fU : F(U)→ G(U) : resGU→V ◦ fU = fV ◦ resFU→V

}
,
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or equivalently, maps fU for all U ⊂ X and V ⊂ U such that the diagram below commutes.

F(V ) G(V )

F(U) G(U)

fV

fU

resFU→V resGU→V

An sequence of sheaves is an ordered collection {Fi} of sheaves and morphisms ψi : Fi → Fi+1 for all i. The
sequence is called exact if the associated sequence of stalks is exact. Sequences of sheaves are written as

· · · Fi Fi+1 · · · .
ψi−1 ψi ψi+1

Note that once we have a morphism of sheaves, we may turn it into a morphism of stalks via the direct
limit. We also take it as a definition that a sequence of sheaves is exact if and only if it is exact on the
stalks, although exactness for sheaves may be defined with the image sheaf and kernel sheaf. For more on
this statement, the interested reader is directed to the discussion after Definition 2.1 in Chapter I of [Bre97].

4.4.2 Sequences and cohomology

The next proposition follows an example from §2.5 of [Hir66], using what is sometimes called the expo-
nential sheaf sequence.

Proposition 4.4.6. Let X 3 p be a smooth manifold, and define maps on stalks

αp : Zp → Ap,
f 7→ f,

and
βp : Ap → A∗p,

f 7→ e2πif .

For α and β the analogous maps on the whole sheaves, the following sequence is exact:

0 Z A A∗ 0.
α β

(4.4.1)

Proof: A sequence of sheaves is exact if and only if it is exact on the stalks, so we restrict ourselves to some
p ∈ X. To be exact at Zp, it must be that ker(αp) is trivial, or αp is injective on U . It is the inclusion map,
which is injective by definition, so we have exactness at Z.

For exactness at Ap, note that βp is a group homomorphism as addition in Ap becomes multiplication of
the images in A∗p. Also note that the identity element f = 0 gets taken to the identity element g = 1 = e2πi0.

The kernel of the map βp is {[f ] ∈ Ap : e2πig = 1 for some g ∈ [f ]}, and whenever g takes values in the
integers, it satisfies e2πig = 1. Hence ker(βp) ∼= Z ∼= im(αp), and the sequence is exact at Ap.

Finally, for exactness at A∗p, the map β must be surjective. Take g ∈ A∗p, for which βp : log(g)/(2πi) 7→ g
for a given branch of the complex logarithm. The function βp is well-defined, because we may assume without
loss of generality that U is small enough so that F(U) lies in a small ball around Fp in C∗, and so a branch
of the complex logarithm may be fixed, as in the diagram below.

branch cut R+v
C∗

0

Fp

F(U)

B(Fp, r)
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Hence βp is surjective, and the sequence is exact at A∗p, so the whole sequence is exact. �

Now we introduce the notion of Čech cohomology. Sheaf cohomology is a slightly more general concept,
but the two are equivalent in most settings (and in the main setting presented here, that of a paracompact
Hausdorff space).

Definition 4.4.7. Let U = {Uα}α∈I be a cover of a topological space X, and F a presheaf on X. Let k be
any non-negative integer. Then
· a k-cochain is a map ck acting on U that assigns to every collection of k + 1 sets (Uα0 , . . . , Uαk) an

element in F(Uα0
∩ · · · ∩ Uαk);

· under addition, the group of all k-cochains is denoted by Ck(U ;F);
· the coboundary operator δ : Ck(U ;F)→ Ck+1(U ;F) is a map defined by

(δck)
(
Uα0

, . . . , Uαk+1

)
=

k+1∑
i=0

(−1)i ck
(
Uα0

, . . . , Ûαi , . . . , Uαk+1

)
Uα0
∩···∩Uαk+1

(4.4.2)

with the αi distinct. The notation Ûαi means that the argument Uαi is omitted. When the domain of δ is
unclear, write δk : Ck → Ck+1. This map is a homomorphism of cochains, and due to the coefficient (−1)i,
has the property that δδ = 0. Then the kth Čech cohomology group of U is

Ȟk(U ;F) := ker(δ : Ck → Ck+1)/im(δ : Ck−1 → Ck)

for Zk the group of k-cocycles and Bk the group of k-coboundaries as in Definition 2.4.4. To define these
cohomology groups over just X, we take the direct limit of covers U of X, with a partial ordering given by
refinements of covers. That is, U < V if and only if U = {Uα} is a refinement of V = {Vβ}, meaning that
Uα ⊂ Vβ(α) for some appropriate β(α). Hence define the kth Čech cohomology group of X

Ȟk(X;F) := lim−→
U covers X

[
Ȟk(U ;F)

]
.

Remark 4.4.8. The direct limit may be difficult to calculate sometimes, but fortunately there is a special
type of cover U that eases the calculation. A cover U = {Uα}α∈I of X is called a Leray cover of 1st order of
X if Uα is contractible for all α ∈ I (if X is a manifold, such a cover always exists). If U is a Leray cover
of X, then Ȟ1(U ;F) ∼= Ȟ1(X;F), as in Theorem 12.8 in [For91]. There is a more general definition for a
Leray cover of kth order that relates Ȟk(U ;F) and Ȟk(X;F), but that definition is beyond the scope of
this paper.

There is a theorem in homological algebra that every short exact sequence induces a long exact sequence
on cohomology (see, for example, Theorem 2.16 of [Hat02] or §6 of Chapter 5 of [Bre93]). A similar approach
works for sheaves, in the sense that every short exact sequence on sheaves induces a long exact sequence
on the Čech cohomology of the sheaves (see, for example, §3 of Chapter 0 of [GH94]). Continuing with the
same sequence from (4.4.1), there exists a long exact sequence of sheaves

0 Ȟ0(X; Z) Ȟ0(X;A) Ȟ0(X;A∗)

Ȟ1(X; Z) Ȟ1(X;A) Ȟ1(X;A∗) · · · .

α̌ β̌

α̌ β̌

ρ

(4.4.3)

4.4.3 The Chern class of a complex line bundle

This section uses the ideas of §2.11 of Chapter 1 of [Hir66]. To describe in more detail the properties and
usefulness of these objects, consider the smooth manifold X = CP1 = G1(C2). Then using the same short
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exact sequence as in (4.4.1) to get the same long exact sequence as in (4.4.3), consider the following section
of it:

· · · Ȟ1(CP1;A) Ȟ1(CP1;A∗) Ȟ2(CP1; Z) Ȟ2(CP1;A) · · ·
ρ

(4.4.4)

Let’s calculate the two cohomology groups. First, de Rham’s theorem (stated in Section 5.4, but not proved)
states that in this particular case, Čech cohomology is isomorphic to singular cohomology, so

Ȟ2(CP1; Z) ∼= H2
S(CP1; Z) ∼= H2

S(S2; Z) = Z.

To calculate the other group, use the open cover U = {U0, U1} of CP1, given by U0 = CP1 \ {0} and
U1 = CP1 \ {1}. Since CP1 is S2 topologically, U0

∼= C can be thought of as the sphere with the south pole
removed, and U2

∼= C as the sphere with the north pole removed. This cover is a Leray cover of 1st order
for Ȟ1. We calculate Ȟ1(CP1;A∗) indirectly, by proving that the two groups Ȟi(CP1;A), for i = 1, 2 in
(4.4.4) vanish, so ρ must be an isomorphism. Since C2 = 0, it must be that

Z1 = ker(δ : C1 → C2) = C1. (4.4.5)

To show that Ȟ1(CP1;A) = 0, we have to show that im(δ : C0 → C1) = C1. So take f̌ ∈ C0 and
ǧ ∈ C1. The inclusion im(δ : C0 → C1) ⊂ C1 is clear, so it remains to show the other inclusion. Let
ηα : A(CP1)→ [0, 1] be a partition of unity subordinate to {U0, U1}, so η0(f) +η1(f) = 1 on all of A(CP1),
but ηα(f) = 0 whenever supp(f) ⊂ U cα, for α = 0, 1. Consider new functions di : Ci → Ci−1 for i = 1, 2
defined by (

d1ǧ
)

(Uα) = (η0ǧ) (U0, Uα)︸ ︷︷ ︸
non-zero only on U0∩Uα

+ (η1ǧ) (U1, Uα)︸ ︷︷ ︸
non-zero only on U1∩Uα

and (
d2ȟ
)

(Uα, Uβ) =
(
η0ȟ
)

(U0, Uα, Uβ)︸ ︷︷ ︸
non-zero only on U0∩Uα∩Uβ

+
(
η1ȟ
)

(U1, Uα, Uβ)︸ ︷︷ ︸
non-zero only on U1∩Uα∩Uβ

.

Next observe that(
d2 ◦ δ1

)
(ǧ)(Uα, Uβ) =

(
η0δ

1ǧ
)

(U0, Uα, Uβ) +
(
η1δ

1ǧ
)

(U1, Uα, Uβ)

= (η0ǧ) (Uα, Uβ)− (η0ǧ) (U0, Uβ) + (η0ǧ) (U0, Uα)

+ (η1ǧ) (Uα, Uβ)− (η1ǧ) (U1, Uβ) + (η1ǧ) (U1, Uα)

and (
δ0 ◦ d1

)
(ǧ)(Uα, Uβ) =

(
d1ǧ
)

(Uβ)−
(
d1ǧ
)

(Uα)

= (η0ǧ) (U0, Uβ) + (η1ǧ) (U1, Uβ)− (η0ǧ) (U0, Uα)− (η1ǧ) (U1, Uα),

and adding the two together, four terms cancel, leaving(
d2 ◦ δ1 + δ0 ◦ d1

)
(ǧ)(Uα, Uβ) = (η0ǧ) (Uα, Uβ) + (η1ǧ) (Uα, Uβ) = ǧ(Uα, Uβ), (4.4.6)

which means that d2 ◦ δ1 + δ0 ◦ d1 = id. If ǧ is a 1-cocycle, then d1ǧ is a 0-cochain. By (4.4.5), δ1ǧ = 0,
so by the calculated result (4.4.6), we have that δ0(d1ǧ) = ǧ, meaning that ǧ is a 1-coboundary. Hence
C1 ⊂ im(δ0), so C1 = im(δ0), meaning that Ȟ1(CP1;A) = 0. An identical argument works for Ȟ2, but
with larger indices. The general argument of showing that every k-cochain in Ȟk is a k-coboundary is
described in Appendix D, and works for any sheaf over a topological space with such a partition of unity
(such a sheaf is called a fine sheaf, and note that Z and A∗ are not fine sheaves).

Hence the two outer groups in (4.4.4) vanish, so ρ is an isomorphism, meaning that Ȟ1(CP1;A∗) ∼= Z.
This completes the example, and next we show that there is a natural equivalence between (equivalence
classes of) complex line bundles over CP1 and elements of H1(M ;A∗).
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Proposition 4.4.9. Let X be a topological manifold. Then Ȟ1(X;A) is isomorphic to the space of isomor-
phism classes of complex line bundles on X.

Proof: Since X is a topological manifold, it has a Leray cover. Let U = {Uα}α∈I cover X such that for
any complex line bundle L over X, L is trivial over each Uα, in the sense of Definition 2.1.1. If the Uα are
contractible, this cover has the desired property. Note that a vector bundle may be completely described by
U and transition functions, as in the discussion after Definition 2.1.1. By the domain and range, these maps
satisfy the definition of being 1-cochains, and in this case, also 1-cocycles.

Let L, L′ be two line bundles with respective local homeomorphisms ϕα, ψα and transition functions
gαβ , g′αβ . Then L and L′ are isomorphic if and only if there is a smooth map T : L→ L′ with Tα = ψαTϕ

−1
α

such that
Tβ = gβαTαg

′
αβ (4.4.7)

for all α, β ∈ I. Since ϕα is a map π−1(Uα) → Uα × C, it may be viewed as a 1-cochain (or rather, it’s
inverse). Since C1 (and all cochain groups) are abelian, condition (4.4.7) says that the difference of two line
bundles is

gβα
(
g′βα
)−1

= Tβ (Tα)
−1

=
(
ψβTϕ

−1
β

) (
ψαTϕ

−1
α

)−1
= ψβTϕ

−1
β ϕαT

−1ψ−1α =
(
ψβψ

−1
α

)︸ ︷︷ ︸
1-coboundary

(
ϕβϕ

−1
α

)−1︸ ︷︷ ︸
1-coboundary

,

which is a 1-coboundary. Hence two line bundles are isomorphic if and only if their difference is a 1-
coboundary, which is the condition of equivalence of 1-cocycles. �

Definition 4.4.10. For the isomorphism ρ as defined by (4.4.4), the first Chern class of a complex line
bundle L is c1(L) := ρ(L).

Since all the Chern classes are not defined here, the axioms of the Chern class cannot all be checked.
However, we may still at least show axiom (C3), which only concerns the first Chern class. By Theorem
2.3.2, there is always a bundle map from a complex line bundle E into the tautological bundle γ1, which
gives a ring structure to Ȟ1(CP1;A∗), with preferred generator the dual of the tautological bundle. Since
ρ is an isomorphism, it takes the identity to the identity, so γ1 is mapped to the negative of the preferred
generator of Ȟ2(CP1; Z).

5 Uniqueness of characteristic classes

Here we show that an arbitrary vector bundle may be pulled back to a Whitney sum of line bundles,
allowing the definitions of the Chern class in §4.2 and §4.4 to be extended to arbitrary rank n bundles. To
do this, we will need the Leray–Hirsch theorem, a strong statement that we do not prove. The reader is
referred to the theorem and proof in other texts, among them Theorem 4D.1 of [Hat02], Theorem 5.11 of
[BT82], and Theorem 1.1 of Chapter 17 of [Hus75].

5.1 The projectivization of a vector bundle

Recall the following definitions, mostly from Section 2, for V a vector space over K (for K either R or C):

· projectivization of V : the space P(V ) = {v ∈ V : λ1v ∼ λ2v, λ1, λ2 ∈ K \ {0}}.
· line bundle: a vector bundle of rank 1.
· tautological line bundle: the bundle π : E = {(x, y) ∈ P(Kn)×Kn+1 : y ∈ x} → P(Kn) ∼= G1(Kn).
· induced bundle: for π : E →M , a bundle π′ : E′ = f∗E →M ′ induced by the map f : M ′ →M .

Definition 5.1.1. Let πi : Ei → Mi be vector bundles, ψi : Ei → Ei+1 bundle maps (or morphisms), in
the sense of Definition 2.1.5, and fi : Mi → Mi+1 the associated maps of base spaces, for i ∈ I. Then the
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diagram below commutes, and the top row (5.1.1) is called a sequence of vector bundles.

· · · Ei−1 Ei Ei+1 · · ·

Mi−1 Mi Mi+1 · · ·· · ·

πi−1 πi πi+1

ψi−2

fi−2

ψi−1

fi−1

ψi

fi

ψi+1

fi+1

(5.1.1)

The sequence is called exact if im(ψi) = ker(ψi+1) for all i.

Given a complex vector bundle π : E → M of rank n, we would like to construct a space M ′ and a
map f : M ′ →M such that the pullback bundle f∗E is a direct sum of line bundles. Such a structure may
be created by successive decompositions to the projectivization of a vector bundle, with each decomposition
reducing the rank of a vector bundle by 1. Let us define this process first by comparing the two bundles.

M

E

π
fiber at p ∈M : Ep,

trivialization at p ∈ U ⊂M : (U,ϕ).

complex rank n bundle:

M

P(E)

f
fiber at p ∈M : P(Ep) ∼= CPn−1,

trivialization at p ∈ U ⊂M : (U,ψ),

with ψ : f−1(U) ∼= P(ϕ−1(U))→ U ×CPn−1.

projectivization of complex rank n bundle:

Using f as a map between manifolds, we can define the pullback bundle f∗E over P(E), with total space
given by f∗E = {(x, y) ∈ P(E)×E : f(x) = π(y)}. There are two other natural vector bundles related to
E over P(E).

Definition 5.1.2. Let E be a complex rank n vector bundle over M . In the context of the definition above,
the universal subbundle S of E, or tautological bundle, is given by

s : S = {(x, y) ∈ f∗E : y ∈ x} → P(E),
(x, y) 7→ x.

The fiber at x ∈ P(E) is simply x. When the base of S is ambiguous, write S(E) for the same definition.
By choosing a Hermitian metric on M , the universal quotient bundle Q := S⊥ of E is given by

q : Q→ P(E).

The bundle S is a rank 1 subspace of E, hence Q is a complex bundle of rank n− 1, as f∗E has rank n. The
definition of Q gives the split short exact sequence

0 S f∗E Q 0
ι ρ

, (5.1.2)

which is called the tautological exact sequence.

This sequence is split by construction, with ι the natural inclusion map and ρ the natural projection
map, and thus f∗E ∼= S ⊕ S⊥. All this may be summarized in the diagram of vector bundles below.

M

E

P(E)

S f∗E Q0 0

s
π

f

ρι

(5.1.3)
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5.2 The Leray–Hirsch theorem

To prove the main theorem of this section, the splitting principle, we need the following result. The
statement uses the more general notion of a fiber bundle, which is just a vector bundle, except the condition
of π−1(p) having the structure of a vector space is removed. Note also the following theorem is given
independent of cohomology theory.

Theorem 5.2.1. [Leray, Hirsch]
Let E be a fiber bundle over M paracompact, with projection map π. If there exist v1, . . . , vn ∈ H∗(E; Z)
such that for every p ∈M the elements v1|π−1(p), . . . , vn|π−1(p) generate H∗(π−1(p); Z), then

H∗(E; Z) ∼= H∗(M ; Z)⊗H∗(π−1(p); Z). (5.2.1)

That is, H∗(E; Z) is freely generated by v1, . . . , vn over H∗(M ; Z).

We proceed as in §20 of [BT82], beginning with the assumption that the first Chern class c1 of a line
bundle has already been defined.

From the tautological short exact sequence (5.1.2), let x = c1(S), the first Chern class of the universal
subbundle of E. Since S is a vector bundle over P(E), x ∈ H2(P(E)) by axiom (C0). Next, since P(E)p =
P(Ep) by definition, it follows directly that S(E)|P(E)p = S(Ep). That is, the vector bundle S(E) restricted
to a fiber P(E)p is the universal subbundle of the line bundle (since Ep has the structure of a vector space)
Ep. Then by axiom (C1),

c1(S(Ep)) = c1(S(E))|P(E)p

if we view the restriction map |P(E)p as a bundle map from P(E) to P(Ep). In the context of diagram (5.1.3),
P(E)p = f−1(p), it follows that x|f−1(p) generates H∗(P(E)p). Since H∗(CPn; Z) = Z[x]/(xn+1), as a vector
space H∗(P(E)p) is generated by x0, . . . , xn−1, so we may apply Leray–Hirsch to get that xn ∈ H∗(P(E))
may be expressed uniquely as a linear combination of the xis, with coefficients in H∗(M).

Definition 5.2.2. In the context of the discussion above, the elements ci(E) ∈ H2i(M) such that

xn = cn(E) + cn−1(E)x+ · · ·+ c1(E)xn−1 (5.2.2)

are called the Chern classes of E, with ci the ith Chern class of E. The sum 1 + c1 + · · ·+ cn is called the
total Chern class of E.

We finish this section with a statement about the ring structure of H∗(P(E)). Because of the equality
(5.2.2) and the Leray–Hirsch isomorphism (5.2.1), it follows immediately that

H∗(P(E)) = H∗(M)[x]/(cn(E) + cn−1(E)x+ · · ·+ c1(E)xn−1 − xn).

The negative sign in front of xn is not too pleasing, so some authors instead let x = c1(S∗) = −c1(S), using
the dual bundle from the very beginning, giving reason for the choice of negative generator in Section 3.2.
As a result, in the other convention half of the Chern classes, the odd-indexed ones, have the opposite sign.
In the interests of keeping the constructive steps clear, this complication in this section so far was avoided.
Herein the more prevalent notation is adopted, yielding the new equation

H∗(P(E)) = H∗(M)[x]/(xn + c1(E)xn−1 + · · ·+ cn−1(E)x+ cn(E)). (5.2.3)

5.3 The splitting principle

Here we develop a definition of the Chern classes that is independent of cohomology theory.

Definition 5.3.1. Given a rank n vector bundle π : E → M , a manifold F (E) is called a split manifold
for E if there exists a map f : F (E) → E such that the pullback bundle f∗E decomposes as a sum of line
bundles (i.e. f∗E ∼= E1 ⊕ · · · ⊕ En, where Ei is of rank 1 for all i), and the induced map on cohomology
groups, f∗ : H∗(M)→ H∗(F (E)) is injective. In this case, the map f is called the splitting map.
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Now we show the existence of a split manifold for any rank n vector bundle. First we construct the
manifold, without checking the second condition of cohomological group injectivity. This will be done
directly afterward.

If E has rank 1, then F (E) = M . So suppose that E has rank 2 and take the projectivization of E.
Consider the bundles mentioned above on P(E):

M

E

P(E)

S1 f∗1E Q1

π

f1

rank(S1) = 1,
rank(Q1) = n− 1,

rank(f∗1E) = n.

Note that f∗1E
∼= S1 ⊕Q1 so P(E) is a split manifold for E with splitting map π1 = f1 and f∗1E

∼= S1 ⊕Q1,
a direct sum of line bundles. Now suppose that E has rank 3. Then we take the only bundle that is not
1-dimensional, Q1, which is 2-dimensional by (5.1.2), and repeat the process on it:

M

E

P(E)

S1 f∗1E Q1

π

f1
P(Q1)

S2 f∗2Q1 Q2

f2

rank(S2) = 1,
rank(Q2) = n− 2,

rank(f∗2Q1) = n− 1,
rank(π∗2E) = n.

The space P(Q1) is a split manifold for E, with splitting map π2 = f1 ◦ f2. As E has rank 3, Q1 has rank 2,
and, consequently, so does f∗2Q1. The space π∗2E pulled back from E decomposes as the sum of line bundles
as

π∗2E
∼= (f1 ◦ f2)∗E ∼= f∗2 f

∗
1E
∼= f∗2 (S1 ⊕Q1) ∼= f∗2S1 ⊕ f∗2Q1

∼= f∗2S1 ⊕ S2 ⊕Q2. (5.3.1)

The bundle S1 is 1-dimensional, so f∗2S1 is as well. The bundle S2 is 1-dimensional by (5.1.2), and Q2 is
1-dimensional as (5.1.2) is exact. For thoroughness, we do one more level, and suppose that E has rank 4.
So the process must be repeated one last time:

M

E

P(E)

S1 f∗1E Q1

π

f1
P(Q1)

S2 f∗2Q1 Q2

f2
P(Q2)

S3 f∗3Q2 Q3

f3

rank(S3) = 1,
rank(Q3) = n− 3,

rank(f∗3Q2) = n− 2,
rank(π∗3E) = n.

A split manifold for E is P(Q2) with splitting map π3 = f1 ◦ f2 ◦ f3. The decomposition of π∗3E into a sum
of line bundles is given by

π∗3E
∼= (f1 ◦ f2 ◦ f3)∗E
∼= f∗3 f

∗
2 f
∗
1E

∼= f∗3 (f∗2S1 ⊕ S2 ⊕Q2)
∼= f∗3 f

∗
2S1 ⊕ f∗3S2 ⊕ f∗3Q2

∼= f∗3 f
∗
2S1 ⊕ f∗3S2 ⊕ S3 ⊕Q3.

Above we used (5.3.1) to get the third equivalence. For reasons similar to those given previously, each term
in the final direct sum is a 1-dimensional bundle. We now generalize the process and let E have rank n:

M

E

P(E)

S1 f∗1E Q1

π

f1
P(Q1)

S2 f∗2Q2 Q2

f2
P(Q2)

S3 f∗3Q2 Q3

f3
· · · P(Qn−2)

Sn−1 f∗n−1Qn−2 Qn−1

f4 fn−1
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Then a split manifold for E is P(Qn−2) with splitting map πn−1 = f1 ◦f2 ◦ · · · ◦fn−1, and the decomposition
of the total space given by

π∗n−1E
∼= f∗n−1 · · · f∗2S1 ⊕ f∗n−1 · · · f∗3S2 ⊕ · · · ⊕ f∗n−1Sn−2 ⊕ Sn−1 ⊕Qn−1. (5.3.2)

Each of the n terms above is a line bundle. Having constructed the manifold in general, we now check the
assertion that the associated map on cohomology groups, π∗i , is injective at each step.

· If E has rank 1, then π∗0 : H∗(M)→ H∗(F (E)) = H∗(M) is the identity map, which is injective.

· If E has rank 2, then apply equation (5.2.3) (also equation (20.7) in [BT82]). We then let ci(E) be the
ith Chern class of E and x1 = c1(S∗1 ), where S∗1 is the dual bundle of S1, giving

H∗(F (E)) = H∗(M)[x1]/(x21 + c1(E)x1 + c2(E)).

Then H∗(M) embeds in H∗(F (E)) by the isomorphism (5.2.1), which is just f∗1 . Indeed, this isomorphism
is the justification for the embedding of all the cohomology classes of M into those of F (E).

· If E has rank 3, then again applying (5.2.3), with x1 = c1(S∗2 ) and x2 = f∗2 c1(S∗1 ),

H∗(F (E)) = H∗(M)[x1, x2]

/(
x31 + c1(E)x21 + c2(E)x1 + c3(E),
x22 + c1(Q1)x2 + c2(Q1)

)
.

· If E has rank 4, then similarly with x1 = c1(S∗3 ), x2 = f∗3 c1(S∗2 ), and x3 = f∗3 f
∗
2 c1(S∗1 ),

H∗(F (E)) = H∗(M)[x1, x2, x3]

/ x41 + c1(E)x31 + c2(E)x21 + c3(E)x1 + c4(E),
x32 + c1(Q1)x22 + c2(Q1)x2 + c3(Q1),
x23 + c1(Q2)x3 + c2(Q2)

 .

· If E has rank n, then similarly with x1 = c1(S∗n−1), . . . , and xn−1 = f∗n−1f
∗
n−2 · · · f∗2 c1(S∗1 ),

H∗(F (E)) = H∗(M)[x1, x2, . . . , xn−1]

/
xn1 + c1(E)xn−11 + · · ·+ cn−1(E)x1 + cn(E),
xn−12 + c1(Q1)xn−22 + · · ·+ cn−2(Q1)x2 + cn−1(Q1),

...
x3n−2 + c1(Qn−3)x2n−2 + c2(Qn−3)xn−2 + c3(Qn−3),
x2n−1 + c1(Qn−2)xn−1 + c2(Qn−2)

 .

Note that if E has rank 1, then E ∼= S, so Q a rank 0 vector space, and taking the projectivization of Q
gives a rank 0 bundle on the empty set (and it does not make sense to say that P(Q) is the split manifold
here). So for a rank n bundle, we let P(Qm) = P(Qn−2) for all m > n − 1, so that later calculations are
easier. That is, we say that if E is a rank n bundle, then taking the projectivization n − 1 times of the
appropriate spaces or greater than n − 1 times gives the same split manifold. So if E1, . . . , Em are vector
bundles of different rank all over M , then there exists a splitting map σ : F (E•)→M . Within this setting,
consider the following theorem.

Theorem 5.3.2. [The Splitting principle]
Let E1, . . . , Em be rank r1, . . . , rm vector bundles, respectively, all over M , and F (E•) a split manifold of all
the bundles Ei with splitting map σ. If P (φ1(c(E1), . . . , c(Em)), . . . , φk(c(E1), . . . , c(Em))) is a polynomial
expression about the Chern classes of the vector bundles, for φi a direct sum, direct product, tensor product,
etc, then

P (φ1(c(σ∗E1), . . . , c(σ∗Em)), . . . , φk(c(σ∗E1), . . . , c(σ∗Em))) = 0

implies
P (φ1(c(E1), . . . , c(Em)), . . . , φk(c(E1), . . . , c(Em))) = 0.

That is, to show that a polynomial identity is true on the Chern classes of the Ei, it is sufficient to show
that the identity is true on the Chern classes of the respective direct sums of line bundles of the Ei, over the
split manifold F (E•).
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Proof: We assume the naturality of the Chern classes (axiom (C0) in §3.2). Hence

0 = P (φ1(c(σ∗E1), . . . , c(σ∗Em)), . . . , φk(c(σ∗E1), . . . , c(σ∗Em)))

= P (φ1(σ∗c(E1), . . . , σ∗c(Em)), . . . , φk(σ∗c(E1), . . . , σ∗c(Em)))

= P (σ∗φ1(c(E1), . . . , c(Em)), . . . , σ∗φk(c(E1), . . . , c(Em)))

= σ∗P (φ1(c(E1), . . . , c(Em)), . . . , φk(c(E1), . . . , c(Em))).

The second equality uses naturality of the Chern classes, as c(σ∗Ei) = σ∗(c(Ei)). Next, since σ∗ distributes
over the φi and P is a polynomial, we get the next equalities. Finally, since σ∗ is injective, as shown above,
it must be that

P (φ1(c(E1), . . . , c(Em)), . . . , φk(c(E1), . . . , c(Em))) = 0.

�

This theorem finally gives us uniqueness of the Chern class. Indeed, suppose that there are two natural
transformations c, c′ : E → H∗(M) satisfying the axioms of §3.2. Since the first Chern class over the
tautological line bundle is determined by axiom (C3), it follows that c1(γ1) = c′1(γ1), and moreover, by the
C∞ version of Theorem 2.3.2, c(L) = c′(L) for any line bundle L. Let σ : F (E) → E be the splitting map
of E, so then applying axioms (C1) and (C2),

σ∗c(E) = c(σ∗E)

= c(L1 ⊕ · · · ⊕ Lm)

= c(L1) ^ · · ·^ c(Lm)

= c′(L1) ^ · · ·^ c′(Lm)

= c′(L1 ⊕ · · · ⊕ Lm)

= c′(σ∗E)

= σ∗c′(E).

Hence c(σ∗E)−c′(σ∗E) = 0, and by the splitting principle, it follows that c(E)−c′(E) = 0, so c(E) = c′(E).
Therefore the axioms of §3.2 uniquely determine the Chern class.

5.4 Equivalence of cohomology theories

So far we showed that when defined in a general cohomology theory, there is only one definition of the
Chern classes. Another way would have been to use the Leray–Hirsch theorem and the splitting principle
in a particular cohomology theory, and apply two theorems of de Rham cohomology (which are only stated
here). For both, let M be an n-dimensional closed manifold.

Theorem 5.4.1. [de Rham]
H∗dR(M) ∼= H∗S(M ; R).

The theorem also asserts that cup products of cochains correspond to wedge products of forms. The
interested reader is directed to §3 in Chapter 5 of [Pra07] for a proof, which goes through a triangulation of
M , and by constructing special maps, gives the desired equality on simplices.

Theorem 5.4.2. [Čech, de Rham]
H∗dR(M) ∼= Ȟ∗(M ;K).

This theorem uses the constant sheaf K, with K(U) = R for all open sets U ⊂ M . A complete proof
is given by Theorem 8.9 in [BT82], which uses the generalized Mayer–Vietoris principle and some diagram
chasing.
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6 Examples

In this section we will compute the characteristic classes of certain complex vector bundles. A general
convention is, when given a manifold M , to write c(M) for the Chern class of the tangent bundle c(TM).

6.1 The sphere S2

As there is an isomorphism between S2 and CP1 = {[z0 : z1] ∈ C2 : zi 6= 0 for some i}, so we calculate
the Chern classes of the tangent bundle of CP1. The two charts that cover CP1 are U0 = {z0 6= 0} and
U1 = {z1 6= 0}, with maps [z0 : z1] 7→ w0 = z1

z0
and [z0 : z1] 7→ w1 = z0

z1
. On U0 ∩U1, we may write w1 = 1

w0
,

hence dw1 = −dw0/w
2
0. The vector fields ∂

∂w0
and ∂

∂w1
span the respective tangent spaces, and we claim

that the transition function from U0 to U1 is −w2
0. This claim follows as

dw1 = −dw0

w2
0

=⇒ dw1

(
∂

∂w1

)
= −dw0

w2
0

(
∂

∂w1

)
=⇒ dw0

(
∂

∂w1

)
= −w2

0 =⇒ ∂

∂w1
= −w2

0

∂

∂w0
.

However, if we choose to start with − ∂
∂w0

instead of ∂
∂w0

, then the transition function is w2
0. Next, note that

CP1 = G1(C2), the base space for the tautological bundle γ1 = γ1(C2). Recall that γ1 has total space

E =
{

(X,x) : x ∈ X ∈ G1(C2)
}

= {((z0, z1), (y0, y1)) : ∃ λ ∈ C s.t. (y0, y1) = λ(z0, z1)}

with projection map π(X,x) = X. The same two charts U0, U1 trivialize γ1, except the spanning sections
here are (z0, z1) 7→ (1, z1z0 ) and (z0, z1) 7→ ( z0z1 , 1). Using w0 = z1

z0
and w1 = z0

z1
as before, it follows immediately

that the transition function from U0 to U1 is 1/w0, as

(w1, 1) =

(
1

w0
,
w0

w0

)
=

1

w0
(1, w0) .

Next, if E is a vector bundle with transition functions gαβ , and F a vector bundle with transition functions
hαβ = g−1αβ , then F = E∗, the dual bundle of E. Since (1/z0)−2 = z20 , it follows that the tangent bundle of

CP1 is the tensor product of twice the dual of the tautological bundle γ1. In other words,

TS2 ∼= TCP1 ∼= (γ1)∗ ⊗ (γ1)∗.

Proposition 4.2.7 gives that the only non-zero homology groups of G1(C2) are H0 = H2 = Z, so the
ring may be given by H∗S(G1(C2); Z) = Z[x]/(x2), with c1(γ1) := −x. To relate the Chern class of a bundle
to the Chern class of the dual bundle, recall Proposition 4.3.13, which gives that c1((γ1)∗) = −c1(γ1) = x.
Finally, apply Proposition 4.3.13 to get that

c1(S2) = c1((γ1)∗ ⊗ (γ1)∗) = 2c1((γ1)∗) = 2x.

By the Chern class axioms, c0(S2) = 1, so c(S2) = 1 + 2x.

6.2 The projective space CPn

Recall that CPn ∼= G1(Cn+1), which is a smooth complex n-dimensional manifold, so the tangent bundle
is a rank n complex vector bundle. Let S = γ1(Cn+1), the tautological line bundle over CPn. Then S is a
subbundle of the trivial bundle Cn+1 over CPn. Consider the vector bundle diagram

CPn

Cn+1S CPn ×Cn+1⊂ =
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and note that S = {(`, v) : v ∈ `} ⊂ {(`, v) : ` ∈ CPn, v ∈ Cn+1} = CPn ×Cn+1. It follows immediately
that Cn+1 ∼= S ⊕ S⊥ as vector bundles. Next, recall from the proof of Theorem 2.2.2 that for a line ` in
Cn+1, there is a neighborhood U` ∼= Hom(`, `⊥) ∼= Hom(S`, S

⊥
` ) ∼= Hom(S, S⊥)`. The tangent space of U`

at ` is the same as the tangent space of CPn at `, so

T`CPn = T`U` ∼= T`
(
Hom(S, S⊥)`

)
= Hom(S, S⊥)`.

Since T`U` = T`U`′ for any other `′ ∈ U`, the neighborhoods are compatible. Hence

TCPn ∼= Hom(S, S⊥) ∼= S∗ ⊗ S⊥

from the definition of Hom(V,W ) ∼= Hom(V,C) ⊗W for vector spaces V,W over C. Next, tensor Cn+1 ∼=
S ⊕ S⊥ on both sides with S∗ to get

S∗ ⊗Cn+1 = S∗ ⊗ (C⊕ · · · ⊕C) = S∗ ⊕ · · · ⊕ S∗ = (S∗)
⊕n+1

on the left and
S∗ ⊗

(
S ⊕ S⊥

)
= (S∗ ⊗ S)⊕

(
S∗ ⊗ S⊥

) ∼= C⊕ TCPn

on the right. Hence TCPn ⊕C ∼= (γ1(Cn)∗)⊕n+1. Then by the Whitney product formula,

c(CPn) := c(TCPn)

= c(TCPn) ^ [1]

= c(TCPn) ^ c(C)

= c(TCPn ⊕C)

= c((γ1(Cn)∗)⊕n+1)

= c(γ1(Cn)∗)^n+1

= (1 + x)n+1.

The last line comes from the observations of the previous example. This result agrees with the case n = 1
above, since c(CP1) = (1 + x)2 = 1 + 2x+ x2 and x2 = 0.

6.3 The projective space CPn ×CPm

For the cartesian product of manifolds, the tangent bundle is described by T (M×N) = π∗MTM⊕π∗NTN ,
where π1 : M × N → M and π2 : M × N → N . Using the previous example, let c(CPn) = (1 + x)n+1

and c(CPm) = (1 + y)m+1. By the Whitney sum formula and naturality, c(CPn ×CPm) = π∗1c(CPn) ^
π∗2c(CPm), so

ck(CPn ×CPm) =

k∑
i=0

π∗1ci(CPn) ^ π∗2ck−i(CPm) =

k∑
i=0

(
n+ 1

i

)(
m+ 1

k − i

)
π∗1x

i ^ π∗2y
k−i.

SinceH∗S(CPn×CPm; Z) = Z[x, y]/(xn+1, ym+1), the Künneth formula says that π∗1x
i is, up to isomorphism,

the element xi (and analogously for yi). Hence the expression above is in the same cohomology class as∑k
i=0

(
n+1
i

)(
m+1
k−i
)
xi ^ yk−i.
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Appendices

A Locally finite covers of compact spaces

Here we prove a lemma for the proof of Theorem 2.3.2, regarding nested sets of closed and open covers.

Lemma A.1. Let M be a compact topological n-manifold. Then there exists a cover U = U1, . . . , Ur of M
such that there are open sets Vi ⊂ Ui for all i with cl(Vi) ⊂ Ui and

⋃
i Vi = M .

Proof: Since M is compact, for all p ∈ M there exists a set Up ⊂ M such that ϕp(Up) ⊂ Rn for some
homeomorphism ϕp : Up → ϕp(Up) ⊂ Rn. Without loss of generality (by translation), assume that ϕp(p) = 0.
Since ϕp is a homeomorphism, there is some rp > 0 such that B(0, rp) ⊂ ϕp(Up), for B(x, r) the open ball
centered at x with radius r. Let Vp = ϕ−1p (B(0, rp/2)), so then cl(Vp) ⊂ Up as desired. This process is
described in the diagram below.

p

ϕ−1p (B(0, rp/2)) = Vp

Up

M

ϕp(p) = 0

B(0, rp/2)

B(0, rp)

ϕp(Up)

V

ϕp

ϕ−1p

Since M is compact, there exists a finite subcover V = {V1, . . . , Vr}, such that V still covers M . Then, letting
Ui be the associated set of Vi in the construction above, we have a cover U = {U1, . . . , Ur} that covers M
and satisfies the conditions. �

In the proof of Theorem 2.3.2, the sets Ui and Vi need to be trivialization domains. This is possible
because given Ui, we may assume without loss of generality, by shrinking Ui, that the bundle trivializes over
Ui.

B Orientation of a vector space

Consider the set Rn
0 of all the non-zero vectors in Rn and the relative singular cohomology groups

Hi
S(Rn,Rn

0 ; Z), as in Definition 2.4.4. As in §3.1 of [Hat02] and §4.1 above, begin with the long exact
sequence of the pair (Rn,Rn

0 ), given by

· · · Hj−1
S (Rn

0 ; Z) Hj
S(Rn,Rn

0 ; Z) Hj
S(Rn; Z) Hj

S(Rn
0 ; Z) Hj+1

S (Rn,Rn
0 ; Z) · · · ,δδ

which starts with 0 → H0
S(Rn,Rn

0 ; Z) → · · · . For i > 0, the group Hi
S(Rn; Z) is trivial, and since Rn

0 is
homotopy equivalent to Sn−1, for i > 1 it follows that

Hi
S(Rn,Rn

0 ; Z) ∼= Hi−1
S (Rn

0 ; Z) ∼= Hi−1
S (Sn−1; Z) =

{
Z if i = n,

0 else.

Next, consider the exact sequence

0 H0
S(Rn,Rn

0 ; Z) H0
S(Rn; Z) H0

S(Rn
0 ; Z) H1

S(Rn,Rn
0 ; Z) 0.

Z Zfor all n for n = 0, n > 2

α δ

= =
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When n = 0, the map α is the identity, so since the sequence is exact, H0
S(Rn,Rn

0 ; Z) = 0 and H0
S(R0

0; Z) = 0.
When n = 1, H0

S(R1
0; Z) ∼= Z⊕Z and α(x) = (x, x), so the map α is an injection. Again applying properties

of an exact sequence, we have H0
S(R1,R1

0; Z) = 0 and H1
S(Rn,Rn

0 ; Z) = Z⊕ Z/Z ∼= Z. Therefore

Hi
S(Rn,Rn

0 ; Z) =

{
Z if i = n,

0 else.

Theorem B.1. A choice of orientation of Rn corresponds to a choice of generator of Hn
S (Rn,Rn

0 ; Z).

Proof: Let (e1, . . . , en) be the standard ordered basis of Rn. Let ∆n be the simplex defined by the ordered
list of vertices (0, e1, . . . , en). Let σn : ∆n → Rn be the map that acts on ∆n only by translation, moving
the centroid (or barycenter) of ∆n to the origin of Rn. For example, in the case of n = 2:

x1

x2

σn−−−−−→ x1

x2

Since the boundary ∂(σn∆n) is contained in Rn
0 , the map σn represents an element of the relative cocyle

group Zn(Rn,Rn
0 ; Z). Since Hn

S (Rn,Rn
0 ; Z) = Z, the map σn is the preferred generator of Z. Repeat the

above process instead with the ordered basis (e1, . . . , en−1,−en) with an analogous simplex ∆′n and map σ′n
to get that σ′n is the negative of the preferred generator of Z = Hn

S (Rn,Rn
0 ; Z). For example, again with

n = 2, we have the following:

x1

x2

σ′n−−−−−→ x1

x2

Note that the map m : σn∆n → σ′n∆n is the −1 multiplication map on Hn
S (Rn,Rn

0 ; Z) (described more
in Exercise 7 in §2.2 of [Hat02]). Since the definition of orientation of a vector space, given by Definition
3.1.1, says that two orientations of Rn are the same iff the change of basis matrix between the two has
positive determinant, and the map from (e1, . . . , en) to (e1, . . . , en−1,−en) has negative determinant, each
generator of the mentioned cohomology group corresponds to an orientation of Rn. �

Definition B.2. With reference to the construction above, the preferred generator of Hn
S (Rn,Rn

0 ; Z) is the
cohomology class u = [σn∆n] ∈ Hn

S (Rn,Rn
0 ; Z).

All of the above may be applied to a vector space V , and so also to a fiber of a vector bundle.

Corollary B.3. (adapted from Theorem 9.1 in [MS74]) For E an oriented rank n bundle,

Hi
S(E,E0; Z) =

{
Z if i = n,

0 if i < n.

Moreover, the restriction u|(F,F0) ∈ Hn
S (F, F0; Z) of the preferred generator u ∈ Hn(F, F0; Z) is the preferred

generator of the fiber F , for all fibers F .
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C The Chern–Weil theorem

Lemma C.1. (appears as Lemma 4.4.4 in [Huy05]) Let γj ∈ Aij (End(E)) for j = 1, . . . , k, so P (γ1, . . . , γk) ∈
Ai1+···+ik(M). Then, for any connection ∇ on E,

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···+ij−1P (γ1, . . . , γj−1, d
∇γj , γj+1, . . . , γk).

Proof: Fix a local trivialization on U . Then γj ∈ Aij (Kr×r), or equivalently γj is a matrix of ij-forms on U .
In this trivalization, as in the discussion before Theorem 4.3.12, the operator d∇ on A∗(End(E)) is d+ [A, ·],
for A ∈ A1(E) such that ∇ = d + A locally on E. That is, d∇γj = dγj + [A, γj ] for the bracket defined on
page 26. Without loss of generality, γj = ωj ⊗ Tj for ωj ∈ Aij (M) and Tj ∈ Γ(End(E)). First compute

P (γ1, . . . , γk) = P (ω1 ⊗ T1, . . . , ωk ⊗ Tk)

= ω1 ∧ · · · ∧ ωkP (T1, . . . , Tk)

= ω1 ∧ · · · ∧ ωkP ((T1)a1b1 e
b1 ⊗ ea1 , . . . , (Tk)akbk e

bk ⊗ eak)

= (ω1(T1)a1b1 ) ∧ · · · ∧ (ωk(Tk)akbk )P (eb1 ⊗ ea1 , . . . , ebk ⊗ eak)︸ ︷︷ ︸
constant function

,

for Tj = (Tj)
aj
bj
ebj ⊗ eaj . Then, for γj = (γj)

a
be
b ⊗ ea, that is, (γj)

a
b = ωj(Tj)

a
b ,

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···+ij−1(γ1)a1b1 ∧ · · · ∧ d((γj)
aj
bj

) ∧ · · · ∧ (γk)akbkP (eb1 ⊗ ea1 , . . . , ebk ⊗ eak)

=

k∑
j=1

(−1)i1+···ij−1P (γ1, . . . , γj−1, dγj , γj+1, . . . , γk). �

Lemma C.2. [Generalization of infinitesimal invariants]
Let C1, . . . , Ck ∈ A2m(End(E)) for some m ∈ Z, where m might change for each Ci. Let B ∈ A1(End(E))
and P : gl(r,K)→ K be a k-linear symmetric invariant map. Then

k∑
j=1

(−1)i1+···+ij−1P (C1, . . . , Cj−1, [B,Cj ], Cj+1, . . . , Ck) = 0.

Proof: By linearity assume without loss of generality that all forms are decomposable. We start with ω ∈
A1(M), S ∈ Γ(End(E)) and B = ω⊗S. Also, ωj ∈ A2m(M) for some m, Tj ∈ Γ(End(E)), and Cj = ωj⊗Tj .
Then, using the bracket operation introduced in the proof of Theorem 4.3.12, [B,Cj ] = ω ∧ ωj [S, Tj ] and

P (C1, . . . , Cj−1, [B,Cj ], Cj+1, . . . , Ck) = ω1 ∧ · · · ∧ ωj−1 ∧ (ω ∧ ωj) ∧ ωj+1 ∧ · · · ∧ ωk
P (T1, . . . , Tj−1, [S, Tj ], Tj+1, . . . , Tk)

= ω ∧ (ω1 ∧ · · · ∧ ωk)P (T1, . . . , Tj−1, [S, Tj ], Tj+1, . . . , Tk).

Sum over all j from 1 to k and apply the fact from the previous lemma that in a local trivialization,
d∇γj = dγj + [A, γj ] to get

d(P (γ1, . . . , γk)) =

k∑
j=1

(−1)i1+···ij−1P (γ1, . . . , γj−1, d
∇γj , γj+1, . . . , γk)

−
k∑
j=1

(−1)i1+···+ij−1P (γ1, . . . , γj−1, [A, γj ], γj+1, . . . , γk)

= 0.

�
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D Fine sheaves

Here we show a generalization from §4.4.3. Let X be a compact topological space and F a sheaf such
that F(U) is a C∞(U)-module for all U open in X. Such a sheaf F , in particular, is a fine sheaf, for which
Ȟk(X;F) = 0 for all k > 0. For Ck the space of k-cochains in Ȟk(X;F), we show that Zk = ker(δ : Ck →
Ck+1) = im(δ : Ck−1 → Ck) = Bk. Since Bk ⊂ Zk follows from the definition of the map δ, we show
that Zk ⊂ Bk. Since every cover of a manifold admits a countable subcover, we restrict our attention to
countable covers.

Let U = {U0, U1, . . . } be a cover of X. Let ηα : X → [0, 1] be a partition of unity subordinate to U , so
η0(f) + η1(f) + · · · = 1 on all of X and supp(ηαi) ⊂ Uαi , for all αi. Consider new functions di : Ci → Ci−1

for i = k, k + 1 defined by (
dkǧ
) (
Uα0

, . . . , Uαk−1

)
=
∑
i

(ηiǧ)
(
Ui, Uα0

, . . . , Uαk−1

)︸ ︷︷ ︸
non-zero only on

U0 ∩ Uα0
∩ · · · ∩ Uαk−1

and (
dk+1ȟ

)
(Uα0

, . . . , Uαk) =
∑
i

(
ηiȟ
)

(Ui, Uα0
, . . . , Uαk)︸ ︷︷ ︸

non-zero only on
U0 ∩ Uα0

∩ · · · ∩ Uαk

,

where αi ∈ {0, 1, . . . } for all i, and αi 6= αj unless i = j. Applying the above definitions and the coboundary
operator from (4.4.2) gives the desired result. When the map δ is applied, we omit the set to which it is
restricted. So(
dk+1 ◦ δk

)
(ǧ) (Uα0 , . . . , Uαk) =

∑
i

(
ηiδ

kǧ
)

(Ui, Uα0 , . . . , Uαk)

=
∑
i

(ηiǧ) (Uα0
, . . . , Uαk)−

∑
j

(−1)j (ηiǧ)
(
Ui, Uα0

, . . . , Ûαj , . . . , Uαk

)
and (

δk−1 ◦ dk
)

(ǧ) (Uα0 , . . . , Uαk) =
∑
j

(−1)j
(
dkǧ
) (
Uα0 , . . . , Ûαj , . . . , Uαk

)
=
∑
j

∑
i

(−1)j (ηiǧ)
(
Ui, Uα0 , . . . , Ûαj , . . . , Uαk

)
.

Since the nested summand of the first expression is the negative of the second expression, adding the two
expressions together gives(

dk+1 ◦ δk + δk−1 ◦ dk
)

(ǧ) (Uα0
, . . . , Uαk) =

∑
i

(ηiǧ) (Uα0
, . . . , Uαk)

=

(∑
i

ηi

)
(ǧ) (Uα0 , . . . , Uαk)

= (ǧ) (Uα0
, . . . , Uαk) ,

so dk+1 ◦ δk + δk−1 ◦ dk is the identity operator on Ck. Let ǧ ∈ Zk, so δkǧ = 0. Hence δk−1(dkǧ) = ǧ, so ǧ
is also a k-coboundary, that is, ǧ ∈ Bk. Hence Zk ⊂ Bk, completing the calculation.
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List of notation

E, (E,M, π) vector bundle E over M with projection map π 1

Ep fiber over p ∈M of a vector bundle E over M 1

R, C trivial real, complex line bundle 3

ER underlying real vector bundle of a complex vector bundle E 3

E
∧
F exterior product of vector bundles E 3

Gk(Cn) Grassmannian of k-subspaces in Cn 4

Vk(Cn), V ok (Cn) (orthonormal) Stiefel manifold of k-frames in Cn 4

h(z, w) (standard) Hermitian inner product of complex vectors z and w 5

γk(Kn) tautological bundle of k-planes in Kn 6

∆n, σn n-simplex and n-chain 9

Cn(X), Cn(X) nth chain group and nth cochain group of X 9

H(X;A) cohomology theory of X over A 8

σ, e(σ) Schubert symbol, Schubert cell 16

Γ(E) space of smooth sections on a vector bundle E 21

An(M ;E) space of E-valued m-forms on a vector bundle E over M 22

∇ connection 22

d∇ generalization of connection ∇ to k-forms 23

F∇ curvature of a connection ∇ 23

σk homogeneous polynomial of the degree k part of the determinant 24

[ · , · ] bracket operator of End(E)-valued forms 26

F , F+, FP sheaf or presheaf, sheafification of F , stalk of F at P 30

A, A∗ sheaf of germs of (non-zero) differentiable functions 30

ck, Ck(U ;F) k-cochain, space of k-cochains of a cover U and a sheaf F 32

Zk, Bk group of k-cocycles and k-coboundaries 32

Ȟk(M ;F) kth Čech cohomology group of M and a sheaf F 32

Z sheaf of locally constant integer-valued functions 30

P(E) projectivization of a vector bundle E 34

S, S(E) universal subbundle (of a vector bundle E) 35

F (E) split manifold of a vector bundle E 36
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Index

Bianchi identity, 25
bracket operator, 26
bundle

Kn-, 1
complexification, 3
direct sum, 3
dual, 2
fiber, 36
induced, 2
isomorphic, 34
orientable, 9
pullback, 2
sequence of, 34
tangent, 2
tautological, 6
tensor product, 3
trivial, 2
underlying real, 3
universal, 8
universal quotient, 35
vector, 1
wedge product, 3

bundle map, 3

category, 8
Čech cohomology, 32
chain, 9
Chern

class, 25
connection, 27
form, 25

Chern class, 12, 36
Chern connection, 27
Chern number, 28
Chern–Weil theorem, 25
class

Chern, 25
closed form, 9
coboundary, 8, 9, 32
cochain, 32
cocycle, 8, 9, 32

gluing, 2, 34
cohomology, 9

de Rham, 9
relative, 9
singular, 9

cohomology ring, 8
cohomology theory, 8
complete flag, 15

complexification of vector
bundle, 3

complexified tangent bundle,
3

complexified vector bundle, 2
connection, 22

Chern, 27
pullback, 29
trivial, 22

constant presheaf, 30
constant sheaf, 30
cup product, 8
curvature, 23

de Rham cohomology, 9
de Rham theorem, 39
differential form, 9, 22
direct limit, 6
direct sum of bundles, 3
dual bundle, 2

Eilenberg–MacLane space, 8
Einstein notation, 23
exact form, 9
exact sequence, 31
exponential sheaf sequence, 31
exterior product of bundles, 3

fiber, 1
fiber bundle, 36
fine sheaf, 33
flag, 15
form, 22

Chern, 25

germ, 30
gluing cocycle, 2, 34
Grassmannian manifold, 4
Gysin sequence, 13

Hermitian inner product, 5

induced bundle, 2
inner product, 5
invariant polynomial, 24

Künneth formula, 41

Leibniz rule, 22
Leray cover, 32
Leray–Hirsch theorem, 36

limit, 6
local trivialization, 1

morphism of sheaves, 30

naturality, 12

orientable bundle, 9
orientation, 9

parallel section, 22
partial flag, 15
polarization, 24
preferred generator, 43
presheaf, 30

constant, 30
projection map, 1
projectivization, 34
pullback bundle, 2
pullback connection, 29

rank, 1
relative cohomology, 9

Schubert cell, 16
Schubert symbol, 16
section, 11, 21
sequence

Gysin, 13
of bundles, 34
of sheaves, 31
tautological exact, 35

sheaf, 30
constant, 30
exact sequence, 31
fine, 33
morphism, 30

sheaf cohomology, 32
sheaf of differentiable

functions, 30
sheafifcation, 30
simplex, 9
singular cohomology, 9
space of sections, 21
split manifold, 36
splitting map, 36
splitting principle, 36, 38
stalk, 30
Stiefel manifold, 4
subbundle, 2

universal, 35
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symmetric polynomial, 24

tangent bundle, 2
tautological bundle, 6
tautological exact sequence,

35
tensor product of bundles, 3
theorem

Chern–Weil, 25
de Rham, 39

Leray–Hirsch, 36
top class, 9
total space, 1
transition function, 2
trivial bundle, 2
trivial connection, 22
trivialization, 1

underlying vector bundle, 3

unitary, 6
universal quotient bundle, 35
universal subbundle, 35
universal vector bundle, 8

vector bundle, 1

wedge product, 22
wedge product of bundles, 3
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