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Solution: Consider the sets

. (August 24) Find an atlas on the extended complex plane C U {oo}.

Uy = C,
Ur = C\{0}U{oo},
and the two maps
¢ : C — R? ¢o : C\{0}U{x} — R?
) and .
z4+iy —  (z,y), x4y — (1/z,1/y).

It is immediate that Uy, U; cover the space and that the images of ¢g, 1 are open, since they are
surjective onto all of R?. The intersections are easily seen to be
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Hence the composition is a C*° map with C'* inverse.

“north pole” of the sphere S2.

2. (August 24) Find an atlas on the real projective space RP™ = {1-dimensional subspaces of R"}.
Solution: Recall that any point in RP" is represented by an (n + 1)-tuple [z¢ : --- : 2], where
z; € R, the coordinates are never all simultaneously zero, and points are equivalent under non-zero
scalar multiplication. So consider the sets

U = {[T:a1:-:2,) © @ € Ryo},
Ur = {lro:l:izo--r2] © @ € Ryl
Up = {lzo:xi:-1xp_1:1] 1 2 € Ry},
which clearly cover all of RP". For our maps, consider
Qi Uz — ]in7
[a:l:-~-:xi,1:1:xi+1:~-~:xn] — (ml,‘..,xi,l,xiﬂ,...,xn).
As these maps are surjective, p;(U;) is open. [ |
3. (August 28) Show that the stereographic projection 7 : S?\ {N} — R? is a diffeomorphism, for N the



Solution: The north pole is chosen to be (0,0,1), and the stereographic projection is given by

™ S2\{N} — R?

(z,y)
('r7y?2) — %

Here the unit sphere is centered at the origin of R?, and we are considering R? to be the zy-plane in
R?. Since z # 1, dividing by 1 — z is a smooth operation, so 7 is smooth. The inverse of 7 is

. 2 2
v R — S2\{N},
2X 2Y X24y?-1
(X; Y) — <X2+Y2+1’ X24Y2410 X2+Y2+1> I

which may be seen to be the inverse as

(o) _

2
2
_ B =7 ' - Bi
= z2+ = z)2+1 = z)2+(1 z)2+1 = z)2+(1 z)2+1

o(r((2,y,2)) =

23@1—2 2y(1 —2) 2?2+ 92— (1—2)2
Er R (-2 1y +<1—z>2’x2+y2+<1—z>2)
22(1 — 2) 2y(1 —2) 2z—222

2-2z 7 2-2z 2—22)

= (z,y, 2)

This inverse is also smooth, since X2 +Y?2 41 # 0, as X2,Y2 > 0 and 1 > 0. Hence the stereographic
projection is smooth with a smooth inverse, so we have a diffeomorphism. ]

. (August 28) Show that O(n), the space of orthogonal n x n matrices, and SO(n), the space of orthog-
onal matrices with determinant 1, are both manifolds.

Solution: Recall that A € O(n) iff AAT = I. Consider the map F : M,, — Sym(M,), given by
A AAT where M,, is the set of real-valued n x n matrices. The derivative of F' at A is map DFy
given by

0= lim |JEA+H) - F(4) - DFA(H)}
1H] -0 | I H]|
. [|AAT + AHT + HAT + HHT — AAT — DFA(H)W
[FA=n] | H|
~ lm [|AHT + HAT + HHT — DFA(H)”
I1H|=0 | |H| '

It follows that DFs(H) = HAT + AHT. Consider the case H = KA for some matrix K. Then
Da(H) = KAAT + AATKT, so if A € F7Y(I), then DFs(H) = K + KT. Suppose we start with a
matrix S. Then DFA(KA) = K+ KT =S, so K = S/2. Hence DF4(H) is surjective, and applying
the theorem from class, F~!([) is a manifold.

For SO(n), which is the matrices A € O(n) with determinant 1, consider the determinant
det : O(n) — R. It is a smooth function, and the image of det is {—1,1}. This means that O(n) has
at least two connected components, and no componenet contains matrices with both determinant 1
and —1. Therefore the connected componenets of O(n) that map to +1 under det (there happens to



Ut

be just one, but we do not prove this) are SO(n). Since a connected component of a manifold is a
manifold in its own right (by refinements of charts), SO(n) is a manifold. |

(August 31) Show that a smooth map of manifolds is continuous, using the topology of the manifolds.

(August 31) Show that SO(3) is diffeomorphic to RP?.

Solution: To see this, view SO(3) as the space of rotations in R®* and RP? as S%/(x ~ —z), the
3-sphere modulo the antipodal relation. Further, view the 3-sphere as the 3-dimensional solid ball with
radius 7 with boundary identified, that is,

S3 =~ B3/0B3.
We now construct an identification between the two spaces. An arbitrary element of SO(3) looks like

(£v.2)., 0 )eSOE),
€S2 e[—m,m)

with ((z,y, 2),0) ~ ((—z,—y, —z), —0). An arbitrary element of S* looks like

3
(($7y7z)7 \0/_/ )65,

cOB2=52 e[—m,m)

where (z,y, z) represents a direction in R?, and 0 is the length of the radius in B (which we are viewing
concurrently as having radius 1 (for SO(3)) and radius 7 (for S®)). When we apply the antipodal map
(z,y,2),0) ~ ((—x,—y, —2),—0) in S* (to match the one in SO(3) above), we get RP3, as desired.
The map is a diffeomorphism, since it is the identity as presented. |

(September 2) Show that C°°(M), the space of smooth maps M — R, is a vector space.

Solution: To show that it is a vector space, we need to show it is closed under addition and scalar
multiplication. So let f,g € C°°(M), for which

(f+9)(@) = f(x) +9(z) € R,

so f+ g € C>(M). Similarly, for any scalar ¢ € R, we have
(cf)(x) =c- f(x) €R,
so cf € C*°(M). Hence C*°(M) is a vector space. |

(September 2) Describe an n-dimensional analogue of the smooth bump function presented in class.

Solution: Consider the function f in 1 variable, given by

e 1/t ift >0,
f(t) = .
0 if t <0.



10.

This is a C*° function. Define

f(t) . g(t)=0 if t<0
t)= — —F—— th . ’
W=y ra-p ™M glt)y=1 if t>1
Next, define
. . h(t)=0 if |[t| =2,
h(t) =gt +2)g9(2—-1) with M) =1 if [f <1
Note this function is also C*°. Moreover, we can make an n-dimensional analogue, by k(z1,...,z,) =

h(z1)h(xs) - - h(zy). In this setup, the function will be 1 if ||z|| < 1, and taking k(R™'x) is identically
1 in a ball of radius R, and is 0 outside a ball of radius 2R. More specifically, define h;(x;) for 1 <i < n
with analogous f and t as above, and note that

h(R7'z;) =0 if |t| > 2R,

WE ) =g (F+2)e(2-F)  wim T 2R

So indeed, for z = (z1,...,7,) € R", whenever |z|| < R, we have k(R™!'z) = 1 and whenever

|lz|| = 2R, we have k(R~1z) = 0. [ |
(September 4) Let M > a be a n-dimensional manifold in coordinates z1, . .., &,. Show that (dz1)q,. .., (dzn)a
span T M.

Solution: Recall T M := C>*°(M)/Z,(M), where Z,(M) is the subspace of C*° (M) consisting of the
smooth maps whose derivative vanishes at a. The dx; are in T; M, since each dz; represents the linear
function z; on R™. This also shows that the dz; span T, M. To see that they are linearly independent,
suppose that

n

0= Z Ai(dxi)a

=1

for some \; € R. Then
0 = Z )\l(d.’ﬂl)a = Zd()\lxl) = d (Z /\7.$1> s
=1 =1 =1

meaning that Y A\;x; = ¢ for some scalar ¢. Since the z; are linearly independent coordinates in R",
the coefficients of z; have to match up on the left and right sides. Hence A; = 0 for all 4 and ¢ = 0.
Therefore the dz; are linearly independent, and so form a basis of T M. |

September 9) Find a basis for 7,53, the tangent space of S at a point p.
p g

Solution: Let p = (p1, pa, p3,pa) € S°, s0 a vector & = (1, &9, x3,24) € R* is tangent to S at p (that
is, lies in 73,5%) if and only if p- 2 = 0, for - the dot product. Note that

x-p=(T1,T2,23,24) - (D1,D2,P3,P1) = T1P1 + TaP2 + T3p3 + Tapa,

and assuming that py # 0 (if p4 = 0, change the basis vectors so that ps # 0, as there is always one
coordinate of p that is non-zero). Then in 7,,S% we have
—Z1P1 — L2P2 — T3P3

Ty = )
P4




11.

12.

13.

and so T, is completely described by the points

—T1p1 — To2p2 — xspg)

(xlyxZ;x?n D
4

It follows immediately that a basis for 7,$% in R* is

(1,070,_“) : (0,1,0,_“> : (0,0,1,_“)
D4 P4 P4

(September 11) Prove the following statement: Let F': M — N be a smooth map and ¢ € N such that
for all @ € F~1(c), the derivative DF, is surjective. Then F~!(c) is a smooth manifold of dimension
dim(M) — dim(N).

Solution: We know the statement is true when M = R™ and N = R". In this case, let M be
m-~dimensional and N be n-dimensional. So let (U, ¢) be a chart on N such that ¢ € U. Let (V, ) be
a chart on M such that a € F~!(c) also is in V.

Apply the known theorem to the map F = vpo Foyp~ ! : R"™ — R". The derivative of this map
is surjective - indeed, surjectivity of such a map means the surjectivity of the homomorphism between
tangent spaces. Since this is guaranteed for F' and the chart maps ¢, have it guaranteed to begin
with, we are fine.

So we have that f‘l(go(c)) C (V) Cc R™ is a manifold of dimension m — n. Since ¢ and 1 are
invertible homomorphism, we have that F~1(c) C M is a manifold of dimension m — n. [ |

(September 11) Let f : M — N be a diffeomorphism of manifolds. Show that for each x € M, (df).
is an isomorphism of tangent spaces.

Solution: Recall an isomorphism is an invertible homomorphism. Since f is a diffeomorphism, it has
a differentiable inverse g : N — M such that go f = idj; and f o g = idy. We claim that (dg) sy is
the inverse of (df).. Indeed, apply the chain rule to go f and f o g to find that

idr, v = (d(go f))e = (dg) y(x) © (df )
idr,n = (d(f 2 9))y = (df)g(y) © (dg)y-

Hence dg is the inverse of df, and by the homomorphism properties, this is an isomorphism. |

(September 11) Let X be a manifold with U C X open. Show that ToU = T,X for all a € U.

Solution: We use the description of T, M as the set of derivations at a (that is, maps v: C>*(M) - R
satisfying v(fg) = g(a)v(f) + f(a)v(g)). The approach is to show the map i, : T,U — T, X, induced
from the inclusion i : U — X, is injective and surjective. The pushforward acts as i.(v)(f) = v(f|v)
for any f € C*°(X) (and hence f|y € C*°(U), since restrictions of smooth maps are smooth).

For injectivity, take v € T,U and i.(v) € T, X, supposing that i,(v) = 0, so i.(v)(f) = 0 for all
f € C>(X). Then v(f|y) = 0, and since f was arbitrary (and may be chosen so that f|y = g, for any
g € C*°(U)), we have that v = 0.



14.

15.

For surjectivity, take w € T, X, and define v € T,U by v(f) = w(]?)7 for fe C>° (M) any function
with f = f|u (this is well-defined, since the derivation of functions that agree on an open set are the

same). Then i.(v)(f) =v(f|v) = w(ﬂvU) =w(f), so i.(v) = w. [ |

(September 14) Consider the map i : (—1,00) — R? given by ¢ ~ (t> — 1,¢(t> — 1)). Show that this
map does not give a submanifold of R?.

Solution: The image of this space M under ¢ looks like in the diagram below.

The subspace topology is {U : U = VN M for some V C R? open}. In the topology of M, we
clearly have open intervals (1 —§,1+6) for all 6 > 0. However, there is no open set V C R? such that
VNM=(1-461+76). Hence the topology of M is not the same as the induced subspace topology
from R?, so M is not a submanifold of R? with this i. ]

(September 14) Let M > 2, N > y be two manifolds. Show that T(, , M x N =T, M x T,N.

Solution: Consider the maps

m : MxN — M, m : M XN — N, iy : M — M XN, je + N — M x N,
(a,b) — a, (a,b) +— b, a — (a,y), b +—  (x,b).

We will use these to construct maps between the spaces. Each of the maps above have induced maps
on tangent spaces, the pushforwards, so we get new maps

@ TayM x N — ToM xT,N, B : TuMxT,N — Tg,MxN,
v (71*(0)’7@*(”))7 (U7w) = Zy*(v)+.7w*(w)

These maps are well defined, smooth, and

(a0 ) (v, w)(f,9) = aliye(v) + jux(w))(f, 9)
1 Gy (V) 4 Jaoe (W), T2 (i (V) + Jiru (W)
1 (g (V) () 4 710 (G (W) () T2 (G (v
(m1 04y (V) () + (71 © Ja)w (W) (f), (72 © 2y ) (v)(9) + (72 © ) (w)(9))

( f9)
= (
= (
= (v(fom oiy) +w(fom oj,),v(gomoiy,)+w(gomojy))
= (
= (

) (
0))(9) + T24 (s (w))(9))
v(f)+0,0+w(g))

v, w)(f,9)-

Hence § is injective and « is surjective. Using either of these facts, since domain and range have the
same dimension and both a and 8 are linear (as they are defined in terms of derivatives), they both
are isomorphisms. |



16. (September 18) Show that the 1-sphere S! has trivial tangent bundle.

Solution: First we describe the tangent bundle structure, which is p : TS! — S, with p~1(z) = R
for all 2 € S'. For any such z, choose a neighborhood U, just an open interval on the sphere, and
apply p~! to get something diffeomorphic to U x R. Visually,

I

UL
TTT]

It is clear that gyy = 1 for all U, V. Recall the product space

R R R
x

SIxR

1 T
\2
Sl/ R

with the relevant projection maps. Consider the map

O : 75" — S'xR,
w = (plw),w),

which makes sense, as w € TS! = @aeM T,M isin T,S* 2 R for some a € M. Then
(m1 0 ©)(w) = 71 (p(w), r(w)) = p(w),

exactly as desired. The map © is a diffeomorphism, so we are done. ]

17. (September 18) Prove the following statement: A manifold M™ has trivial tangent bundle iff there are
n vector fields X1, ..., X,, on M such that at each a € M, the elements (X1)q,..., (X,), form a basis
for T, M.

Solution: Suppose that M™ has trivial tangent bundle. That means M x R" = TM via some
isomorphism . Define vector fields

X, : M — TM,
a — ¢(a,e),

for e; the ith standard basis vector of R™. These vector fields are indeed vector fields, and they are all
smooth. Moreover, by construction the (X;), are linearly independent, and so they form a basis for
T,M, for all a € M.

Now suppose that there are vector fields X, ..., X, such that (X1)4,...,(Xn)s form a basis for
T,M, for all a € M. We will show that TM and M x R" are diffeomorphic. Begin by taking a € M
and (U, ) a chart for a. Define maps

Yu t UxR" = Loy LM, Uy ¢ [Ley oM — o(U) x R”,
(@ Y15 yn) = (@, 9i(X0)g) ’ (¢.2) = (pxid)o;'(q,z).
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19.

The map 1y is a bijection between the given spaces by assumption, and ¥y is a chart map on TM.
Now we turn the focus from local to global. Define a map

F: MxR" — TM,

which we claim is the desired diffeomorphism. To show this is true, we will demonstrate F' and F~!
are smooth. Take two special charts

(U xR",p xid) for M x R",
(]_[peU U, \IJU) for TM,

and observe that

Uy oFo(pxid) ™ p(a),y) =VyoF(a,y) =Ty (a,>,;4i(Xi)a) = (¢(a),y).

Hence Wy o F o (p x id)~! = idps. To show that other charts work, instead choose an arbitrary chart
(ITpev Tp,M, ¥y ) for TM. The picture of the calculations looks like below:

\I/VOFO((pXid)71:\IJVO\I/Elo\I/UOFO((pXid)71:\vao\:[lal

M xR"

((p X id)71 Wy,

R2 n Rn

Since the transition maps are smooth, ¥y o \Illjl is smooth, so F' is indeed a diffeomorphism. Hence
M x R"™ and TM are diffeomorphic, meaning that M has trivial tangent bundle. ]

(September 18) Prove the following statement: Any linear transformation which satisfies the Leibniz
property is a vector field.

Solution: Recall that the tangent space to M at p may be viewed as the space of derivations, that
is, the set of linear maps v : C°(M) — R such that for all f,g € C(M), we have v(fg) =
f(P)v(g) + glp)v(f). Also recall that a vector field is a map X : M — T'M such that 7o X = idyy,
where 7 : TM — M is the natural projection map.

First we need to show that, for p € M, X,, € TM. This is immediate, as the assumption that X
satisfies the Leibniz rule is equivalent to the condition of being in 7'M, even more, to being in 1), M.

Next we need to show 7m(X,) = p, but this is immediate, as 7(T,M) = p, and X, € T, M. |

(September 18) Let X,Y, Z be vector fields on a manifold M. Show the following properties hold, in
coordinates:

(a) [X, Y +Z]=[X,Y]+[X,Z]



(b) [X,Y] = [V, X]
(e) [X, [V, 2| + [V, [Z, X]] + [Z,[X, Y]] = 0
(d) A[X,Y]=[X, Y] for any scalar A

Solution: This first identity involves some long algebra.

0 0 0
(X, Y+ 7] = {alﬁ bj@:cj + k@xk]
:a-i (b-a—Fc 8) — <b 0 +c 0 >a-a
' Ox; jaxj kaxk 6@ k@xk 'Oz,
ab 28 00 L0 0 88
" O, Ox; ! kaxz Oxp, ! jaxj ox; ! k@xk ox;

S A S <A N (O A
- al]@xi 0z al]@xj ox; azckaxiaxk alckaxk ox;

a2y 0] ], 0 O
|0z Y Oy “ox; For,

=[X,Y]+[X, 7]
The second identity just needs some rearranging.
0 0 }

[X,Y] = {aza Jbj=— oz

oy 00 o 0

—_—— —a;bj——
]axi 8xj J E)mj 8%‘1

S A A
o ! ]al‘j (93?i ‘ J(“):ci al‘j

S P
o Jaxj’azaxi’

—[v, X]

The third identity is an exercise in masochism. We begin by expanding the first term in the identity.

(X, [, 2] = [lai [b a:avj’ kﬁik”

:[a 0 pion2- 0 b,ckaa]

Yoz, dx; dxy, " Oy O

—abcaaaabcaaaabcaaa—i—abcaaa
I oy 0wy 0wy, Oxy Oy, 0wy 7 Oy Oy Oy | Oy Oy O

Denote the first term above by the ordered triple (4, j, k), noting that the order of the smooth coefficient
functions does not matter. Generalizing, the sum of the terms in the Jacobi identity contains the sum
of the terms in the following table:

(27.77k) _(.77]{"12) _(kavj) (kvjaz)

(kalmj) _(Zajvk) —(k?,j,l) (jalvk)
The terms in the first column are the negatives of the terms in the second column, and the terms in
the third column are the negatives of the terms in the fourth column. Hence adding them all together



gives 0, yielding the desired identity.

The last identity is straightforward.

0 0
o 0 g 0
=Aajbj—— — dajbj — —
“ ]8$i axj “ j@a:j 8301
g 0 o 0
=a;(A;)) =— — — a;(bj\) — —
a0) g g ~ N 5 g
0 0
|:ai8mi, Abj aaj]:|
= [X, Y]
This completes the proof. |

20. (September 21) Let A be a skew-symmetric m x m matrix, and set y(t) = exp(tA) = >, t" A" /nl.

(a) Show that - defines a smooth curve in SO(m).
(b) Find +'(0), the tangent vector defined by ~ at 0.
(¢) Find Tr.SO(m).

(d) Find T,50(m), for arbitrary g € SO(m).

(Contributed by Nathan Lopez)

Solution:

(a) The sum converges uniformly and each partial sum Z’;:O t" A™ /n! is smooth, so exp(tA) is smooth.
To show that (t) € SO(m), we need to show y(t)7 = ~(¢)~! and det(y(t)) = 1. For the first, note

V()T = exp(tA)”

)

n=0
T
s an .
= khm Z ' (uniform convergence)
—»00 uz
n=0
YENE
= k]jm (Z ; ) (continuity of lim and T')
—00 n:
n=0
Mk
= klirilo ZO o (properties of T')
Ln=
Mk
tn AT n
= lim (47) (properties of T')
k—o0 "0 n!
_ 0 tn AT)n
- |
—
= exp(tAT)
= exp(—tA). (A is skew-symmetric)

10



21.

22.

A tedious algebra argumwent shows that if two matrices X,Y commute (that is, XY = Y X), then
exp(X)exp(Y) = exp(X +Y). Since (tA)(—tA) = —t?A? = (—tA)(tA), we have that

'y(t)w(t)T =exp(tA)exp(—tA) = exp(tA —tA) =exp(0) =1 = v(t)T = v(t)_l.

Finally, Jacobi’s identity says that det(exp(X)) = e"(4) and we know that the trace of a skew-
symmetric matrix is 0, so det(exp(tA)) = e = 1, and therefore v € SO(m).

(b) Since the sum converges uniformly, we may compute the derivative term by term. That is,

k
d d .. A" lim d A" tn-lAn
a0 = l; | T [d 2 | = [Zl T

so v'(0) = A.

t23

=A+tA*+ TA+-~-,

(c) First note that part (b) gives us a tangent vector in 77SO(m), since v(0) = I. That is, any
skew-symmetric matrix is in this tangent space. Next, since

n(n —1)

dim(m x m skew-symmetric matrices) = 5

= dim(SO(m)) = dim(77SO(m)),
a basis of skew-symmetric matrices is a basis of T1.SO(m). Hence T;SO(m) is simply the space of
m x m skew-symmetric matrices.

(d) Now let g € SO(m) be arbitrary. To find T,SO(m), define a new path J(t) = gexp(tA), for which
the exact same calculations as above may be repeated. The changes are that 7/(0) = gA, meaning
that, for SS(m) the space of m x m skew-symmetric matrices, we get Ty SO(m) = gSS(m). |

(October 12) Show that a smooth vector field on a manifold M that vanishes outside a compact set
K C M generates a 1-parameter group of diffeomorphisms on M.

Solution: Take p € K, for which there exists an open neighborhood U, of p and €, > 0 such that
P : (—€p, €p) — M is a maximal integral curve of X going through p. Since K is compact, there is a
finite set p1,...,p such that Up, U---UU,, = K. Let € = min;{e,, }, so that P : (—e,e) > M is a
maximal integral curve through p;.

For p € M \ K, the maximal integral curve through p is constant, so is clearly defined on (—e¢,€)
for any € > 0. Hence every point of M has a maximal integral curve going through it, defined on
(—e,€). By some finagling (see “Uniform time lemma”, p.216 in Lee), it follows directly that there is
a maximal integral curve defined on all of R and all of M. This is equivalent to saying that there is a
1-parameter group of diffeomorphisms on all of M. |

(October 14) Consider S? ¢ R? in coordinates (z,y, z), and let X = ya% — xa% and Y = 26% - y%
be vector fields on S2. Calculate [X,Y].

11



23.

Solution: This is just some calculation:

s with the product rule.

0 o 0 0
x¥1= vz —a055, vz
0 0 0 0 0 0 0 0
(8 ) () (4 ) (8 -5)
0z 0 0? oy 0 , 02 0z 0 0? dy 0 0?
“Voroy "Voroy Yoro: Y owo: “oyoy o Tayo: T Yoyos
TR I RO T N N T B R
Oy Oz Oyox Oy Oy 8 0z Ox 020x 0z Oy 020y
0? , 02 0 0? 0 0? 0? 0?
- yzm Y 9102 +x@ +xym "o Zy@y@x +y 9200 I* 020y
)
0z oz’

The second and third equalities were just expanding, the fourth was reducing inverse terms, and the

last equality was reducing by Fubini’s t

heorem. (]

(October 16) Let X,Y be vector fields on a smooth manifold M. Give the definition of the Lie

bracket [X,Y
LxY = [X,Y] the Lie derivative.

(Contributed by Dan Solomon)
Solution: Let f be a smooth functlon
bracket of two vector fields X = a; > 3

[X,Y]f=(XY -YX)f
— X(Yf) - Y(X/)

]8xj
_ a‘abj of o 82f
O, O 70w,
B 8b of da; 8f
Yoz, dx; ‘(9:10]- Ox;
8b of b da; Of
Y0z, ox; ' Ox; Oz
B ( ob; b 8@1) of

i ox; "Oz; ) Oz’

7oz

| as a differential operator on smooth functions. Also show that Lixy) = [Lx, Ly], for

Fix some hcal coordinates x1,...,z, on M, and define the Lie
-and Y = b 52— onftobe

o
j (m)

, 2
Oa; O _ ~b»L (product rule)

; a
J Oxj Ox; v O0x;0x;

(order of differentiation)

(renaming of indices)

This gives a clear definition of how the Lie bracket acts on smooth functions. To check that the given
identity holds, Let Z be another vector field, for which

Lixy)Z =

Lxy_yxZ
— [XY - YX, Z]
=XYZ-YXZ-7ZXY+2ZYX

12



24.

25.

and

[Lx,Ly)(Z) = Lx(Ly Z) — Ly (Lx Z)
=[X,[Y. Z]] - [V, [X, Z]]
=[X,YZ-2Y]-[V,XZ - ZX]
=XYZ-XZY -YZX+2ZYX -YXZ+YZX +XZY — ZXY
=XYZ+2YX-YXZ - ZXY,

which are both the same. |

(October 16) Let v1,...,v, be a basis of an n-dimensional vector space V. Show that the elements
Vi A A, for 1.<dp < --- <y <, form a basis for N V.

Solution: It suffices to show an element w = aw; A -+ A w, may be expressed in terms of the given
elements, for a scalar o and w; € V. Note that for each i, we have

n
_ Jus
w; = E o vg,
Jj=1

for some scalars aé and the v; a basis for V. Then by p-multilinearity, we have

n

n n n
— E Ity E Ip ). 72 E Ty A Iry.;
w =« ap v | A A vy, | = ag v A N QP v .

Ji=1 Jp=1 Jji=1 Jp=1

Given vy, A---Av;, € APV, view (i1 --- ip) as an element of S, the symmetric group on p elements.
Then there exists o € S, such that i, (1) < -+ <is(p), S0V, A--Avy, = sgn(a)viﬂ(l) N AN, for
sgn(o) either +1 or —1, depending on the number of transpositions done. Hence we have

n n P
WYy (H ) BB o Gy A A G
k=1

Jji=1 Jp=1

where 0,5, (j1) < -+ < 0j,...5,(Jp) for all ji,...,j,. We have now written w as a sum of wedges of
v;s with increasing indeces. Many of the terms in the sum are 0 because of the quotiented relations,
though that does not affect the correctness of the expression above. |

(October 16) For n > 1, show that SL(n) is a smooth manifold, and find its dimension.

(Contributed by Charlotte Greenblatt)

Solution: Recall that SL(n) is the space of n X n matrices with determinant 1. Since det : R” SR
is smooth with SL(n) = det™"(1), if we can show that the derivative of det is surjective at every point,
then it will follow that SL(n) is a smooth manifold of dimension n? — 1.

Let x11, 212,13, ..., %y, be basis vectors for an7 and for A € SL(n), let B;; be the matrix with
zeros everywhere except a 1 in the (4, j)-th position. Finally, let M;; be the (4, j)-minor of A (the
determinant of A with the ith row and jth column removed). Note that the (k, j)-minor of A + tB;;
is the same as the (k, j)-minor of A, since we have removed the jth column. Hence the derivative of
det in the x;; direction is

13



26.

Since R is 1-dimensional, only one of the minors has to be non-zero, since that will make the derivative
surjective. Since det(A) = 1 for any A € SL(n), all the minors cannot be zero, since that would
mean det(A) = 0. Hence at least one of the minors is non-zero, so the derivative is surjective at every
A € SL(n), and so SL(n) is a smooth manifold of dimension n? — 1. [ |

(October 16) Let M, N be smooth manifolds with M C N a submanifold. Show that if X is a vec-
tor field defined on an open neighborhood of M, then there exists a vector field Y on N such that
Y =X|um.

Solution: Let M be a k-dimensional submanifold of N with open neighborhood M also k-dimensional.
Let X = Z 1 Qi5— 0;1; € F(TM) be a vector field on M and set Gp+1 = -+ = a, = 0, so that we may
extend X to all of N. Let (U, ¢) be a chart on N such that

reUNM o(z) = (%,...,%,0,...,0).

Such a U and ¢ is possible to find because M is k-dimensional and by restricting the charts. For the
next step, recall that a diffeomorphism a : B — C' of manifolds induces a map a, : I'(T'B) — I'(T'C)
on the vector fields, given by

(@:2)p(h) = (Z)a-1(p)(hoa),
for Z e T(TB), p€ C,and h € C>*(C), so hoa € C*(B). Using a slight variation of this, define a
vector field Zy € T'(T(U)) given by

0
(Zu)q(h) = <a¢) (hoy),
O ©=1(q1,--,qk,0;-..,0)

14

[ A+1tB;;) — A
(A) = lim det(A +1Bi;) — det( )] (definition of derivative)
; t—0 | t
(e . iy
= }g% n (; V(A + tBij)kj My — 1)] (minor decomposition)
-1 " , L
= lim |~ Z(—l)k“ (A +1tBjj)i; My + (=1)™ (A +tBij) i My; — 1
L\
-1 n ) o o
= lim | < Z(—l)k+] (A Migj + (=1)"*7 (A)ij Myj + (=1)" Tt My — 1
L\
1 (& , L
= lim |~ <;(—1)k+] (A)rj My + (=1)""7tM;; — 1)
.1 it
— %g% -* (det(A) =+ (—1) +JtMZ‘j — 1):|
. [1 it .
= }gr(l) I ((-1) '”tMij)] (since det(A) = 1)
= (=1)"" My;.



27.

for h € C*°(o(U)) and ¢ = (q1,.-.,qn) € @(U). This vector field is almost (. X )4(h), but not quite,
since the point at which the vector field is evaluated is slightly different from »='(g). Now define a
vector field Zy € T'(TU) by

(Zu)p(h) == (0™ ")) gy (o ™),
for h € C*°(U) and p € U. Finally, take K = {Uy,, ¢a} to be a refinement (by restriction) of an atlas
covering M and an atlas covering N. Set Zy, = 0 whenever U, N M = (). Let ¢, be a partition of

unity subordinate to K such that } ;; -, 20 Ya (p) = 1 whenever p € M, which is possible, since M is
an open neighborhood of M. Define a vector field Y € I'(T'N) by

Yp(h) == Z Ya(Zu,)p(hlu,)

for h € C*°(N) and p € N. From the choice of partition of unity, it is immediate that
Y|M:X|M but Y|M7EX,

since the partition of unity decreases the effect of X only on M \ M. This defines the desired vector
field Y € T(TN).

If in addition we know that M is closed, we have a bump function ¢ : N — R that is 1 on M and 0
outside of the open neighborhood of M. Then ¢ X € T'(TN).

If M is closed but the vector field X is only defined on M, a simpler approach is also possible. For
open sets U, and maps ¢, covering M (open in N) such that ¢, (U,) = (z1,...,2%,0,...,0) for M
codimension n — k in N, define X’ € I'(T'p,(Uy)) by

X'(@1,. . 2n) = (0a) (X (03 (21, ... 28,0,...,0))).
This gives a vector field X" € I'(TU,) by
X"(a1,...,0n) = (0a) (X (alar,. .. an))).
Given a partition of unity 1, subordinate to {V3} D {U,} on N, define X" € I'(T'N) by

) {waX”(al,...,an), if (a1,...,a,) € Uy,
,n) =

X"(ay,. ..
(a1 0, else.
(October 21) Show that every compact manifold has a vector field with finitely many zeros.

Solution: Every compact manifold may be triangulated, and every n-simplex in the manifold M may
be considered in terms of its barycentric subdivision. We will construct a vector field on M that has
zeros at all the intersection points of this subdivison (of which there are finitely many). This is clear
in the 1-simlex and 2-simplex case:

T Aa

1-simplex 2-simplex

15



28.

29.

The vector field continues in the empty spaces, following the pattern on the sides. The only zeroes
are at the emphasized points. This generalizes to n-simplices, and so gives a vector fields with finitely
many zeros on the whole manifold. |

(October 21) Calculate F*a for F' : R* — R? given by F(z1, 29, 23) = (z122, 2o +23) and a = zdzAdy.

Solution: This question is just a long calculation. Recall the rules that F*f = f o F and F*(df) =
d(f o F) for f a smooth 0-form. Write (z,y) = F(x1,z2,23) to get
F*a = F*(xdzx A dy)
=(zoF)d(xoF)ANd(F oy)
(r122)d(z122) A d(22 + 23)
= z1xo(xodry + x1das) A (dag + das)

= xlxgdml A dxo + mlxgdxl A dxs + $§$2d$2 A dxg + I%.’Egd.’lﬁg A dxs

= xlxgdxl A dxo + xlxgdxl Adxs + x%xgd:vg A dxs.

(October 23) Let M be a smooth n-manifold and w a k-form on M. Give dw in local coordinates and
show why it is independent of the basis chosen for M.

Solution: Let (z',...,2") be local coordinates on M. A k-form on M is
W= Z f]dl‘l,
|I|=k

where I = {i; <--- <i;} C{l,...,n} is a multi-index, and da! = dz®* A --- Adz® and f; € C°°(M)
for all 1. To describe dw, it suffices to describe dw for w a pure wedge, as the result extends by linearity.

So
‘ ‘ ) , . ,
w= fdz" N---Ndz" — dw:a—fl.dx’/\dm“-~-/\dx““,
x
with an implied sum in dw over i (using Einstein notation). Now suppose that (y!,...,y") are also
local coordinates on M. By the chain rule, we have
0 oz 0 oy
— = — and dy? = ——da’.
oyl Oyl Oz 4 oz’
Therefore
0 ; ; ;
dw = —f.dyj ANdy’t A - N dy'*
oy’
oxt Of Oy . Oyh Oyl
— 9 f Y gwi n Y ga po p D gt
0yl Ox* Oz’ Jzh Otk
af . .
=g f,d:cz Adx'™ A Ada,
ozt
where g € C°°(M) is a smooth function in terms of gf over some (possibly all) ¢,7. Hence dw is
independent, up to scaling by a smooth function, of basis chosen for M. |

16



30.

31.

32.

(October 26) Let U € R™, V C R™ be open sets with coordinates z;, y;, respectively, and 6 : U — V
be a smooth map. Show that, for 6; = y; o 0,

00;
833j

Solution: Since 6 : U — V', we have 6" : T*V — T*U. The definition of the pullback gives

0% (dy:) = 0" (1 - dy;) = (10 6) d(y; 00) =1-df; =1 g 9, M = ;0
using Einstein notation. |
(October 26) Define the Hodge star operator
0 QFR™) - QmTRR™),
dzi A---Ndxg, +— sga(o)dx;, A--- Ndzj,, .,
withl1 <ip < <ig<mand 1 <j1 <+ < Jmop <m. Also {i1,..., 06,51, Jm—-k} ={1,...,m}
and o is the permutation (i; -+ ik j1 -+ Jm—k) € Sm (the symmetric group on m elements). Let

w = ay2dx1 N\ dzo + ai3dzy A dxs + assdrs N dxs.

(a) Calculate *w for w € Q?(R?).
(b) Calculate *w for w € Q?(R?).

Solution: (a) Using the definition, we get
*W = algdﬁcg — a13d$2 + a23d1’1.

(b) Similarly, we find
*xw = a1odrs A dry — a13drs N\ dry + aszdri A dry.

(October 26) Show that the formula Zxa = d(ixa) + ix(da) agrees with the definition of ZLx .

Solution: Let @ = fdg be a p-form and X a vector field. The result will extend linearly to all p-forms.
The right-hand side expands as

d(ixe) +ix(da) = d(fX(g)) +ix (df A dg)
= df Nd(X(g)) + fd(X(9)) + X (f) Ndg —df A d(X(g))
= fd(X(9)) + X(f) A dg.

The left-hand side, for ¢ the 1-parameter group of diffeomorphisms associated to X, is just

= lim
o 0

9 .
Lxa= e "

I’'m not sure how to finish this and I feel we have not learned enough in class to finish this. However,
if we simply consider the action on vector fields, the result follows from the definitions. Indeed, the
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33.

Lie derivative, exterior derivative of a differential form, and interior product may be described as

k
(Lxw)(Yi,.. . Y5) = Lx(w(Y,..., Vi) = Y w1, Lx i, V),
=1
k41 4 R k+1 R _
(dw)(Yla s 7Yk+1) = Z(_l)Z_IYi(w(Yb 0y Yvia 0y Yk+1)) + Z(_ Z+Jw([Y;; ij] Yla --7}/'£7 ) }/j? 0y Yk?+1)7
i=1 i=1
j>i

(in)(Yl, e ;kal) = w(X,Yi, .. .,kal).

By expanding out the given terms (this is called Cartan’s formula), the result follows quickly.

k+1
(Ly,w) (Yo, o, Vigr) = Yi(w(Ya, ., Yig1)) = 3 w(Vo, ..o, Y1, Vil V)
1=2
k+1 N
=Yi(w(Ya, .o, Yir1) = Y (D' (Y1, Y], V2, ..., Vi, V)
1=2
k+1 ) R k+1 o R
(d(iylw))(}/g, .. 'aYk-‘rl) = Z(il)lyvi(w(yh --,Y}, "aYk-Fl)) - Z(i]‘)wﬂw([m?y’j]ayla "7}/;7 . }/37 . aYk-Fl)
i=2 e
(iy, (dw))(Ya, ..., Yiy1) = (dw) (Y1, ..., Yii1)
k+1 k41 4 ~ e
- Z Z ly Y17-~ Y7-,7-‘ Yk+1 +Z l+]w([n7y}}7yl7“a}/i7“7yvj7”>Yk+1)

i=1
j>i

(October 28) Let F : M x [0,1] — N be a smooth map and « € HP(N). Give a description of
F*a = 8+ dt A~ in local coordinates.

Solution: Let y € N and let ay = oy Wy A A dy;, € HP(N). Let M be an n-manifold and N
an m-manifold, so we may write F(z ) (Fi(x ) . 7Fm(x)). Then for x € M,
(F*a), = ozF( )”F dyi, N--- N Frdy;,
OF; OF; OF; 8
wete (g Lt A m—2dx; " gt
= ) (8% it ) (axj ot )
= By, A day, R dwey A A dag, | Ad.
€ Hr (M) € Hv=1(M)

34. (October 30) Let M be a smooth manifold. Show that H?(M x R") = HP(M) for any p. This result

is known as Poincare’s lemma.

Solution: Since R is contractible, M x R is homotopic to M. That is, there exist smooth maps

F: MxR"—- M and G: M—-MxR"

18



35.

such that Go F 2 idyxr» and F o G = id);, where 2 signifies homotopy equivalence. For every p,
they induce group homomorphisms

F* : HP(M x R") — H?(M) and G* : HP(M) — H?(M x R™).

By a theorem from class, we know that (G o F)* = (idy;xgr»)* and (F o G)* = (idps)*. This means
that for any p,

F* OG* = (GOF)* = (ldeRn)* = idHP(MXR");
G*o F* = (FO G)* = (id]y[)* = ide(]\/[).

Since these homomorphisms are inverses of each other, HP(M x R™) = HP(M) for all p. |

(October 30) Prove that H?(S™) = R if p = 0,n and 0 otherwise. You may assume the result for n = 1.

We proceed by induction, assuming the case for n = 1. Decompose S™ into two sets
U=85"-S=R""! and V=8"-N=R"

where S is the south pole and N is the north pole. Recall that cohomology is diffeomorphism invariant,
so H*(U) = H*(V) = H*(R"™') = R if k = 0 and 0 otherwise. Finally, note that U NV = §"~! x R
via the stereographic projection, and by the Poincaré lemma (the previous question), H*(U NV) =
HF(S" 1 x R) = HF(S" ).

For all the cases below, we take w € Q%(S™) to be closed, so dw = 0. For any k-form 7, we write
7y instead of n|y when restricting to some set Y.

k = 0: Since S™ is connected, H°(S™) = R.

k=1: Note that H'(U) = H'(V) = 0, so forms are closed iff they are exact. Since dwy = 0
and dwy = 0, there exist f € QO(U) and g € Q°(V) such that df = wy and dg = wy. Hence
d(furv — gunv) =0, so funv = gunv + C for some constant C. Define

n={l U qoggn
g+C onV,

and h is well-defined since the two definitions agree on the overlaps. Then dh = w, so w is exact. Hence
HY(S™) =0.

1 <k <n: Note that H*(U) = H*(V) = 0, so forms are closed iff they are exact. Since dwy = 0
and dwy = 0, there exist @ € Q¥ 1(U) and g € Q*~!(V) such that da = wyy and df = wy. Hence
d(ayny — Burv) = 0. Since H*~1(UNV) = H*1(8"~1) by the remark above, and H*~1(S"~1) =0
by induction, closed forms are exact. Hence there exists v € Q¥~2(U N V) such that

dy = aynv — Bunv-

Let {¢y, v } be a partition of unity subordinate to the cover {U, V'} of S™. Then (¢Yy)ynvy extends,
by 0 at S, to a (k — 2)-form on V. Similarly, (¢¥v)unv7y extends, by 0 at N, to a (k — 2)-form on U.
Now we may define

01 = ﬂ + d(wU)UﬁV'Y € Qk_l(V),
5o 1= a — d(¥y)unvy € QFHU).
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36.

We claim that on UNV, these two forms are actually the same. Indeed, by noting that v = (Yv)unvy+
(Yv)unvy, we get that

Buav + dWu)vavy = avnv — dy + d(Yu)uavy
= apnv — ([d(Yv)vnvy + d(Wbv)unvy) + du)vnvy
= aynv — d(¥v)vnvy-

Hence we may define

01 onU, b1
0= €N S™),
{52 onV, (57)

for which

dd = Yyds + Y,dd = Yydds + Yy dé, = Yyda + Yydf = Yywy + Yywy = w.
Then d§ = w, so w is exact. Hence H*(S™) = 0.

k = n: This case is left unfinished. O

(November 2) Consider the space of straight lines in R>.

(a) Describe this space as a manifold.
(b) What is the dimension of this manifold?

(¢) Show this manifold is not orientable.
Solution: (a) Call this space of lines X, and construct an atlas on it with three charts, namely
U, ={¢ C R® : (is not parallel to the yz-plane},
U,={¢C R? : /is not parallel to the zz-plane},
U.={¢ cR® : [is not parallel to the zy-plane}.

Consider U, first. Since each element of U, is determined by where it uniquely intersects the yz-plane
and then by a direction vector from that point, it follows immediately that U, = R? x RP?, and
the same goes for U, and U,. To complete the description of X as a manifold, we need to show the
transition functions are diffeomorphisms, which is done in part (¢) below.

(b) The dimension of this manifold is 2 + 2 = 4, as the charts are 4-dimensional.

(¢) To show this manifold is not orientable, we will show that the transition functions do not always
have positive determinant (while some do). Begin with an element of U, which looks like

L={0,y,2)+p(l:s:t) : peR},
where (0,y, z) is where ¢ intersects the yz-plane. Assuming that ¢ € U, as well (so s # 0), we note
that
(={0,y,2) +(p-y)(5:1: %) : peRY}
- {(_%’072_ %)—l—p(% N B £) : pER}a

S

so { intersects the rz-plane at (—%,0,z — y;t) This tells us the transition function ¢, is

¢zy  RPxRP? — R?xRP?
(y7z757t) — (—%’z_ yt 1 E)’

s?s’s
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and its derivative is

dy Dz Js ot _% 0 S% 0

9z 0z 9z 0z t o1 ut y 1
N ) 9z  Os ot | — | 7% s2 s —

dy 0Oz ds ot s2 §

ot ot ot ot 0o 0o -4 1

dy 0z ds ot s S

Now let ¢ € U, and assume that ¢ € U, as well (so t # 0). Then we may rewrite the points in the line
as above to get

14

{(,0,2) +p(r:1:¢t) : pe R}
{(2,0,2) + (p—2)(5:7:1) : peR}
{(1‘—%,—%70)4-]9(%2%:1) : pER},

so ¢ intersects the zy-plane at (z — 2¢, —%,0). This tells us the transition function ¢, is

¢y- : R xRP? — R?xRP?
zr z r 1
(x,z,mt) = (v— 3, %5, %),

and its derivative is

dr  OJdz Oz Qf 1 -2 —z =z

T z s t t

LA !
T =% & & Fl=0 ¢ Y A| . dete) =g

T %z gr gt t tl

o o: or sl OO0 0 -

Finally, let £ € U, and assume that £ € U, as well (so r # 0). Then we may rewrite the points in the
line as above to get

0={(z,y,0) +p(r:s:1) : pe R}

={(z,9.0)+(p—x)(1:2:1) : peR}
{(anf%af%)+p(1$%) : pGR},

so { intersects the yz-plane at (0,y — 2%, —%). This tells us the transition function ., is

.. : R*xRP? — R?xRP?
rs s 1

(xay7’r7s) = (_%7y_7a;7;)7

and its derivative is

9z 9y or 0s 1 -2 x5 =2
wog gl o-lon o !
2
Hew)= 180 3 & B5|=|g o 5 1| o detlUlp=)=—1
ox Oy or Os r2 r r
9s  9s  9s  Os 0 0 —% 0
ox Oy or ds T

The reason why the determinant changes sign is the choice of where to send each of the coordinates,
since in any given chart, we only have two of them being non-zero. The process is given in the diagram
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below.

A
SN
N N I

I am not completely sure why we switch the coordinates in the real part of ., but not in the projective
part, but I think it is because in RP? orientation does not matter, but in R? it does. Even more, if
both would switch, then all determinants would be positive, and the question clearly states “show this
is not orientable.” This shows that X is not orientable. |

37. (November 2) Prove that the tangent bundle of a smooth manifold is orientable.

Solution: Let M be a smooth n-manifold with atlas {(Uy, ¢a) taca and local coordinates (z1, ..., 2,)
on U,. We claim that TM is a smooth 2n-manifold with atlas {(Va,¥a)}taca, where

Yo : Vo — R,

Vo = U M and (p,v) = (Palp),vT1,...,0Ty).

peEUq

The action of 1, may also be given by

0
Pa <p, ai%

To check that we actually have a manifold, we need the transition functions on the overlaps of the V,,
to be diffeomorphisms. So take «, 5 € A and suppose that

0 0
Vo 2 <P7 aliaxi) = <p’bj(“)yj> € Vs,

for (yi1,...,yn) local coordinates on V. It is immediate that b; = ai%, so going from V,, to Vj, the

) = (¢a(p),a1,...,am).

p

transition function (id, g%) is a diffeomorphism. Now that we have shown 7'M is a manifold, we need
to show it is orientable. This means that the determinant of all transition maps is positive. In matrix
form, the transition function from V, to V3 is given by

Jy;  0y; 9y, 0 i,
dz; Oa; O0x; Oz;
gaﬁ = = =
o on| oy om0y [T |0h oy
ox; Oa; Ox; Oa; Ok, a;0r; Ox; Ox;
This follows from the product rule and noting that % = 0, since the y; only depend on the z;, not

the a;, which are in the tangent space already. The element % doesn’t matter if all we want is the

Tq
determinant, as we have an upper-triangular matrix, and so

;i \’
det(gapg) = <8a§]> > 0.
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This holds since gﬂ is a diffeomorphism, so has non-zero determinant. Therefore the transition func-
tions all have positive determinant, meaning T'M is an orientable 2n-manifold. |

38. (November 2) Let a be a smooth 1-form on R?. Show that « is exact if and only if it is closed.

Solution: Describe a as a = fidxy + fodxo. First suppose that a is exact, so a = dn for some 0-form
n. Then da = d?n = 0, so a is closed. Conversely, suppose that « is closed, so da = 0. By Stokes’
theorem, for any closed path v € R? and submanifold M ¢ R? with 9M = ~,

Aa_/de_/Mo_o.

Let b > 0, {e1,ea} = {(1,0),(0,1)} be the standard basis vectors of R?, and define paths 7, 021,002
as in the diagram below.

T2
ox + hey
590,2
ox + hey
z,l
Y
0 o
Define a 0-form n(x f w, for which we claim that dn = w. By Stokes’ theorem above, for i € {1, 2},

0:/ w—/w—i—/ w—/ n(x—i—hei)—i—/ w.
'Yz+6:c,1i_’)’a:+he Yz+he; 51‘,1

Parametrize §,; as 65 : [0,1] — R? given by 0,:(t) = x + the;. Rearranging and simplifying the last
integral, we get

o+ he) —n(w) = [ w
- / (1(84(8)) + Fol60.2(0))L (1)t
— /1(f1 (I —+ thez) —+ fz(l‘ —+ thei))heidt
0

1
= h/ fl(.ﬁ + th@i)dt.
0

For i € {1,2}, define new functions g; : R — R by

= /t filz 4+ re;)dr
0
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39.

Now we finally get to the derivative of 1. Observe that

on . [n(x+he) —n(x) .
o, }1113%) _ 3 (definition)
- el
= lim / filz + thei)dt} (above)
h—0 LJo
L
= lim */ filx +re;)dr (substitution r = th)
h—=0 | h Jo
= lim M] (definition)
h—0 L h
= g;(0) (definition)
= fi(x 4 Oe;) (fundamental theorem of calculus)
Therefore 5 5
o = fld.’El + fgdl’g = ldl'l + lde = dﬂ,
8.2?1 81‘2
and so « is an exact 1-form. |

(November 2) Let M be the complement of the origin in R®. Construct a 2-form on M which is closed
but not exact.

Solution: Let (z,y,2) € R*\ {0} with radius r, given by 72 = 2 4+ y? + 22, and consider the 3-form
w= T%dy/\dz— %dmAdz+T%dx/\dy.
We claim w is closed but not exact. To see it is closed, first note that
dr = %(ﬁ + % + 22 7V2(2udx + 2ydy + 22dz) = r~ (zdx + ydy + 2dz).

Now calculate

d (er=Pdy A d2) = (e — 3r~adr) A dy A dz = (7 — 3=a)de A dy A dz
d(yr~>dz Adz) = (r—°dy — 3r~ydr) Ndx Adz = —(r=> = 3r=°y?)da A dy A dz
d(zr7dz AN dy) = (r°dz — 3rdzdr)y Nde Ady = (r=2 = 3r 523 dz A dy A dz.

Combining them gives
dw=(3r"2 =3r5* +y* + 22))dz Ady Adz = (3r—2 = 3r 5r?)dz Ady A dz = 0,

and so w is closed. To see w is not exact, apply Stokes’ theorem. If w were to be exact, then w = da
for some 1-form . Consider the solid unit ball M in R?®\ {0} and its boundary M = S2. Then we

would have
/w:/ w:/dw:/dda:/O:O.
S2 oM M M M

However, we will show that | g2 w # 0. Parametrize the sphere by

S% . [0,7] x [0,27] — R3,
(s,t) +— (sin(s)cos(t),sin(s)sin(t), cos(s)),
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for which we get

dx = cos(s) cos(t)ds — sin(s) sin(¢)dt,
dy = cos(s) sin(t)ds + sin(s) cos(t)dt,
dz = —sin(s)ds.

Hence on S2, where 73 = 1,
5y A dz = sin(s) cos(t)(cos(s) sin(t)ds + sin(s) cos(t)dt) A (= sin(s)ds) = sin’(s) cos”(t)ds A dt,
Loda A dz = sin(s) sin(t) (cos(s) cos(t)ds — sin(s) sin(t)dt) A (= sin(s)ds) = — sin*(s) sin? (t)ds A d,
S5 A dy = cos(s) (cos(s) cos(t)ds — sin(s) sin(t)dt) A (cos(s) sin(t)ds + sin(s) cos(t)dt)

= (sin(s) cos?(s) cos®(t) + sin(s) cos?(s) sin?(t))ds A dt
= sin(s) cos?(s)ds A dt.

Now we integrate these separately to get

/S r—3dy dz = / v cos*(t) /0 ’ sin®(s)ds dt
_ /027r cos? (1) (0051(233) B 3CO48(S))
_ % /0 7 cos? (1)t
4 (2t +sin(2t)
s ()

3 4
4

S=T

dt
s=0

t=2m

t=0

3

2m g
/ —Sdm dz = —/ sin2(t)/ sin®(s)ds dt
52T 0 0
2m
_ . 9 cos(3s)  3cos(s)
= /0 sin”(t) ( 15 1
4 /27‘(‘ .
=—c sin®(t)dt
A0

_ 4 (2t —sin(2t)
3 4
47

3

2
/ 3dx dy —/ / sin(s COS s)ds dt
s2 T
_ o, (08 3(s)
B 3

and

S=T

dt
s=0

and

s=0



40.

41.

42.

Hence [g,w = 47m/3 4 41/3 4+ 47/3 = 47 # 0, and so w is not exact. |

(November 4) Construct a smooth map f : S> — RP? and show, by contradiction, that RP? is not
orientable (by pulling back an orientation form on RP? to an orientation form on S?).

Solution: Consider the map that takes a point = € S? to its equivalence class [2] = {z, —z} € RP?.
There is an induced map on top cohomology groups, given by f*: H3,(RP?) — H2,(S?). However,
since H? (RP2; Z) = 0, and by the de Rham theorem, singular and de Rham cohomology groups agree,
it follows that H3,(RP?) = 0. Hence no non-zero cohomology classes exist in H2,(RP?), so there is
nothing to pull back to S2, and RP? is not orientable. |

(November 6) Let M, N be smooth manifolds of dimension n, and f : M — N a smooth bijective
immersion. Show that f is a diffeomorphism.

Solution: An immersion f: M — N between manifolds has injective differential, and since the man-
ifolds are of the same dimension, the differential is also surjective. Hence the differential is invertible.
By the inverse function theorem, f is a local diffeomorphism. Since f is bijective, f is a diffeomorphism.
|

(November 6) Let M be a connected manifold without boundary. Show that if S, T are finite sets in
M of the same size, then there is a diffeomorphism f : M — M sending S to T (that is, f(S) =1T).

Solution: Let S = {s1,...,8m} and T = {t1,...,tn}, and first consider the case when M is 1-
dimensional. Assume that s1 < so < -+ < 8, and t1 < to < -+ < tp,. Let f; : M — M be a map
with support on a neighborhood of [s1, 1] not containing any other points of 7' that takes s; to t;.
Let fo : M — M be a map with support on a neighborhood of [f;(s2),t2] not containing any other
points of T that takes fi(s2) to t2. Let f3 : M — M be a map with support on a neighborhood of
[f2(f1(s3)),t3] not containing any other points of T' that takes fa(f1(s3)) to t3. Keep going in this
manner until all the points are tale care of. Then F' = f,, o f;,—10---0 f1 takes S to T.

Next consider the case M = R™ for n > 2. Let ; : [0,1] — R" be a path in R" with
7:(0)
7i(1)

We will construct a “tunnel” around ~y; that does not touch any of the other points, so that we have
maps that take s; to ¢; without disturbing any of the other points. Let

i, vi(x) # sj,t; ¥V j, Vo e (0,1),
ti, v; is not self-intersecting.

€ = Iﬁgl {d(vi, 85), d(7vis )} and V.= |J B(ux),e/2).
z€[0,1]

Here V; is an open neighborhood of ~; that only contains s;,t; of all of S,T. Since we have local
compactness, there exist x1,...,xy such that

4
Vi = |J B(vi(zr), €i/2)

k=1
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is still an open neighborhood of ;. Fix y1 = s;, ye41 = t; and

Yk € B(v(wk), €/2) N B(vi(Tk+1,€/2)

s0 yr = vi(z) for some z (that is, yi is on the path ;). Define maps f; and bump functions ¢;, by

. R” n bx : R — R,
fr Ra : aR! N and a — Llifa€ B(y(zy),€/2),
Yk + Yk+1, a +— 0ifa ¢ B(vi(zk),2€/3).

Then Fy = ¢ fr is a smooth function taking yi to yx+1 and not disturbing any of the other y’s. The
picture looks like in the diagram below.

B(vi(wry1),€i/2)

Let G; = Fy o Fy_1 o --- o Fy, which is a smooth map on R™ with G,(s;) = ¢; and G;(s;) = s; and
Gi(t;) =t; for all j # i. Then G = G, 0 Gyp—1 0 -+ - 0 G takes s; to t; for all 4.

Now consider some compact manifold M. Let ~; : [0,1] = M be a path in M with the same
conditions as above. Proceed exactly as above until the construction of the maps Fj. Assume that
Y : Bi = B(i(zk+1),€1/2) — R™ are charts. Define Fj, = wk_l o (prfr) © Yr, which is a smooth map
taking yr € M to yx41 € M. Let é, = ﬁg o E_l 0---0 ﬁl, which takes s; to t; without disturbing any
of the other s;’s and ¢;’s. The situation looks like in the diagram below.

M
Py o7t
Hence G = ém o ém_l 0:+:0 él takes s; to t; for all 4, and is a smooth map of M. |

43. (November 6) Let M be a compact smooth orientable n-manifold. Show that there exists a smooth
map f: M — S™ of non-zero degree.
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44.

45.

Solution: We present a solution that works for a non-orientable non-compact manifold as well. Let
p € M and U 3 p a neighborhood of p, and ¢ : U — R" a chart. Let e > 0 such that B((p),e) C o(U).
For S™, let V.= S™\ {south pole} and ¢ : V' — R™ the stereographic projection. Define

. DN n h: R" - R"
g: R" — R", and )

x — x—(p), r = x-—t

e—lz]*

Then g(B(¢(p),€)) = B(0,¢), and h(B(0,€)) = B(0,00) = (V). Let U := o1 (B(p(p), €)) and define
a map
f: M — S
zelU — (p~tohogoyp)(x),
£¢U + {south pole}.
This is a smooth map, because all the components are smooth or the zero map (which is also smooth).
To find the degree of the map, recall that

[ (St = HY(M),
ws] = deg(f)lwnl,

where [wg] is the orientation class of S™ and [wys] is the orientation class of M. Further, Recall
H"M = N"T*M, and the map f on Uis a diffeomorphism, which is an isomorphism on the co-
homologies. Since f (ﬁ) is all of S™ minus one point, and on U the map f* is an isomorphism (so
deg(f) = 1), it follows that deg(f) = 1 everywhere. Hence we have a smooth map M — S™ of degree
1£0. m

(November 9) Let P C R? be a finite set. Show that there is a smooth embedding f : S* — R? such
that P C f(S?).

Solution: Let P = {p1,...,px} C R? be the given finite set. Let lpw C R? be the line segment
connecting p; to some x € R®. We claim that there is some = € R® such that £, , N Ly, = {x} for all

i # j. This is immediate as the set L = {x € Ly,,, : V1 <1i,j <k} is a proper subset of R? (even
more, a Lebesgue-measure zero subset of R?’), where L,,,. is the unique line intersecting p; and p;.

Choose z € R®\ L, let 7 be the distance between x and P, and let S = S(x,0 < 7/ < r) be the
2-sphere of radius 7’ centered at x. Let x; = SN, and U; C S some closed neighborhood of z; such
that U; NU; = 0 iff ¢ # j, for all 1 < ¢ < k. Then for all 4, there is a smooth bump function b; on S
with support only on U; that takes x; to p;, as in the diagram below.

Pi

x

Let i(S%) = S, so i is a smooth embedding that takes the standard sphere S? to a sphere of radius
d' centered at x in R®. Then b; is a diffeomorphism for all 4, and for f = b obg_10---0byobyoia
smooth embedding as well, we have that P C f(S?). [ |

(November 9) Let C be a closed curve in R?, given by the zero locus of f(z,y), and w = z dy a 1-form
on R?. Show that the integral of w over f is equal to the area enclosed by the curve.
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46.

47.

Solution: Recall Green’s theorem, which says that for a simple closed curve C in R? and D the region
enclosed by C, if g, h are C' in x,y, then

/(gdx—i—hdy // (ah—az>da:dy.

In this case we have g = 0 and h = z, which are C' in both variables. Hence

/w:/mdyz/ @dxdy://dxdy:area(D).
c c p Oz D

Equivalently, we can use Stokes’ theorem (of which Green’s is a special case), by letting {2 be the area
enclosed by C' and 092 = C. Then

/;w N ./aﬂw N ./de B /Qd(m dy) = '/de dy = (area of ).

(November 9) Describe an equivalent statement to the exercise above, but for surfaces in R?.

Solution: A simple closed curve C in 2-space becomes a simple closed surface S in 3-space (which
still may be described as the zero locus of some f(x,y,z)). The “area enclosed” by C now is the 3-
dimensional manifold ¥ with boundary 0% = S. To see how w generalizes, consider the generalization of
Green’s theorem, which is the divergence theorem (both of which are special cases of Stokes’ theorem).
It says that, given S a simple closed surface in R® and ¥ the region enclosed by S, if ¢, h, k are C! in

x,y, z, then
(gdm—i—hdy—i—kdz g 8h Ok dx dy dz.
82

In this case we can use w = xdz,ydy, or zdz. We could also use w = i (zdx + ydy + zdz). In all of
those cases, we would have g, h, k being C in all the variables, allowing us to say

/ w= // dx dy dz = volume(X).
S b

Equivalently, we may ask: “Let C' be a closed surface in R?, given by the zero locus of f (x,y,2), and
w =z dy dz a 2-form on R®. Show that the integral of w over f is equal to the volume enclosed by
the surface.” The answer would be the same as above:

/w:/ w:/dw:/d(xdydz)z/da:ddeZ(volumeon).
c o9 Q Q Q

(November 9) Let M > x be an n-manifold without boundary and B(xz) C M a closed neighborhood
of z diffeomorphic to the unit n-ball. Prove that M — {z} is diffeomorphic to M — B(x).

Solution: Let B, be the closed unit ball centered at x, and By, the closed ball of radus 1 + € centered
at . Without loss of generality, assume that B(z) C B, and Bt C M. If these do not hold, change
the radii of the defined balls. Let f : B(z) — B, be the diffeomorphism given, and let b : M — M be
a bump function given by

_ ) fly) yeB),
b(y)_{y y ¢ By



48.

49.

We may assume that b(z) = z, so the above is also a map M — {z} — M — {z} that takes B(z) to B,.
Next consider the following map, which we claim is a diffeomorphism between M — {z} and M — By,:

g: M—{z} — M-B,,
yeB, = iy,
y¢ By, — y.

This map is smooth, its inverse is smooth, and both it and its inverse are bijective, so it is a diffeo-
morphism (all of these things are clear, because the map is just multiplication). Now consider the
map
h : M—{z} — M- B(z),
y = bl (g(x).
Since g and b were diffeomorphisms, so is h. Finally, since b takes B(x) to B,, its inverse b~! takes
M — B, to M — B(x), exactly as desired. Therefore M — {x} is diffeomorphic to M — B(z).

A more direct approach is to use Whitney’s embedding theorem to embed M in RY, for a N large
enough. Any continuous map defined on a compact subset of R extends to all of it (this is the Tietze
extension theorem), so we apply this to the given diffeomorphism f, assuming the unit ball is a subset
of B(x) (otherwise shrink the ball). In fact, we only need to extend f to some open neighborhood U of
B(x), then apply a partition of unity to define it on M. This gives a map a : M — B(x) — M — (unit
ball), and by stretching an e-shell of the unit ball to an (e + 1)-shell of the point, we get a diffeomor-
phism M — B(z) - M — {z}. [ ]

(November 11) Show that S x S is not diffeomorphic to S2.

(Contributed by Nathan Lopez)

Solution: First note that S x 52 is the torus and S? is the sphere. The torus is not simply connected,
since it has non-trivial elements in its fundamental group, and the sphere is simply connected. If there
were to exist a diffeomorphism f : S x S — S2, then f would induce an isomorphism on homology
groups. However, H1(S! x S1;Z) = Z/2Z and H'(S5?%;Z) = 0, which are clearly not isomorphic. Hence
no such diffeomorphism exists. |

(November 13) Let M be a manifold with boundary M. Show that an orientation M defines an
orientation on OM.

Solution: Let w € Q" (M) be an orientation of M. Then we know [0] # [w] € H™(M), so there does
not exist n € Q" 1(M) such that [dn] = [w]. Let x1,...,2, be local coordinates on M such that the
image of M lies in x,, = 0. Write

w= fdxy A+ Ndzy, for feC*(M),f>0.

We may choose f to be positive (this is the positive orientation of M). Note that we may consider
floar € C°(OM) as well, and since f > 0 on M, we have f|sas > 0. Consider

@ = flomdzy A--- Ndayy € Q1 (OM),

which is indeed in Q"1(9M), by our choice of chart. To show @ is an orientation on M, we need
to show [0] # @ in H"1(9€). For contradiction, suppose that there exists 77 € Q"~2(9M) such that
dn = w. Then wedging with dz, we get

(dn) ANdz, =0 ANdxp= f'dxi A -+ Aday,
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50.

where f € C°°(M) is some strictly positive extension of f|sas to all of M, so [@ A dz,] = [w]. Then

O A dx, = (di) Adz, + (—1)" 25 Ad(dey,) = d(7] A dzy,),

=0

by the Leibniz rule. However, j A dz,, € Q"~*(M), giving an 7 for which [dn] = [w], a contradiction.
Hence no such 7] exists, and [0] # [@] € H"~'(OM). This shows that an orientation w on M defines an
orientation w on OM. |

(November 13) Let M be a compact orientable manifold with boundary OM. Recall that a retract of
M onto a subset N C M is a continuous map r : M — N such that r(n) = n for all n € N. Show that
there is no smooth retract M — oM.

Solution: Since M is orientable, there exists a non-vanishing orientation form w € Q"(M). By a
previous homework question, this induces a non-vanishing orientation form @ € Q"~1(M). This
means that |, on @ > 0, where we have chosen the positive orientation.

Suppose there exists a smooth retract f : M — OM. Since f is smooth, there is an induced map
f* QY oM) — Qv Y(M). Since f is a retract, f* = id on Q""1(M). That is, @ € Q" 1(OM) is
also f*@ € Q""1(M). Then

0< / w (hypothesis)
oM
= frw (assumption)
oM
z/ d(f*w) (Stokes’ theorem)
M
= / fH(dw). (pullbacks and d commute)
M
Since M is orientable, H™ (M) is 1-dimensional. If [dw] € H™(M) is not the zero class [0], it must be
a multiple of the orientation class [w]. But then [w] = [d&], contradicting the fact that w is closed but
not exact. Hence dw = 0, giving us a contradiction. Hence no such f exists, and there is no retract
M — OM. |
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