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0.1 Context

variety: X ⊂ Pn

sheaf: Ωr
X

Hodge numbers: hp,q = dim(Hq(X,Ωp
X))

Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...
...

. . .

hn,n

L-R symmetry: Hp,q = Hq,p

T-B symmetry: Hard Lefschetz Theorem or Hodge
star operator

X is a hypersurface defined by a degree d polynomial
=⇒ X is a very ample effective divisor on Pn

Here X is a variety in Pn. Recall Ωp
X is the sheaf

of differential p-forms on X, or the cotangent sheaf.
We write hp,q = dim(Hq(Ωp

X)) for the Hodge num-
bers, and when X is a Kähler manifold, we have the
Hodge decomposition

Hk(Pn) =
⊕

p+q=k

Hp,q.

All smooth projective varieties are Kähler, as Pn is
Kähler (restrict metric). A Hodge diamond starts
with

h0,0

h1,0 h0,1

...
...

. . .

and continues on until hn,n, where n is the com-
plex dimension of the variety. Left-right symme-
try because Hp,q = Hq,p (complex conjugation).
Top-bottom symmetry from either Hard Lefschetz
theorem, map induced by Hodge star operator, or
Poincare duality (vanishing of cup product on forms).

In this talk X is a hypersurface in PN defined by
a degree d polynomial. We may also consider X as
a very ample effective divisor on X, which allows us
to apply the Lefschetz hyperplane theorem, necessary
for finding almost all the Hodge numbers of X.

0.2 Hodge diamond of Pn

hk(Pn) =

{
1 k even, 6 2n,

0 k odd

DRAW HODGE DIAMOND

LHT (1924): Let X be a smooth projective variety of
dimension n, and D an ample effective divisor on X.
Then Hk(X) → Hk(D) is an iso for k < n − 1 and
an injection for k = n− 1.

Recall the regular cohomology of Pn is Hk(Pn) =
Z if k is even and 0 if k is odd. So every other has
to sum up to 1 or to 0. By left-right symmetry, ones
down the middle, zeros everywhere else.

Recall the Lefschetz Hyperplane theorem from
Seckin’s talk. Since a hypersurface in Pn is a very
ample effective divisor on Pn, we get everything
except middle row in Hodge diamond for any hyper-
surface. Note X has dimension n− 1.

For small dimensions, use tricks to get numbers.
For large dimensions, chase SESs or use Hirzebruch–
Riemann–Roch.
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0.3 Example: the quintic threefold

n = 4
d = 5
X is a quintic threefold in P4

1

1

1

1

0 0

0 0

0 0

0 0

α β β α

α = h3,0 = dim(H0(Ω3
X)) = dim(H0(ωX))

We find ωPn = OPn(−n− 1)
ωX = OX(−n− 1 + d)

Take a free resolution of OX :

Let n = 4 and consider a hypersurface cut out by
a degree 5 polynomial in P4. We know almost all the
Hodge diamond, except for the middle row.

First let’s find α = h3,0 = dim(H0(Ω3
X)) =

dim(H0(ωX)), for ωX the canonical bundle of X.
We need to find ωPn because it will be useful later
(and is easier than ωX).

This is easy to find - choose a basis, calculate
transition functions between patches, find they have
pole of order n+1 at∞. Hence ωPn ∼= OPn(−n−1).

By doing similar computations (and the chain
rule), we get an extra factor zd1 in the transition func-
tions, meaning they have a pole of order n+ 1− d at
∞. Hence ωX

∼= OX(−n− 1 + d).

This resolution of OX is just the cokernel of mul-
tiplying by F , the degree d polynomial defining X.

0 OPn(−d) OPn OX 0
·F cok(·F )

Twist by −n− 1 + d:

0 OPn(−n− 1) OPn(−n− 1 + d) OX(−n− 1 + d) 0

ωPn ωX

∼ = ∼ =

H0(OPn(−n− 1 + d)) ∼= H0(ωX)

h0(OPn(k)) =

(
# of homogeneous polynomials

of degree k in n variables

)
=

(
k + n

n

)

=⇒ h0(ωX) =
(
d−1
n

)
=⇒ α = 1

To find β:

Theorem 0.3.1. For X a hypersurface in Pn,

deg(cn−1(TX)) = χtop(X) =

2n∑
i=0

dim(Hi(X)).

Hence 4− 2α− 2β = χtop(X).

Now we have a free resolution of ωX . Since reso-
lution, everything zero except last two. Get isomor-
phism between H0 of the last two objects. We are
only looking for the dimension of this space.

We know the dimension of H0(OPn(k)) is the
number of homogeneous polynomials of degree k in
n variables SEE ALG GEO NOTES, which is

(
k+n
n

)
.

In this case we have
(
d−1
n

)
=
(
4
4

)
= 1, hence α = 1.

So if we know χtop(X), then we will also know β.
Use two sequences:
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0 OPn OPn(1)⊕n+1 TPn 0

0 TX TPn |X NX 0

Euler sequence of Pn:

Normal bundle sequence of X:

OX(d)

=

H∗(Pn) = Z[t]/tn+1

By Whitney sum formula:

c(TPn
)c(OPn) = c(OPn(1)⊕n+1)

c(TPn) = c(OPn(1))n+1

= (1 + t)n+1,

Hence c(TPn |X) = (1 + u)n+1

c(TX) =
(1 + u)n+1

c(OX(d))
=

(1 + u)n+1

1 + du

=

n+1∑
i=0

(
n+ 1

i

)
ui
∞∑
j=0

(−du)j ,

χtop(X) = deg(c3(TX))

= 〈c3(TX), [X]〉

=

3∑
i=0

(
5

i

)
(−d)3−iu3[X]

=

3∑
i=0

(
5

i

)
(−1)3−id4−i

= −d4 + 5d3 − 10d2 + 10d

= −250 + 50

= −200

=⇒ 4− 2α− 2β = −200
=⇒ β = 101.

The total Chern class of middle term of short
exact sequence is product of end terms. Let t be the
generator of cohomology ring of Pn. Via projection
map p : X → Pn, we get u = p−1∗ (t) as a generator
of the cohomology ring of X.

We also used the fact that NX
∼= OX(d) since X

is a hypersurface cut out by a degree d polynomial in
Pn. Note that ck(TX) is the term in c(TX) with uk

in it.

The degree of ck is the evaluation of ck on the
fundamental class [X] ∈ H3(X), the top cohomology
class. We used the fact that u3[X] = d, since H3(X)
is 1-dimensional.
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0.4 General approach

In general, define:

hp,q = dim(Hq(X,Ωp
X))

χp =

n−1∑
q=0

(−1)qhp,q

χy =

n−1∑
p=0

χpyp

Then:

χy = [zn]
1

(1 + zy)(1− z)2
· (1 + zy)d − (1− z)d

(1 + zy)d + y(1− z)d

Example:
Quintic threefold (n = 4, d = 5): χy = 100y − 100y2

Cubic surface (n = 3, d = 3): χy = 1− 7y + y2

For any hypersurface in Pn, we know all but
the middle row by LHT, so hp,q = δp,q whenever
p + q 6= n. The Hirzebruch–Riemann–Roch theorem
allows us to calculate exactly this middle row, by giv-
ing an alternating sum of the entries in the diagonals
of the Hodge diamond.

This method also works for all complete inter-
sections - non-singular surfaces in general position.
Also works for sheaf cohomology of sheaf of differen-
tial forms tensored with line bundles.

CAS can find this coefficient efficiently. Look in
Hirzebruch or talk to Ben.
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