The Hodge diamond of hypersurfaces
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0.1 Context

variety: X C P™

sheaf: Q%

Hodge numbers: hP9 = dim(H?(X, Q%))
Hodge diamond:

hO’O
hl,O hO,l
h2’0 hl,l h0’2

R

L-R symmetry: H?9 = H9P
T-B symmetry: Hard Lefschetz Theorem or Hodge
star operator

X is a hypersurface defined by a degree d polynomial
= X is a very ample effective divisor on P"

Here X is a variety in P™. Recall QF is the sheaf
of differential p-forms on X, or the cotangent sheaf.
We write h?9 = dim(H9(Q%)) for the Hodge num-
bers, and when X is a Kahler manifold, we have the
Hodge decomposition

H*P") = P H""

pt+q=k

All smooth projective varieties are Kéhler, as P" is
Kéhler (restrict metric). A Hodge diamond starts
with
h0,0
hl,O ho,l

and continues on until A™"™, where n is the com-
plex dimension of the variety. Left-right symme-
try because HP? = H%P (complex conjugation).
Top-bottom symmetry from either Hard Lefschetz
theorem, map induced by Hodge star operator, or
Poincare duality (vanishing of cup product on forms).

In this talk X is a hypersurface in PV defined by
a degree d polynomial. We may also consider X as
a very ample effective divisor on X, which allows us
to apply the Lefschetz hyperplane theorem, necessary
for finding almost all the Hodge numbers of X.

0.2 Hodge diamond of P"

1 keven, <2n,
W) = {0 k odd

DRAW HODGE DIAMOND

LHT (1924): Let X be a smooth projective variety of
dimension n, and D an ample effective divisor on X.
Then H*¥(X) — H*(D) is an iso for k < n — 1 and
an injection for £k =n — 1.

Recall the regular cohomology of P™ is H*(P") =
Z if k is even and 0 if k is odd. So every other has
to sum up to 1 or to 0. By left-right symmetry, ones
down the middle, zeros everywhere else.

Recall the Lefschetz Hyperplane theorem from
Seckin’s talk. Since a hypersurface in P™ is a very
ample effective divisor on P™, we get everything
except middle row in Hodge diamond for any hyper-
surface. Note X has dimension n — 1.

For small dimensions, use tricks to get numbers.
For large dimensions, chase SESs or use Hirzebruch—
Riemann—-Roch.



0.3 Example: the quintic threefold

n=4
d=5
X is a quintic threefold in P*
1
0 0
0 1 0
« I} 15} o
0 1 0
0 0
1

a = h30 = dim(H(Q3,)) = dim(H%(wy))

We find wpr = Opn(—n — 1)
wx =0x(—n—1+44d)

Take a free resolution of Ox:

-F

Let n = 4 and consider a hypersurface cut out by
a degree 5 polynomial in P4. We know almost all the
Hodge diamond, except for the middle row.

First let’s find o = h*° = dim(H(Q%)) =
dim(H%(wx)), for wyx the canonical bundle of X.
We need to find wp~ because it will be useful later
(and is easier than wx).

This is easy to find - choose a basis, calculate
transition functions between patches, find they have
pole of order n+1 at co. Hence wpn = Opn(—n—1).

By doing similar computations (and the chain
rule), we get an extra factor z{ in the transition func-
tions, meaning they have a pole of order n+ 1 —d at
oo. Hence wy =2 Ox(—n —1+d).

This resolution of Ox is just the cokernel of mul-
tiplying by F', the degree d polynomial defining X.

cok(-F)

0—— Opn (—d)

Twist by —n — 1+ d:

0— 3 Opu(—n—1) — Opu(—n—1+d) — Ox(—n—1+d) —0

2l

wpn
H(Opn(—n—1+d)) = H(wx)

0 [ # of homogeneous polynomials
7 (Opn (k) = ( of degree k in n variables

()

d—l)

n

E==4 ho(wx):(
= a=1

To find 3:
Theorem 0.3.1. For X a hypersurface in P,

2n
deg(cn—1(Tx)) = Xtop(X) = Zdim(Hi(X)).
1=0

Hence 4 — 2a — 23 = Xop(X).

2l
wx

Now we have a free resolution of wx. Since reso-
lution, everything zero except last two. Get isomor-
phism between H? of the last two objects. We are
only looking for the dimension of this space.

We know the dimension of H°(Opx(k)) is the
number of homogeneous polynomials of degree k in
n variables SEE ALG GEO NOTES, which is (*7").
In this case we have (d:) = (i) =1, hence a = 1.

So if we know x¢op(X), then we will also know £.
Use two sequences:



Euler sequence of P™: ()

Normal bundle sequence of X: 0

H*(P") = Z[t]/t" !
By Whitney sum formula:
c(Tp, )c(Opn) = c¢(Opn (1)PT1)
c(Tpn) = c(Opn (1))
= (14",
Hence ¢(Tpn|x) = (1 + u)"?
(1 +u)ntt

) =" ox @y ~

(1 +u)n+1
1+ du

i=0 =0

Xtop(X) = deg(cs(Tx))
= (c3(T'x), [X])

_ 2; (f) (—d)*~ T [X]

:0 (f) (—1)3=igi=i

= —d* + 5d° — 10d® + 10d
= —250 + 50
= —200

I
(]

— 4 —2a — 28 = —200
= [ =101.

_ g‘j ("j 1) ul i(—du

Opn Opn (1)@n+1 Tpn 0
Tx Tpr|x Nx 0
Il
Ox(d)

The total Chern class of middle term of short
exact sequence is product of end terms. Let ¢ be the
generator of cohomology ring of P™. Via projection
map p: X — P we get u = p;!(t) as a generator
of the cohomology ring of X.

We also used the fact that Nx = Ox(d) since X
is a hypersurface cut out by a degree d polynomial in
P". Note that c;(Tx) is the term in ¢(Tx) with u*
in it.

The degree of ¢ is the evaluation of ¢; on the
fundamental class [X] € H?(X), the top cohomology
class. We used the fact that u®[X] = d, since H3(X)

is 1-dimensional.



0.4 General approach

In general, define:
hP? = dim(HY(X, Q%))

n—1
yP = (=1)9pPa
q=0
n—1
xy =D _xX"y°
p=0
Then:
1 (14 2y)?— (1 - 2)¢

o= T U a1y = 2)°

Example:
Quintic threefold (n =4,d = 5): x, = 100y — 100y?
Cubic surface (n = 3,d =3): x, =1 — Ty + y*

For any hypersurface in P", we know all but
the middle row by LHT, so h?? = 6, , whenever
p + ¢ # n. The Hirzebruch—Riemann—Roch theorem
allows us to calculate exactly this middle row, by giv-
ing an alternating sum of the entries in the diagonals
of the Hodge diamond.

This method also works for all complete inter-
sections - non-singular surfaces in general position.
Also works for sheaf cohomology of sheaf of differen-
tial forms tensored with line bundles.

CAS can find this coefficient efficiently. Look in
Hirzebruch or talk to Ben.



