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1. (August 24) Find an atlas on the extended complex plane C ∪ {∞}.

Solution: Consider the sets
U0 = C,
U1 = C \ {0} ∪ {∞},

and the two maps

ϕ0 : C → R2,
x+ iy 7→ (x, y),

and
ϕ0 : C \ {0} ∪ {∞} → R2,

x+ iy 7→ (1/x, 1/y).

It is immediate that U0, U1 cover the space and that the images of ϕ0, ϕ1 are open, since they are
surjective onto all of R2. The intersections are easily seen to be

ϕ0(U0 ∩ U1) = ϕ1(U0 ∩ U1) = R2 \ {0},

so

ϕ0 ◦ ϕ−1
1 (x, y) = ϕ0

(
1

x
+
i

y

)
=

(
1

x
,

1

y

)
,

ϕ1 ◦ ϕ−1
0 (x, y) = ϕ1(x+ iy) =

(
1

x
,

1

y

)
.

Hence the composition is a C∞ map with C∞ inverse. �

2. (August 24) Find an atlas on the real projective space RPn = {1-dimensional subspaces of Rn}.

Solution: Recall that any point in RPn is represented by an (n + 1)-tuple [x0 : · · · : xn], where
xi ∈ R, the coordinates are never all simultaneously zero, and points are equivalent under non-zero
scalar multiplication. So consider the sets

U0 = {[1 : x1 : · · · : xn] : xi ∈ R 6=0},
U1 = {[x0 : 1 : x2 · · · : xn] : xi ∈ R6=0},

...
Un = {[x0 : x1 : · · · : xn−1 : 1] : xi ∈ R 6=0},

which clearly cover all of RPn. For our maps, consider

ϕi : Ui → Rn,
[x1 : · · · : xi−1 : 1 : xi+1 : · · · : xn] 7→ (x1, . . . , xi−1, xi+1, . . . , xn).

As these maps are surjective, ϕi(Ui) is open. �

3. (August 28) Show that the stereographic projection π : S2 \ {N} → R2 is a diffeomorphism, for N the
“north pole” of the sphere S2.
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Solution: The north pole is chosen to be (0, 0, 1), and the stereographic projection is given by

π : S2 \ {N} → R2,

(x, y, z) 7→ (x,y)
1−z .

Here the unit sphere is centered at the origin of R3, and we are considering R2 to be the xy-plane in
R3. Since z 6= 1, dividing by 1− z is a smooth operation, so π is smooth. The inverse of π is

ϕ : R2 → S2 \ {N},
(X,Y ) 7→

(
2X

X2+Y 2+1 ,
2Y

X2+Y 2+1 ,
X2+Y 2−1
X2+Y 2+1

)
,

which may be seen to be the inverse as

ϕ(π((x, y, z)) = ϕ

(
x

1− z
,

y

1− z

)

=

 2x
1−z

x2

(1−z)2 + y2

(1−z)2 + 1
,

2y
1−z

x2

(1−z)2 + y2

(1−z)2 + 1
,

x2

(1−z)2 + y2

(1−z)2 − 1

x2

(1−z)2 + y2

(1−z)2 + 1


=

(
2x(1− z)

x2 + y2 + (1− z)2
,

2y(1− z)
x2 + y2 + (1− z)2

,
x2 + y2 − (1− z)2

x2 + y2 + (1− z)2

)
=

(
2x(1− z)

2− 2z
,

2y(1− z)
2− 2z

,
2z − 2z2

2− 2z

)
= (x, y, z).

This inverse is also smooth, since X2 + Y 2 + 1 6= 0, as X2, Y 2 > 0 and 1 > 0. Hence the stereographic
projection is smooth with a smooth inverse, so we have a diffeomorphism. �

4. (August 28) Show that O(n), the space of orthogonal n× n matrices, and SO(n), the space of orthog-
onal matrices with determinant 1, are both manifolds.

Solution: Recall that A ∈ O(n) iff AAT = I. Consider the map F : Mn → Sym(Mn), given by
A 7→ AAT , where Mn is the set of real-valued n × n matrices. The derivative of F at A is map DFA
given by

0 = lim
‖H‖→0

[
‖F (A+H)− F (A)−DFA(H)‖

‖H‖

]
= lim
‖H‖→0

[
‖AAT +AHT +HAT +HHT −AAT −DFA(H)‖

‖H‖

]
= lim
‖H‖→0

[
‖AHT +HAT +HHT −DFA(H)‖

‖H‖

]
.

It follows that DFA(H) = HAT + AHT . Consider the case H = KA for some matrix K. Then
DA(H) = KAAT + AATKT , so if A ∈ F−1(I), then DFA(H) = K + KT . Suppose we start with a
matrix S. Then DFA(KA) = K + KT = S, so K = S/2. Hence DFA(H) is surjective, and applying
the theorem from class, F−1(I) is a manifold.

For SO(n), which is the matrices A ∈ O(n) with determinant 1, consider the determinant
det : O(n) → R. It is a smooth function, and the image of det is {−1, 1}. This means that O(n) has
at least two connected components, and no componenet contains matrices with both determinant 1
and −1. Therefore the connected componenets of O(n) that map to +1 under det (there happens to
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be just one, but we do not prove this) are SO(n). Since a connected component of a manifold is a
manifold in its own right (by refinements of charts), SO(n) is a manifold. �

5. (August 31) Show that a smooth map of manifolds is continuous, using the topology of the manifolds.

6. (August 31) Show that SO(3) is diffeomorphic to RP3.

Solution: To see this, view SO(3) as the space of rotations in R3 and RP 3 as S3/(x ∼ −x), the
3-sphere modulo the antipodal relation. Further, view the 3-sphere as the 3-dimensional solid ball with
radius π with boundary identified, that is,

S3 ∼= B3/∂B3.

We now construct an identification between the two spaces. An arbitrary element of SO(3) looks like

((x, y, z)︸ ︷︷ ︸
∈S2

, θ︸︷︷︸
∈[−π,π)

) ∈ SO(3),

with ((x, y, z), θ) ∼ ((−x,−y,−z),−θ). An arbitrary element of S3 looks like

( (x, y, z)︸ ︷︷ ︸
∈∂B2=S2

, θ︸︷︷︸
∈[−π,π)

) ∈ S3,

where (x, y, z) represents a direction in R3, and θ is the length of the radius in B3 (which we are viewing
concurrently as having radius 1 (for SO(3)) and radius π (for S3)). When we apply the antipodal map
((x, y, z), θ) ∼ ((−x,−y,−z),−θ) in S3 (to match the one in SO(3) above), we get RP 3, as desired.
The map is a diffeomorphism, since it is the identity as presented. �

7. (September 2) Show that C∞(M), the space of smooth maps M → R, is a vector space.

Solution: To show that it is a vector space, we need to show it is closed under addition and scalar
multiplication. So let f, g ∈ C∞(M), for which

(f + g)(x) = f(x) + g(x) ∈ R,

so f + g ∈ C∞(M). Similarly, for any scalar c ∈ R, we have

(cf)(x) = c · f(x) ∈ R,

so cf ∈ C∞(M). Hence C∞(M) is a vector space. �

8. (September 2) Describe an n-dimensional analogue of the smooth bump function presented in class.

Solution: Consider the function f in 1 variable, given by

f(t) =

{
e−1/t if t > 0,

0 if t 6 0.
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This is a C∞ function. Define

g(t) =
f(t)

f(t) + f(1− t)
with

g(t) = 0 if t 6 0,
g(t) = 1 if t > 1.

Next, define

h(t) = g(t+ 2)g(2− t) with
h(t) = 0 if |t| > 2,
h(t) = 1 if |t| 6 1.

Note this function is also C∞. Moreover, we can make an n-dimensional analogue, by k(x1, . . . , xn) =
h(x1)h(x2) · · ·h(xn). In this setup, the function will be 1 if ‖x‖ 6 1, and taking k(R−1x) is identically
1 in a ball of radius R, and is 0 outside a ball of radius 2R. More specifically, define hi(xi) for 1 6 i 6 n
with analogous f and t as above, and note that

h(R−1xi) = g
(xi
R

+ 2
)
g
(

2− xi
R

)
with

h(R−1xi) = 0 if |t| > 2R,
h(R−1xi) = 1 if |t| 6 R.

So indeed, for x = (x1, . . . , xn) ∈ Rn, whenever ‖x‖ 6 R, we have k(R−1x) = 1 and whenever
‖x‖ > 2R, we have k(R−1x) = 0. �

9. (September 4) LetM 3 a be a n-dimensional manifold in coordinates x1, . . . , xn. Show that (dx1)a, . . . , (dxn)a
span T ∗aM .

Solution: Recall T ∗aM := C∞(M)/Za(M), where Za(M) is the subspace of C∞(M) consisting of the
smooth maps whose derivative vanishes at a. The dxi are in T ∗aM , since each dxi represents the linear
function xi on Rn. This also shows that the dxi span T ∗aM . To see that they are linearly independent,
suppose that

0 =

n∑
i=1

λi(dxi)a

for some λi ∈ R. Then

0 =

n∑
i=1

λi(dxi)a =

n∑
i=1

d(λixi) = d

(
n∑
i=1

λixi

)
,

meaning that
∑
λixi = c for some scalar c. Since the xi are linearly independent coordinates in Rn,

the coefficients of xi have to match up on the left and right sides. Hence λi = 0 for all i and c = 0.
Therefore the dxi are linearly independent, and so form a basis of T ∗aM . �

10. (September 9) Find a basis for TpS
3, the tangent space of S3 at a point p.

Solution: Let p = (p1, p2, p3, p4) ∈ S3, so a vector x = (x1, x2, x3, x4) ∈ R4 is tangent to S3 at p (that
is, lies in TpS

3) if and only if p · x = 0, for · the dot product. Note that

x · p = (x1, x2, x3, x4) · (p1, p2, p3, p4) = x1p1 + x2p2 + x3p3 + x4p4,

and assuming that p4 6= 0 (if p4 = 0, change the basis vectors so that p4 6= 0, as there is always one
coordinate of p that is non-zero). Then in TpS

3 we have

x4 =
−x1p1 − x2p2 − x3p3

p4
,
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and so TpS
3 is completely described by the points(

x1, x2, x3,
−x1p1 − x2p2 − x3p3

p4

)
.

It follows immediately that a basis for TpS
3 in R4 is(

1, 0, 0,
−p1

p4

)
,

(
0, 1, 0,

−p2

p4

)
,

(
0, 0, 1,

−p3

p4

)
.

�

11. (September 11) Prove the following statement: Let F : M → N be a smooth map and c ∈ N such that
for all a ∈ F−1(c), the derivative DFa is surjective. Then F−1(c) is a smooth manifold of dimension
dim(M)− dim(N).

Solution: We know the statement is true when M = Rm and N = Rn. In this case, let M be
m-dimensional and N be n-dimensional. So let (U,ϕ) be a chart on N such that c ∈ U . Let (V, ψ) be
a chart on M such that a ∈ F−1(c) also is in V .

Apply the known theorem to the map F̃ = vp ◦ F ◦ ψ−1 : Rm → Rn. The derivative of this map
is surjective - indeed, surjectivity of such a map means the surjectivity of the homomorphism between
tangent spaces. Since this is guaranteed for F and the chart maps ϕ,ψ have it guaranteed to begin
with, we are fine.

So we have that F̃−1(ϕ(c)) ⊂ ψ(V ) ⊂ Rm is a manifold of dimension m − n. Since ϕ and ψ are
invertible homomorphism, we have that F−1(c) ⊂M is a manifold of dimension m− n. �

12. (September 11) Let f : M → N be a diffeomorphism of manifolds. Show that for each x ∈ M , (df)x
is an isomorphism of tangent spaces.

Solution: Recall an isomorphism is an invertible homomorphism. Since f is a diffeomorphism, it has
a differentiable inverse g : N → M such that g ◦ f = idM and f ◦ g = idN . We claim that (dg)f(x) is
the inverse of (df)x. Indeed, apply the chain rule to g ◦ f and f ◦ g to find that

idTxM = (d(g ◦ f))x = (dg)f(x) ◦ (df)x,

idTyN = (d(f ◦ g))y = (df)g(y) ◦ (dg)y.

Hence dg is the inverse of df , and by the homomorphism properties, this is an isomorphism. �

13. (September 11) Let X be a manifold with U ⊂ X open. Show that TaU = TaX for all a ∈ U .

Solution: We use the description of TaM as the set of derivations at a (that is, maps v : C∞(M)→ R
satisfying v(fg) = g(a)v(f) + f(a)v(g)). The approach is to show the map i∗ : TaU → TaX, induced
from the inclusion i : U → X, is injective and surjective. The pushforward acts as i∗(v)(f) = v(f |U )
for any f ∈ C∞(X) (and hence f |U ∈ C∞(U), since restrictions of smooth maps are smooth).

For injectivity, take v ∈ TaU and i∗(v) ∈ TaX, supposing that i∗(v) = 0, so i∗(v)(f) = 0 for all
f ∈ C∞(X). Then v(f |U ) = 0, and since f was arbitrary (and may be chosen so that f |U = g, for any
g ∈ C∞(U)), we have that v = 0.
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For surjectivity, take w ∈ TaX, and define v ∈ TaU by v(f) = w(f̃), for f̃ ∈ C∞(M) any function

with f = f̃ |U (this is well-defined, since the derivation of functions that agree on an open set are the

same). Then i∗(v)(f) = v(f |U ) = w(f̃ |U ) = w(f), so i∗(v) = w. �

14. (September 14) Consider the map i : (−1,∞) → R2 given by t 7→ (t2 − 1, t(t2 − 1)). Show that this
map does not give a submanifold of R2.

Solution: The image of this space M under i looks like in the diagram below.

The subspace topology is {U : U = V ∩M for some V ⊂ R2 open}. In the topology of M , we
clearly have open intervals (1− δ, 1 + δ) for all δ > 0. However, there is no open set V ⊂ R2 such that
V ∩M = (1 − δ, 1 + δ). Hence the topology of M is not the same as the induced subspace topology
from R2, so M is not a submanifold of R2 with this i. �

15. (September 14) Let M 3 x,N 3 y be two manifolds. Show that T(x,y)M ×N ∼= TxM × TyN .

Solution: Consider the maps

π1 : M ×N → M,
(a, b) 7→ a,

π2 : M ×N → N,
(a, b) 7→ b,

iy : M → M ×N,
a 7→ (a, y),

jx : N → M ×N,
b 7→ (x, b).

We will use these to construct maps between the spaces. Each of the maps above have induced maps
on tangent spaces, the pushforwards, so we get new maps

α : T(x,y)M ×N → TxM × TyN,
v 7→ (π1∗(v), π2∗(v)),

β : TxM × TyN → T(x,y)M ×N,
(v, w) 7→ iy∗(v) + jx∗(w).

These maps are well defined, smooth, and

(α ◦ β)(v, w)(f, g) = α(iy∗(v) + jx∗(w))(f, g)

= (π1∗(iy∗(v) + jx∗(w)), π2∗(iy∗(v) + jx∗(w))) (f, g)

= (π1∗(iy∗(v))(f) + π1∗(jx∗(w))(f), π2∗(iy∗(v))(g) + π2∗(jx∗(w))(g))

= ((π1 ◦ iy)∗(v)(f) + (π1 ◦ jx)∗(w)(f), (π2 ◦ iy)∗(v)(g) + (π2 ◦ jx)(w)(g))

= (v(f ◦ π1 ◦ iy) + w(f ◦ π1 ◦ jx), v(g ◦ π2 ◦ iy) + w(g ◦ π2 ◦ jx))

= (v(f) + 0, 0 + w(g))

= (v, w)(f, g).

Hence β is injective and α is surjective. Using either of these facts, since domain and range have the
same dimension and both α and β are linear (as they are defined in terms of derivatives), they both
are isomorphisms. �
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16. (September 18) Show that the 1-sphere S1 has trivial tangent bundle.

Solution: First we describe the tangent bundle structure, which is p : TS1 → S1, with p−1(x) = R
for all x ∈ S1. For any such x, choose a neighborhood U , just an open interval on the sphere, and
apply p−1 to get something diffeomorphic to U ×R. Visually,

x
U U

R R R R R

x
U ×R

p−1

−−−→ ∼=

It is clear that gUV = 1 for all U, V . Recall the product space

S1 ×R

S1 R

π1 π2

with the relevant projection maps. Consider the map

Θ : TS1 → S1 ×R,
w 7→ (p(w), w),

which makes sense, as w ∈ TS1 =
⊕

a∈M TaM is in TaS
1 ∼= R for some a ∈M . Then

(π1 ◦Θ)(w) = π1(p(w), r(w)) = p(w),

exactly as desired. The map Θ is a diffeomorphism, so we are done. �

17. (September 18) Prove the following statement: A manifold Mn has trivial tangent bundle iff there are
n vector fields X1, . . . , Xn on M such that at each a ∈M , the elements (X1)a, . . . , (Xn)a form a basis
for TaM .

Solution: Suppose that Mn has trivial tangent bundle. That means M × Rn ∼= TM via some
isomorphism ϕ. Define vector fields

Xi : M → TM,
a 7→ ϕ(a, ei),

for ei the ith standard basis vector of Rn. These vector fields are indeed vector fields, and they are all
smooth. Moreover, by construction the (Xi)a are linearly independent, and so they form a basis for
TaM , for all a ∈M .

Now suppose that there are vector fields X1, . . . , Xn such that (X1)a, . . . , (Xn)a form a basis for
TaM , for all a ∈ M . We will show that TM and M ×Rn are diffeomorphic. Begin by taking a ∈ M
and (U,ϕ) a chart for a. Define maps

ψU : U ×Rn →
∐
p∈U TpM,

(q, y1, . . . , yn) 7→ (q,
∑
i yi(Xi)q)

,
ΨU :

∐
p∈U TpM → ϕ(U)×Rn,

(q, z) 7→ (ϕ× id) ◦ ψ−1
U (q, z).
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The map ψU is a bijection between the given spaces by assumption, and ΨU is a chart map on TM .
Now we turn the focus from local to global. Define a map

F : M ×Rn → TM,
(p, y) 7→ (p,

∑
i yi(Xi)p),

which we claim is the desired diffeomorphism. To show this is true, we will demonstrate F and F−1

are smooth. Take two special charts

(U ×Rn, ϕ× id) for M ×Rn,(∐
p∈U TpU,ΨU

)
for TM,

and observe that

ΨU ◦ F ◦ (ϕ× id)−1(ϕ(a), y) = ΨU ◦ F (a, y) = ΨU (a,
∑
i yi(Xi)a) = (ϕ(a), y).

Hence ΨU ◦ F ◦ (ϕ× id)−1 = idM . To show that other charts work, instead choose an arbitrary chart
(
∏
p∈V TpM,ΨV ) for TM . The picture of the calculations looks like below:

R2n

M ×Rn TM

Rn

(ϕ× id)−1

F

ΨV

ΨV ◦ F ◦ (ϕ× id)−1 = ΨV ◦Ψ−1
U ◦ΨU ◦ F ◦ (ϕ× id)−1 = ΨV ◦Ψ−1

U

Since the transition maps are smooth, ΨV ◦ Ψ−1
U is smooth, so F is indeed a diffeomorphism. Hence

M ×Rn and TM are diffeomorphic, meaning that M has trivial tangent bundle. �

18. (September 18) Prove the following statement: Any linear transformation which satisfies the Leibniz
property is a vector field.

Solution: Recall that the tangent space to M at p may be viewed as the space of derivations, that
is, the set of linear maps v : C∞(M) → R such that for all f, g ∈ C∞(M), we have v(fg) =
f(p)v(g) + g(p)v(f). Also recall that a vector field is a map X : M → TM such that π ◦ X = idM ,
where π : TM →M is the natural projection map.

First we need to show that, for p ∈ M , Xp ∈ TM . This is immediate, as the assumption that X
satisfies the Leibniz rule is equivalent to the condition of being in TM , even more, to being in TpM .

Next we need to show π(Xp) = p, but this is immediate, as π(TpM) = p, and Xp ∈ TpM . �

19. (September 18) Let X,Y, Z be vector fields on a manifold M . Show the following properties hold, in
coordinates:

(a) [X,Y + Z] = [X,Y ] + [X,Z]
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(b) [X,Y ] = −[Y,X]

(c) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

(d) λ[X,Y ] = [X,λY ] for any scalar λ

Solution: This first identity involves some long algebra.

[X,Y + Z] =

[
ai

∂

∂xi
, bj

∂

∂xj
+ ck

∂

∂xk

]
= ai

∂

∂xi

(
bj

∂

∂xj
+ ck

∂

∂xk

)
−
(
bj

∂

∂xj
+ ck

∂

∂xk

)
ai

∂

∂xi

= aibj
∂

∂xi

∂

∂xj
+ aick

∂

∂xi

∂

∂xk
− aibj

∂

∂xj

∂

∂xi
− aick

∂

∂xk

∂

∂xi

=

(
aibj

∂

∂xi

∂

∂xj
− aibj

∂

∂xj

∂

∂xi

)
+

(
aick

∂

∂xi

∂

∂xk
− aick

∂

∂xk

∂

∂xi

)
=

[
ai

∂

∂xi
, bj

∂

∂xj

]
+

[
ai

∂

∂xi
, ck

∂

∂xk

]
= [X,Y ] + [X,Z]

The second identity just needs some rearranging.

[X,Y ] =

[
ai

∂

∂xi
, bj

∂

∂xj

]
= aibj

∂

∂xi

∂

∂xj
− aibj

∂

∂xj

∂

∂xi

= −
(
aibj

∂

∂xj

∂

∂xi
− aibj

∂

∂xi

∂

∂xj

)
= −

[
bj

∂

∂xj
, ai

∂

∂xi
,

]
= −[Y,X]

The third identity is an exercise in masochism. We begin by expanding the first term in the identity.

[X, [Y, Z]] =

[
ai

∂

∂xi
,

[
bj

∂

∂xj
, ck

∂

∂xk

]]
=

[
ai

∂

∂xi
, bjck

∂

∂xj

∂

∂xk
− bjck

∂

∂xk

∂

∂xj

]
= aibjck

∂

∂xi

∂

∂xj

∂

∂xk
− aibjck

∂

∂xj

∂

∂xk

∂

∂xi
− aibjck

∂

∂xi

∂

∂xk

∂

∂xj
+ aibjck

∂

∂xk

∂

∂xj

∂

∂xi

Denote the first term above by the ordered triple (i, j, k), noting that the order of the smooth coefficient
functions does not matter. Generalizing, the sum of the terms in the Jacobi identity contains the sum
of the terms in the following table:

(i, j, k) −(j, k, i) −(i, k, j) (k, j, i)
(j, k, i) −(k, i, j) −(j, i, k) (i, k, j)
(k, i, j) −(i, j, k) −(k, j, i) (j, i, k)

The terms in the first column are the negatives of the terms in the second column, and the terms in
the third column are the negatives of the terms in the fourth column. Hence adding them all together
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gives 0, yielding the desired identity.

The last identity is straightforward.

λ[X,Y ] = λ

[
ai

∂

∂xi
, bj

∂

∂xj

]
= λaibj

∂

∂xi

∂

∂xj
− λaibj

∂

∂xj

∂

∂xi

= ai(λbj)
∂

∂xi

∂

∂xj
− ai(bjλ)

∂

∂xj

∂

∂xi

=

[
ai

∂

∂xi
, λbj

∂

∂xj

]
= [X,λY ]

This completes the proof. �

20. (September 21) Let A be a skew-symmetric m×m matrix, and set γ(t) = exp(tA) =
∑∞
n=0 t

nAn/n!.

(a) Show that γ defines a smooth curve in SO(m).

(b) Find γ′(0), the tangent vector defined by γ at 0.

(c) Find TISO(m).

(d) Find TgSO(m), for arbitrary g ∈ SO(m).

(Contributed by Nathan Lopez)
Solution:
(a) The sum converges uniformly and each partial sum

∑k
n=0 t

nAn/n! is smooth, so exp(tA) is smooth.
To show that γ(t) ∈ SO(m), we need to show γ(t)T = γ(t)−1 and det(γ(t)) = 1. For the first, note

γ(t)T = exp(tA)T

=

( ∞∑
n=0

tnAn

n!

)T

=

(
lim
k→∞

[
k∑

n=0

tnAn

n!

])T
(uniform convergence)

= lim
k→∞

( k∑
n=0

tnAn

n!

)T (continuity of lim and T )

= lim
k→∞

[
k∑

n=0

tn(An)T

n!

]
(properties of T )

= lim
k→∞

[
k∑

n=0

tn(AT )n

n!

]
(properties of T )

=

∞∑
n=0

tn(AT )n

n!

= exp(tAT )

= exp(−tA). (A is skew-symmetric)
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A tedious algebra argumwent shows that if two matrices X,Y commute (that is, XY = Y X), then
exp(X) exp(Y ) = exp(X + Y ). Since (tA)(−tA) = −t2A2 = (−tA)(tA), we have that

γ(t)γ(t)T = exp(tA) exp(−tA) = exp(tA− tA) = exp(0) = I =⇒ γ(t)T = γ(t)−1.

Finally, Jacobi’s identity says that det(exp(X)) = etr(A), and we know that the trace of a skew-
symmetric matrix is 0, so det(exp(tA)) = e0 = 1, and therefore γ ∈ SO(m).

(b) Since the sum converges uniformly, we may compute the derivative term by term. That is,

d

dt
γ(t) =

d

dt
lim
k→∞

[
k∑

n=0

tnAn

n!

]
= lim
k→∞

[
d

dt

k∑
n=0

tnAn

n!

]
= lim
k→∞

[
k∑

n=1

tn−1An

(n− 1)!

]
= A+ tA2 +

t2A3

2
+ · · · ,

so γ′(0) = A.

(c) First note that part (b) gives us a tangent vector in TISO(m), since γ(0) = I. That is, any
skew-symmetric matrix is in this tangent space. Next, since

dim(m×m skew-symmetric matrices) =
n(n− 1)

2
= dim(SO(m)) = dim(TISO(m)),

a basis of skew-symmetric matrices is a basis of TISO(m). Hence TISO(m) is simply the space of
m×m skew-symmetric matrices.

(d) Now let g ∈ SO(m) be arbitrary. To find TgSO(m), define a new path γ̃(t) = g exp(tA), for which
the exact same calculations as above may be repeated. The changes are that γ′(0) = gA, meaning
that, for SS(m) the space of m×m skew-symmetric matrices, we get TgSO(m) = gSS(m). �

21. (October 12) Show that a smooth vector field on a manifold M that vanishes outside a compact set
K ⊂M generates a 1-parameter group of diffeomorphisms on M .

Solution: Take p ∈ K, for which there exists an open neighborhood Up of p and εp > 0 such that
ϕp : (−εp, εp)→ M is a maximal integral curve of X going through p. Since K is compact, there is a
finite set p1, . . . , pk such that Up1 ∪ · · · ∪ Upk = K. Let ε = mini{εpi}, so that ϕpi : (−ε, ε) → M is a
maximal integral curve through pi.

For p ∈ M \K, the maximal integral curve through p is constant, so is clearly defined on (−ε, ε)
for any ε > 0. Hence every point of M has a maximal integral curve going through it, defined on
(−ε, ε). By some finagling (see “Uniform time lemma”, p.216 in Lee), it follows directly that there is
a maximal integral curve defined on all of R and all of M . This is equivalent to saying that there is a
1-parameter group of diffeomorphisms on all of M . �

22. (October 14) Consider S2 ⊂ R3 in coordinates (x, y, z), and let X = y ∂
∂x − x

∂
∂y and Y = z ∂

∂y − y
∂
∂z

be vector fields on S2. Calculate [X,Y ].
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Solution: This is just some calculations with the product rule.

[X,Y ] =

[
y
∂

∂x
− x ∂

∂y
, z

∂

∂y
− y ∂

∂z

]
=

(
y
∂

∂x
− x ∂

∂y

)(
z
∂

∂y
− y ∂

∂z

)
−
(
z
∂

∂y
− y ∂

∂z

)(
y
∂

∂x
− x ∂

∂y

)
= y

∂z

∂x

∂

∂y
+ yz

∂2

∂x∂y
− y ∂y

∂x

∂

∂z
− y2 ∂2

∂x∂z
− x∂z

∂y

∂

∂y
− xz ∂

2

∂y2
+ x

∂y

∂y

∂

∂z
+ xy

∂2

∂y∂z

− z ∂y
∂y

∂

∂x
− zy ∂2

∂y∂x
+ z

∂x

∂y

∂

∂y
+ zx

∂2

∂y2
+ y

∂y

∂z

∂

∂x
+ y2 ∂2

∂z∂x
− y ∂x

∂z

∂

∂y
− yx ∂2

∂z∂y

= yz
∂2

∂x∂y
− y2 ∂2

∂x∂z
+ x

∂

∂z
+ xy

∂2

∂y∂z
− z ∂

∂x
− zy ∂2

∂y∂x
+ y2 ∂2

∂z∂x
− yx ∂2

∂z∂y

= x
∂

∂z
− z ∂

∂x
.

The second and third equalities were just expanding, the fourth was reducing inverse terms, and the
last equality was reducing by Fubini’s theorem. �

23. (October 16) Let X,Y be vector fields on a smooth manifold M . Give the definition of the Lie
bracket [X,Y ] as a differential operator on smooth functions. Also show that L[X,Y ] = [LX , LY ], for
LXY = [X,Y ] the Lie derivative.

(Contributed by Dan Solomon)
Solution: Let f be a smooth function. Fix some lical coordinates x1, . . . , xn on M , and define the Lie
bracket of two vector fields X = ai

∂
∂xi

and Y = bj
∂
∂xj

on f to be

[X,Y ]f = (XY − Y X)f

= X(Y f)− Y (Xf)

= ai
∂

∂xi

(
bj
∂f

∂xj

)
− bj

∂

∂xj

(
ai
∂f

∂xi

)
= ai

∂bj
∂xi

∂f

∂xj
+ aibj

∂2f

∂xi∂xj
− bj

∂ai
∂xj

∂f

∂xi
− aibj

∂2f

∂xj∂xi
(product rule)

= ai
∂bj
∂xi

∂f

∂xj
− bj

∂ai
∂xj

∂f

∂xi
(order of differentiation)

= ai
∂bj
∂xi

∂f

∂xj
− bi

∂aj
∂xi

∂f

∂xj
(renaming of indices)

=

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂f

∂xj
.

This gives a clear definition of how the Lie bracket acts on smooth functions. To check that the given
identity holds, Let Z be another vector field, for which

L[X,Y ]Z = LXY−Y XZ

= [XY − Y X,Z]

= XY Z − Y XZ − ZXY + ZY X
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and

[LX , LY ](Z) = LX(LY Z)− LY (LXZ)

= [X, [Y, Z]]− [Y, [X,Z]]

= [X,Y Z − ZY ]− [Y,XZ − ZX]

= XY Z −XZY − Y ZX + ZY X − Y XZ + Y ZX +XZY − ZXY
= XY Z + ZY X − Y XZ − ZXY,

which are both the same. �

24. (October 16) Let v1, . . . , vn be a basis of an n-dimensional vector space V . Show that the elements
vi1 ∧ · · · ∧ vip , for 1 6 i1 < · · · < ip 6 n, form a basis for

∧p
V .

Solution: It suffices to show an element w = αw1 ∧ · · · ∧ wp may be expressed in terms of the given
elements, for a scalar α and wi ∈ V . Note that for each i, we have

wi =

n∑
j=1

αjivj ,

for some scalars αij and the vj a basis for V . Then by p-multilinearity, we have

w = α

 n∑
j1=1

αj11 vj1

 ∧ · · · ∧
 n∑
jp=1

αjpp vjp

 =

n∑
j1=1

· · ·
n∑

jp=1

αj11 vj1 ∧ · · · ∧ αjpp vjp .

Given vi1 ∧ · · · ∧ vip ∈
∧p

V , view (i1 · · · ip) as an element of Sp, the symmetric group on p elements.
Then there exists σ ∈ Sp such that iσ(1) < · · · < iσ(p), so vi1 ∧ · · · ∧ vip = sgn(σ)viσ(1) ∧ · · · ∧ viσ(p) , for
sgn(σ) either +1 or −1, depending on the number of transpositions done. Hence we have

w =

n∑
j1=1

· · ·
n∑

jp=1

(
p∏
k=1

αjkk

)
sgn(σj1···jp)vσj1···jk (j1) ∧ · · · ∧ vσj1···jp (jp),

where σj1···jp(j1) < · · · < σj1···jp(jp) for all j1, . . . , jp. We have now written w as a sum of wedges of
vis with increasing indeces. Many of the terms in the sum are 0 because of the quotiented relations,
though that does not affect the correctness of the expression above. �

25. (October 16) For n > 1, show that SL(n) is a smooth manifold, and find its dimension.

(Contributed by Charlotte Greenblatt)

Solution: Recall that SL(n) is the space of n× n matrices with determinant 1. Since det : Rn2

→ R
is smooth with SL(n) = det−1(1), if we can show that the derivative of det is surjective at every point,
then it will follow that SL(n) is a smooth manifold of dimension n2 − 1.

Let x11, x12, x13, . . . , xnn be basis vectors for Rn2

, and for A ∈ SL(n), let Bij be the matrix with
zeros everywhere except a 1 in the (i, j)-th position. Finally, let Mij be the (i, j)-minor of A (the
determinant of A with the ith row and jth column removed). Note that the (k, j)-minor of A + tBij
is the same as the (k, j)-minor of A, since we have removed the jth column. Hence the derivative of
det in the xij direction is
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∂ det

∂xij
(A) = lim

t→0

[
det(A+ tBij)− det(A)

t

]
(definition of derivative)

= lim
t→0

[
1

t

(
n∑
k=1

(−1)k+j(A+ tBij)kjMkj − 1

)]
(minor decomposition)

= lim
t→0

1

t

 n∑
k=1
k 6=i

(−1)k+j(A+ tBij)kjMkj + (−1)i+j(A+ tBij)ijMij − 1




= lim
t→0

1

t

 n∑
k=1
k 6=i

(−1)k+j(A)kjMkj + (−1)i+j(A)ijMij + (−1)i+jtMij − 1




= lim
t→0

[
1

t

(
n∑
k=1

(−1)k+j(A)kjMkj + (−1)i+jtMij − 1

)]

= lim
t→0

[
1

t

(
det(A) + (−1)i+jtMij − 1

)]
= lim
t→0

[
1

t

(
(−1)i+jtMij

)]
(since det(A) = 1)

= (−1)i+jMij .

Since R is 1-dimensional, only one of the minors has to be non-zero, since that will make the derivative
surjective. Since det(A) = 1 for any A ∈ SL(n), all the minors cannot be zero, since that would
mean det(A) = 0. Hence at least one of the minors is non-zero, so the derivative is surjective at every
A ∈ SL(n), and so SL(n) is a smooth manifold of dimension n2 − 1. �

26. (October 16) Let M,N be smooth manifolds with M ⊂ N a submanifold. Show that if X is a vec-
tor field defined on an open neighborhood of M , then there exists a vector field Y on N such that
Y |M = X|M .

Solution: Let M be a k-dimensional submanifold of N with open neighborhood M̃ also k-dimensional.
Let X =

∑k
i=1 ai

∂
∂xi
∈ Γ(TM̃) be a vector field on M̃ and set ak+1 = · · · = an = 0, so that we may

extend X to all of N . Let (U,ϕ) be a chart on N such that

x ∈ U ∩ M̃ ⇐⇒ ϕ(x) = (∗, . . . , ∗︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Such a U and ϕ is possible to find because M̃ is k-dimensional and by restricting the charts. For the
next step, recall that a diffeomorphism a : B → C of manifolds induces a map a∗ : Γ(TB) → Γ(TC)
on the vector fields, given by

(a∗Z)p(h) = (Z)a−1(p)(h ◦ a),

for Z ∈ Γ(TB), p ∈ C, and h ∈ C∞(C), so h ◦ a ∈ C∞(B). Using a slight variation of this, define a
vector field ZU ∈ Γ(Tϕ(U)) given by

(ZU )q(h) :=

(
ai

∂

∂xi

)
ϕ−1(q1,...,qk,0,...,0)

(h ◦ ϕ),
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for h ∈ C∞(ϕ(U)) and q = (q1, . . . , qn) ∈ ϕ(U). This vector field is almost (ϕ∗X̃)q(h), but not quite,
since the point at which the vector field is evaluated is slightly different from ϕ−1(q). Now define a

vector field Z̃U ∈ Γ(TU) by

(Z̃u)p(h) := ((ϕ−1)∗ZU )ϕ(p)(h ◦ ϕ−1),

for h ∈ C∞(U) and p ∈ U . Finally, take K = {Uα, ϕα} to be a refinement (by restriction) of an atlas

covering M̃ and an atlas covering N . Set ZUα = 0 whenever Uα ∩M = ∅. Let ψα be a partition of

unity subordinate to K such that
∑
Uα∩M 6=∅ ψα(p) = 1 whenever p ∈M , which is possible, since M̃ is

an open neighborhood of M . Define a vector field Y ∈ Γ(TN) by

Yp(h) :=
∑
α

ψα(ZUα)p(h|Uα)

for h ∈ C∞(N) and p ∈ N . From the choice of partition of unity, it is immediate that

Y |M = X|M but Y |
M̃
6= X,

since the partition of unity decreases the effect of X only on M̃ \M . This defines the desired vector
field Y ∈ Γ(TN).

If in addition we know that M is closed, we have a bump function ϕ : N → R that is 1 on M and 0
outside of the open neighborhood of M . Then ϕX ∈ Γ(TN).

If M is closed but the vector field X is only defined on M , a simpler approach is also possible. For
open sets Uα and maps ϕα covering M (open in N) such that ϕα(Uα) = (x1, . . . , xk, 0, . . . , 0) for M
codimension n− k in N , define X ′ ∈ Γ(Tϕα(Uα)) by

X ′(x1, . . . , xn) = (ϕα)∗(X(ϕ−1
α (x1, . . . , xk, 0, . . . , 0))).

This gives a vector field X ′′ ∈ Γ(TUα) by

X ′′(a1, . . . , an) = (ϕα)−1
∗ (X ′(ϕα(a1, . . . , an))).

Given a partition of unity ψα subordinate to {Vβ} ⊃ {Uα} on N , define X ′′′ ∈ Γ(TN) by

X ′′′(a1, . . . , an) =

{
ψαX

′′(a1, . . . , an), if (a1, . . . , an) ∈ Uα,
0, else.

�

27. (October 21) Show that every compact manifold has a vector field with finitely many zeros.

Solution: Every compact manifold may be triangulated, and every n-simplex in the manifold M may
be considered in terms of its barycentric subdivision. We will construct a vector field on M that has
zeros at all the intersection points of this subdivison (of which there are finitely many). This is clear
in the 1-simlex and 2-simplex case:

1-simplex 2-simplex

15



The vector field continues in the empty spaces, following the pattern on the sides. The only zeroes
are at the emphasized points. This generalizes to n-simplices, and so gives a vector fields with finitely
many zeros on the whole manifold. �

28. (October 21) Calculate F ∗α for F : R3 → R2 given by F (x1, x2, x3) = (x1x2, x2+x3) and α = xdx∧dy.

Solution: This question is just a long calculation. Recall the rules that F ∗f = f ◦ F and F ∗(df) =
d(f ◦ F ) for f a smooth 0-form. Write (x, y) = F (x1, x2, x3) to get

F ∗α = F ∗(xdx ∧ dy)

= (x ◦ F )d(x ◦ F ) ∧ d(F ◦ y)

= (x1x2)d(x1x2) ∧ d(x2 + x3)

= x1x2(x2dx1 + x1dx2) ∧ (dx2 + dx3)

= x1x
2
2dx1 ∧ dx2 + x1x

2
2dx1 ∧ dx3 + x2

1x2dx2 ∧ dx2 + x2
1x2dx2 ∧ dx3

= x1x
2
2dx1 ∧ dx2 + x1x

2
2dx1 ∧ dx3 + x2

1x2dx2 ∧ dx3.

�

29. (October 23) Let M be a smooth n-manifold and ω a k-form on M . Give dω in local coordinates and
show why it is independent of the basis chosen for M .

Solution: Let (x1, . . . , xn) be local coordinates on M . A k-form on M is

ω =
∑
|I|=k

fIdx
I ,

where I = {i1 < · · · < ik} ⊂ {1, . . . , n} is a multi-index, and dxI = dxi1 ∧ · · · ∧ dxik and fI ∈ C∞(M)
for all I. To describe dω, it suffices to describe dω for ω a pure wedge, as the result extends by linearity.
So

ω = fdxi1 ∧ · · · ∧ dxik =⇒ dω =
∂f

∂xi
dxi ∧ dxi1 · · · ∧ dxik ,

with an implied sum in dω over i (using Einstein notation). Now suppose that (y1, . . . , yn) are also
local coordinates on M . By the chain rule, we have

∂

∂yj
=
∂xi

∂yj
∂

∂xi
and dyj =

∂yj

∂xi
dxi.

Therefore

dω =
∂f

∂yj
dyj ∧ dyj1 ∧ · · · ∧ dyjk

=
∂xi

∂yj
∂f

∂xi
∂yj

∂xi
dxi ∧ ∂y

j1

∂xι1
dxι1 ∧ · · · ∧ ∂y

jk

∂xιk
dxιk

= g
∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik ,

where g ∈ C∞(M) is a smooth function in terms of ∂yj

∂xi over some (possibly all) i, j. Hence dω is
independent, up to scaling by a smooth function, of basis chosen for M . �
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30. (October 26) Let U ⊂ Rn, V ⊂ Rm be open sets with coordinates xi, yi, respectively, and θ : U → V
be a smooth map. Show that, for θi = yi ◦ θ,

θ∗(dyi) =
∂θi
∂xj

dxj .

Solution: Since θ : U → V , we have θ∗ : T ∗V → T ∗U . The definition of the pullback gives

θ∗(dyi) = θ∗(1 · dyi) = (1 ◦ θ) d(yi ◦ θ) = 1 · dθi = 1 ·
n∑
j=1

∂θi
∂xj

dxj =
∂θi
∂xj

dxj ,

using Einstein notation. �

31. (October 26) Define the Hodge star operator

∗ : Ωk(Rm) → Ωm−k(Rm),
dxi1 ∧ · · · ∧ dxik 7→ sgn(σ)dxj1 ∧ · · · ∧ dxjm−k ,

with 1 6 i1 < · · · < ik 6 m and 1 6 j1 < · · · < jm−k 6 m. Also {i1, . . . , ik, j1, . . . , jm−k} = {1, . . . ,m}
and σ is the permutation (i1 · · · ik j1 · · · jm−k) ∈ Sm (the symmetric group on m elements). Let
ω = a12dx1 ∧ dx2 + a13dx1 ∧ dx3 + a23dx2 ∧ dx3.

(a) Calculate ∗ω for ω ∈ Ω2(R3).

(b) Calculate ∗ω for ω ∈ Ω2(R4).

Solution: (a) Using the definition, we get

∗ω = a12dx3 − a13dx2 + a23dx1.

(b) Similarly, we find
∗ω = a12dx3 ∧ dx4 − a13dx2 ∧ dx4 + a23dx1 ∧ dx4.

�

32. (October 26) Show that the formula LXα = d(iXα) + iX(dα) agrees with the definition of LXα.

Solution: Let α = fdg be a p-form and X a vector field. The result will extend linearly to all p-forms.
The right-hand side expands as

d(iXα) + iX(dα) = d(fX(g)) + iX(df ∧ dg)

= df ∧ d(X(g)) + fd(X(g)) +X(f) ∧ dg − df ∧ d(X(g))

= fd(X(g)) +X(f) ∧ dg.

The left-hand side, for ϕ the 1-parameter group of diffeomorphisms associated to X, is just

LXα =
∂

∂t
ϕ∗tα


t=0

= lim
t→0

[
ϕ∗tα− ϕ∗0α

t

]
= · · ·

I’m not sure how to finish this and I feel we have not learned enough in class to finish this. However,
if we simply consider the action on vector fields, the result follows from the definitions. Indeed, the
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Lie derivative, exterior derivative of a differential form, and interior product may be described as

(LXω)(Y1, . . . , Yk) = LX(ω(Y1, . . . , Yk))−
k∑
i=1

ω(Y1, . . . ,LXYi, . . . , Yk),

(dω)(Y1, . . . , Yk+1) =

k+1∑
i=1

(−1)i−1Yi(ω(Y1, .., Ŷi, .., Yk+1)) +

k+1∑
i=1
j>i

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1),

(iXω)(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1).

By expanding out the given terms (this is called Cartan’s formula), the result follows quickly.

(LY1ω)(Y2, . . . , Yk+1) = Y1(ω(Y2, . . . , Yk+1))−
k+1∑
i=2

ω(Y2, . . . , [Y1, Yi], . . . , Yk)

= Y1(ω(Y2, . . . , Yk+1))−
k+1∑
i=2

(−1)iω([Y1, Yi], Y2, . . . , Ŷi, . . . , Yk)

(d(iY1
ω))(Y2, . . . , Yk+1) =

k+1∑
i=2

(−1)iYi(ω(Y1, .., Ŷi, .., Yk+1))−
k+1∑
i=2
j>i

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1)

(iY1
(dω))(Y2, . . . , Yk+1) = (dω)(Y1, . . . , Yk+1)

=

k+1∑
i=1

(−1)i−1Yi(ω(Y1, .., Ŷi, .., Yk+1)) +

k+1∑
i=1
j>i

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1)

�

33. (October 28) Let F : M × [0, 1] → N be a smooth map and α ∈ Hp(N). Give a description of
F ∗α = β + dt ∧ γ in local coordinates.

Solution: Let y ∈ N and let αy = α
i1···ip
y dyi1 ∧ · · · ∧ dyip ∈ Hp(N). Let M be an n-manifold and N

an m-manifold, so we may write F (x) = (F1(x), . . . , Fm(x)). Then for x ∈M ,

(F ∗α)x = α
i1···ip
F (x) F

∗dyi1 ∧ · · · ∧ F ∗dyip

= α
i1···ip
F (x)

(
∂Fi1
∂xj1

dxj1 +
∂Fi1
∂t

dt

)
∧ · · · ∧

(
∂Fip
∂xjp

dxjp +
∂Fip
∂t

dt

)
= β

k1···kp
F (x) dxk1 ∧ · · · dxkp︸ ︷︷ ︸

∈ Hp(M)

+ γ
`1,...,`p−1

F (x) dx`1 ∧ · · · ∧ dx`p−1︸ ︷︷ ︸
∈ Hp−1(M)

∧dt.

�

34. (October 30) Let M be a smooth manifold. Show that Hp(M ×Rn) ∼= Hp(M) for any p. This result
is known as Poincare’s lemma.

Solution: Since Rn is contractible, M ×Rn is homotopic to M . That is, there exist smooth maps

F : M ×Rn →M and G : M →M ×Rn
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such that G ◦ F ∼= idM×Rn and F ◦ G ∼= idM , where ∼= signifies homotopy equivalence. For every p,
they induce group homomorphisms

F ∗ : Hp(M ×Rn)→ Hp(M) and G∗ : Hp(M)→ Hp(M ×Rn).

By a theorem from class, we know that (G ◦ F )∗ = (idM×Rn)∗ and (F ◦ G)∗ = (idM )∗. This means
that for any p,

F ∗ ◦G∗ = (G ◦ F )∗ = (idM×Rn)∗ = idHp(M×Rn),

G∗ ◦ F ∗ = (F ◦G)∗ = (idM )∗ = idHp(M).

Since these homomorphisms are inverses of each other, Hp(M ×Rn) ∼= Hp(M) for all p. �

35. (October 30) Prove that Hp(Sn) = R if p = 0, n and 0 otherwise. You may assume the result for n = 1.

We proceed by induction, assuming the case for n = 1. Decompose Sn into two sets

U = Sn − S ∼= Rn−1 and V = Sn −N ∼= Rn−1,

where S is the south pole and N is the north pole. Recall that cohomology is diffeomorphism invariant,
so Hk(U) = Hk(V ) = Hk(Rn−1) = R if k = 0 and 0 otherwise. Finally, note that U ∩ V ∼= Sn−1 ×R
via the stereographic projection, and by the Poincaré lemma (the previous question), Hk(U ∩ V ) ∼=
Hk(Sn−1 ×R) ∼= Hk(Sn−1).

For all the cases below, we take ω ∈ Ωk(Sn) to be closed, so dω = 0. For any k-form η, we write
ηY instead of η|Y when restricting to some set Y .

k = 0: Since Sn is connected, H0(Sn) = R.

k = 1: Note that H1(U) = H1(V ) = 0, so forms are closed iff they are exact. Since dωU = 0
and dωV = 0, there exist f ∈ Ω0(U) and g ∈ Ω0(V ) such that df = ωU and dg = ωV . Hence
d(fU∩V − gU∩V ) = 0, so fU∩V = gU∩V + C for some constant C. Define

h =

{
f on U,

g + C on V,
∈ Ω0(Sn)

and h is well-defined since the two definitions agree on the overlaps. Then dh = ω, so ω is exact. Hence
H1(Sn) = 0.

1 < k < n: Note that Hk(U) = Hk(V ) = 0, so forms are closed iff they are exact. Since dωU = 0
and dωV = 0, there exist α ∈ Ωk−1(U) and g ∈ Ωk−1(V ) such that dα = ωU and dβ = ωV . Hence
d(αU∩V − βU∩V ) = 0. Since Hk−1(U ∩ V ) ∼= Hk−1(Sn−1) by the remark above, and Hk−1(Sn−1) = 0
by induction, closed forms are exact. Hence there exists γ ∈ Ωk−2(U ∩ V ) such that

dγ = αU∩V − βU∩V .

Let {ψU , ψV } be a partition of unity subordinate to the cover {U, V } of Sn. Then (ψU )U∩V γ extends,
by 0 at S, to a (k − 2)-form on V . Similarly, (ψV )U∩V γ extends, by 0 at N , to a (k − 2)-form on U .
Now we may define

δ1 := β + d(ψU )U∩V γ ∈ Ωk−1(V ),

δ2 := α− d(ψV )U∩V γ ∈ Ωk−1(U).
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We claim that on U∩V , these two forms are actually the same. Indeed, by noting that γ = (ψU )U∩V γ+
(ψV )U∩V γ, we get that

βU∩V + d(ψU )U∩V γ = αU∩V − dγ + d(ψU )U∩V γ

= αU∩V − (d(ψU )U∩V γ + d(ψV )U∩V γ) + d(ψU )U∩V γ

= αU∩V − d(ψV )U∩V γ.

Hence we may define

δ =

{
δ1 on U,

δ2 on V,
∈ Ωk−1(Sn),

for which

dδ = ψUdδ + ψvdδ = ψUdδ2 + ψV dδ1 = ψUdα+ ψUdβ = ψUωU + ψV ωV = ω.

Then dδ = ω, so ω is exact. Hence Hk(Sn) = 0.

k = n: This case is left unfinished. �

36. (November 2) Consider the space of straight lines in R3.

(a) Describe this space as a manifold.

(b) What is the dimension of this manifold?

(c) Show this manifold is not orientable.

Solution: (a) Call this space of lines X, and construct an atlas on it with three charts, namely

Ux = {` ⊂ R3 : ` is not parallel to the yz-plane},
Uy = {` ⊂ R3 : ` is not parallel to the xz-plane},
Uz = {` ⊂ R3 : ` is not parallel to the xy-plane}.

Consider Ux first. Since each element of Ux is determined by where it uniquely intersects the yz-plane
and then by a direction vector from that point, it follows immediately that Ux ∼= R2 × RP2, and
the same goes for Uy and Uz. To complete the description of X as a manifold, we need to show the
transition functions are diffeomorphisms, which is done in part (c) below.

(b) The dimension of this manifold is 2 + 2 = 4, as the charts are 4-dimensional.

(c) To show this manifold is not orientable, we will show that the transition functions do not always
have positive determinant (while some do). Begin with an element of Ux, which looks like

` = {(0, y, z) + p(1 : s : t) : p ∈ R},

where (0, y, z) is where ` intersects the yz-plane. Assuming that ` ∈ Uy as well (so s 6= 0), we note
that

` = {(0, y, z) + (p− y)( 1
s : 1 : ts ) : p ∈ R}

= {(−ys , 0, z −
yt
s ) + p( 1

s : 1 : ts ) : p ∈ R},

so ` intersects the xz-plane at (−ys , 0, z −
yt
s ). This tells us the transition function ϕxy is

ϕxy : R2 ×RP2 → R2 ×RP2,
(y, z, s, t) 7→ (−ys , z −

yt
s ,

1
s ,

t
s ),
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and its derivative is

J(ϕxy) =


∂y
∂y

∂y
∂z

∂y
∂s

∂y
∂t

∂z
∂y

∂z
∂z

∂z
∂s

∂z
∂t

∂s
∂y

∂s
∂z

∂s
∂s

∂s
∂t

∂t
∂y

∂t
∂z

∂t
∂s

∂t
∂t

 =


− 1
s 0 y

s2 0
− t
s 1 yt

s2 −ys
0 0 − 1

s2 0
0 0 − t

s2
1
s

 , det(J(ϕxy)) =
1

s4
.

Now let ` ∈ Uy and assume that ` ∈ Uz as well (so t 6= 0). Then we may rewrite the points in the line
as above to get

` = {(x, 0, z) + p(r : 1 : t) : p ∈ R}
= {(x, 0, z) + (p− z)( rt : 1

t : 1) : p ∈ R}
= {(x− zr

t ,−
z
t , 0) + p( rt : 1

t : 1) : p ∈ R},

so ` intersects the xy-plane at (x− zr
t ,−

z
t , 0). This tells us the transition function ϕyz is

ϕyz : R2 ×RP2 → R2 ×RP2,
(x, z, r, t) 7→ (x− zr

t ,−
z
t ,
r
t ,

1
t ),

and its derivative is

J(ϕyz) =


∂x
∂x

∂x
∂z

∂x
∂r

∂x
∂t

∂z
∂x

∂z
∂z

∂z
∂r

∂z
∂t

∂r
∂x

∂r
∂z

∂r
∂r

∂r
∂t

∂t
∂x

∂t
∂z

∂t
∂r

∂t
∂t

 =


1 − rt − zt

zr
t2

0 − 1
t 0 z

t2

0 0 1
t − r

t2

0 0 0 − 1
t2

 , det(J(ϕyz)) =
1

t4
.

Finally, let ` ∈ Uz and assume that ` ∈ Ux as well (so r 6= 0). Then we may rewrite the points in the
line as above to get

` = {(x, y, 0) + p(r : s : 1) : p ∈ R}
= {(x, y, 0) + (p− x)(1 : sr : 1

r ) : p ∈ R}
= {(0, y − xs

r ,−
x
r ) + p(1 : sr : 1

r ) : p ∈ R},

so ` intersects the yz-plane at (0, y − xs
r ,−

x
r ). This tells us the transition function ϕzx is

ϕzx : R2 ×RP2 → R2 ×RP2,
(x, y, r, s) 7→ (−xr , y −

xs
r ,

s
r ,

1
r ),

and its derivative is

J(ϕzx) =


∂x
∂x

∂x
∂y

∂x
∂r

∂x
∂s

∂y
∂x

∂y
∂y

∂y
∂r

∂y
∂s

∂r
∂x

∂r
∂y

∂r
∂r

∂r
∂s

∂s
∂x

∂s
∂y

∂s
∂r

∂s
∂s

 =


1 − sr

xs
r2 −xr

0 − 1
r

x
r2 0

0 0 − s
r2

1
r

0 0 − 1
r2 0

 , det(J(ϕzx)) = − 1

r4
.

The reason why the determinant changes sign is the choice of where to send each of the coordinates,
since in any given chart, we only have two of them being non-zero. The process is given in the diagram
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below.

Ux

Uy

Uz

Ux

(
0 · ·

)
(
· 0 ·

)
(
· · 0

)
(
0 · ·

)

(
1 · ·

)
(
· 1 ·

)
(
· · 1

)
(
1 · ·

)

ϕxy

ϕyz

ϕzx

(
x y z

) (
r s t

)

I am not completely sure why we switch the coordinates in the real part of ϕzx but not in the projective
part, but I think it is because in RP2 orientation does not matter, but in R2 it does. Even more, if
both would switch, then all determinants would be positive, and the question clearly states “show this
is not orientable.” This shows that X is not orientable. �

37. (November 2) Prove that the tangent bundle of a smooth manifold is orientable.

Solution: Let M be a smooth n-manifold with atlas {(Uα, ϕα)}α∈A and local coordinates (x1, . . . , xn)
on Uα. We claim that TM is a smooth 2n-manifold with atlas {(Vα, ψα)}α∈A, where

Vα =
⋃
p∈Uα

TpM and
ψα : Vα → R2n,

(p, v) 7→ (ϕα(p), vx1, . . . , vxn).

The action of ψα may also be given by

ψα

(
p, ai

∂

∂xi


p

)
= (ϕα(p), a1, . . . , an).

To check that we actually have a manifold, we need the transition functions on the overlaps of the Vα
to be diffeomorphisms. So take α, β ∈ A and suppose that

Vα 3
(
p, ai

∂

∂xi

)
=

(
p, bj

∂

∂yj

)
∈ Vβ ,

for (y1, . . . , yn) local coordinates on Vβ . It is immediate that bj = ai
∂yj
∂xi

, so going from Vα to Vβ , the

transition function (id,
∂yj
∂xi

) is a diffeomorphism. Now that we have shown TM is a manifold, we need
to show it is orientable. This means that the determinant of all transition maps is positive. In matrix
form, the transition function from Vα to Vβ is given by

gαβ =


∂yj
∂xi

∂yj
∂ai

∂bj
∂xi

∂bj
∂ai

 =


∂yj
∂xi

0

∂bj
∂xi

∂ak
∂ai

∂yj
∂xk

+ ak
∂2yj
∂ai∂xi

 =


∂yj
∂xi

0

∂bj
∂xi

∂yj
∂xi

 .
This follows from the product rule and noting that

∂yj
∂ai

= 0, since the yj only depend on the xi, not

the ai, which are in the tangent space already. The element
∂bj
∂xi

doesn’t matter if all we want is the
determinant, as we have an upper-triangular matrix, and so

det(gαβ) =

(
∂yj
∂xi

)2

> 0.
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This holds since
∂yj
∂xi

is a diffeomorphism, so has non-zero determinant. Therefore the transition func-
tions all have positive determinant, meaning TM is an orientable 2n-manifold. �

38. (November 2) Let α be a smooth 1-form on R2. Show that α is exact if and only if it is closed.

Solution: Describe α as α = f1dx1 + f2dx2. First suppose that α is exact, so α = dη for some 0-form
η. Then dα = d2η = 0, so α is closed. Conversely, suppose that α is closed, so dα = 0. By Stokes’
theorem, for any closed path γ ⊂ R2 and submanifold M ⊂ R2 with ∂M = γ,∫

γ

α =

∫
M

dω =

∫
M

0 = 0.

Let h > 0, {e1, e2} = {(1, 0), (0, 1)} be the standard basis vectors of R2, and define paths γx, δx,1, δx,2
as in the diagram below.

x1

x2

γx

δx,1

δx,2
x

0

x+ he1

x+ he2

Define a 0-form η(x) =
∫
γx
ω, for which we claim that dη = ω. By Stokes’ theorem above, for i ∈ {1, 2},

0 =

∫
γx+δx,i−γx+hei

ω =

∫
γx

ω +

∫
δx,i

ω −
∫
γx+hei

ω = η(x)− η(x+ hei) +

∫
δx,i

ω.

Parametrize δx,i as δx,i : [0, 1]→ R2 given by δx,i(t) = x+ thei. Rearranging and simplifying the last
integral, we get

η(x+ hei)− η(x) =

∫
δx,i

ω

=

∫ 1

0

(f1(δx,i(t)) + f2(δx,i(t)))δ
′
x,i(t)dt

=

∫ 1

0

(f1(x+ thei) + f2(x+ thei))heidt

= h

∫ 1

0

fi(x+ thei)dt.

For i ∈ {1, 2}, define new functions gi : R→ R by

gi(t) =

∫ t

0

fi(x+ rei)dr.
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Now we finally get to the derivative of η. Observe that

∂η

∂xi
= lim
h→0

[
η(x+ hei)− η(x)

h

]
(definition)

= lim
h→0

[∫ 1

0

fi(x+ thei)dt

]
(above)

= lim
h→0

[
1

h

∫ h

0

fi(x+ rei)dr

]
(substitution r = th)

= lim
h→0

[
gi(h)− gi(0)

h

]
(definition)

= g′i(0) (definition)

= fi(x+ 0ei) (fundamental theorem of calculus)

= fi(x).

Therefore

α = f1dx1 + f2dx2 =
∂η

∂x1
dx1 +

∂η

∂x2
dx2 = dη,

and so α is an exact 1-form. �

39. (November 2) Let M be the complement of the origin in R3. Construct a 2-form on M which is closed
but not exact.

Solution: Let (x, y, z) ∈ R3 \ {0} with radius r, given by r2 = x2 + y2 + z2, and consider the 3-form

ω =
x

r3
dy ∧ dz − y

r3
dx ∧ dz +

z

r3
dx ∧ dy.

We claim ω is closed but not exact. To see it is closed, first note that

dr =
1

2
(x2 + y2 + z2)−1/2(2xdx+ 2ydy + 2zdz) = r−1(xdx+ ydy + zdz).

Now calculate

d
(
xr−3dy ∧ dz

)
= (r−3dx− 3r−4xdr) ∧ dy ∧ dz = (r−3 − 3r−5x2)dx ∧ dy ∧ dz

d
(
yr−3dx ∧ dz

)
= (r−3dy − 3r−4ydr) ∧ dx ∧ dz = −(r−3 − 3r−5y2)dx ∧ dy ∧ dz

d
(
zr−3dx ∧ dy

)
= (r−3dz − 3r−4zdr) ∧ dx ∧ dy = (r−3 − 3r−5z2)dx ∧ dy ∧ dz.

Combining them gives

dω = (3r−3 − 3r−5(x2 + y2 + z2))dx ∧ dy ∧ dz = (3r−3 − 3r−5r2)dx ∧ dy ∧ dz = 0,

and so ω is closed. To see ω is not exact, apply Stokes’ theorem. If ω were to be exact, then ω = dα
for some 1-form α. Consider the solid unit ball M in R3 \ {0} and its boundary ∂M = S2. Then we
would have ∫

S2

ω =

∫
∂M

ω =

∫
M

dω =

∫
M

ddα =

∫
M

0 = 0.

However, we will show that
∫
S2 ω 6= 0. Parametrize the sphere by

S2 : [0, π]× [0, 2π] → R3,
(s, t) 7→ (sin(s) cos(t), sin(s) sin(t), cos(s)),
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for which we get

dx = cos(s) cos(t)ds− sin(s) sin(t)dt,

dy = cos(s) sin(t)ds+ sin(s) cos(t)dt,

dz = − sin(s)ds.

Hence on S2, where r3 = 1,

x

r3
dy ∧ dz = sin(s) cos(t)(cos(s) sin(t)ds+ sin(s) cos(t)dt) ∧ (− sin(s)ds) = sin3(s) cos2(t)ds ∧ dt,

y

r3
dx ∧ dz = sin(s) sin(t)(cos(s) cos(t)ds− sin(s) sin(t)dt) ∧ (− sin(s)ds) = − sin3(s) sin2(t)ds ∧ dt,

z

r3
dx ∧ dy = cos(s)(cos(s) cos(t)ds− sin(s) sin(t)dt) ∧ (cos(s) sin(t)ds+ sin(s) cos(t)dt)

= (sin(s) cos2(s) cos2(t) + sin(s) cos2(s) sin2(t))ds ∧ dt
= sin(s) cos2(s)ds ∧ dt.

Now we integrate these separately to get∫
S2

x

r3
dy dz =

∫ 2π

0

cos2(t)

∫ π

0

sin3(s)ds dt

=

∫ 2π

0

cos2(t)

(
cos(3s)

12
− 3 cos(s)

4

)s=π
s=0

dt

=
4

3

∫ 2π

0

cos2(t)dt

=
4

3

(
2t+ sin(2t)

4

)t=2π

t=0

=
4π

3

and ∫
S2

y

r3
dx dz = −

∫ 2π

0

sin2(t)

∫ π

0

sin3(s)ds dt

= −
∫ 2π

0

sin2(t)

(
cos(3s)

12
− 3 cos(s)

4

)s=π
s=0

dt

= −4

3

∫ 2π

0

sin2(t)dt

= −4

3

(
2t− sin(2t)

4

)t=2π

t=0

= −4π

3

and ∫
S2

z

r3
dx dy =

∫ 2π

0

∫ π

0

sin(s) cos2(s)ds dt

= 2π

(
− cos3(s)

3

)s=π
s=0

=
4π

3
.
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Hence
∫
S2 ω = 4π/3 + 4π/3 + 4π/3 = 4π 6= 0, and so ω is not exact. �

40. (November 4) Construct a smooth map f : S2 → RP2 and show, by contradiction, that RP2 is not
orientable (by pulling back an orientation form on RP2 to an orientation form on S2).

Solution: Consider the map that takes a point x ∈ S2 to its equivalence class [x] = {x,−x} ∈ RP2.
There is an induced map on top cohomology groups, given by f∗ : H2

dR(RP2) → H2
dR(S2). However,

since H2(RP2;Z) = 0, and by the de Rham theorem, singular and de Rham cohomology groups agree,
it follows that H2

dR(RP2) = 0. Hence no non-zero cohomology classes exist in H2
dR(RP2), so there is

nothing to pull back to S2, and RP2 is not orientable. �

41. (November 6) Let M,N be smooth manifolds of dimension n, and f : M → N a smooth bijective
immersion. Show that f is a diffeomorphism.

Solution: An immersion f : M → N between manifolds has injective differential, and since the man-
ifolds are of the same dimension, the differential is also surjective. Hence the differential is invertible.
By the inverse function theorem, f is a local diffeomorphism. Since f is bijective, f is a diffeomorphism.
�

42. (November 6) Let M be a connected manifold without boundary. Show that if S, T are finite sets in
M of the same size, then there is a diffeomorphism f : M →M sending S to T (that is, f(S) = T ).

Solution: Let S = {s1, . . . , sm} and T = {t1, . . . , tm}, and first consider the case when M is 1-
dimensional. Assume that s1 < s2 < · · · < sm and t1 < t2 < · · · < tm. Let f1 : M → M be a map
with support on a neighborhood of [s1, t1] not containing any other points of T that takes s1 to t1.
Let f2 : M → M be a map with support on a neighborhood of [f1(s2), t2] not containing any other
points of T that takes f1(s2) to t2. Let f3 : M → M be a map with support on a neighborhood of
[f2(f1(s3)), t3] not containing any other points of T that takes f2(f1(s3)) to t3. Keep going in this
manner until all the points are tale care of. Then F = fm ◦ fm−1 ◦ · · · ◦ f1 takes S to T .

Next consider the case M = Rn for n > 2. Let γi : [0, 1]→ Rn be a path in Rn with

γi(0) = si, γi(x) 6= sj , tj ∀ j, ∀ x ∈ (0, 1),

γi(1) = ti, γi is not self-intersecting.

We will construct a “tunnel” around γi that does not touch any of the other points, so that we have
maps that take si to ti without disturbing any of the other points. Let

εi = min
j 6=i
{d(γi, sj), d(γi, tj)} and Vi =

⋃
x∈[0,1]

B(γi(x), εi/2).

Here Vi is an open neighborhood of γi that only contains si, ti of all of S, T . Since we have local
compactness, there exist x1, . . . , x` such that

Ṽi =
⋃̀
k=1

B(γi(xk), εi/2)
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is still an open neighborhood of γi. Fix y1 = si, y`+1 = ti and

yk ∈ B(γ(xk), εi/2) ∩B(γi(xk+1, εi/2)

so yk = γi(x) for some x (that is, yk is on the path γi). Define maps fk and bump functions ϕk by

fk : Rn → Rn,
a 7→ a− yk + yk+1,

and
ϕk : Rn → R,

a 7→ 1 if a ∈ B(γi(xk), εi/2),
a 7→ 0 if a 6∈ B(γi(xk), 2εi/3).

Then Fk = ϕkfk is a smooth function taking yk to yk+1 and not disturbing any of the other yk’s. The
picture looks like in the diagram below.

εi/2

2εi/3

si′

yk yk+1

xk+1

B(γi(xk+1), εi/2)

Let Gi = F` ◦ F`−1 ◦ · · · ◦ F1, which is a smooth map on Rn with Gi(si) = ti and Gi(sj) = sj and
Gi(tj) = tj for all j 6= i. Then G = Gm ◦Gm−1 ◦ · · · ◦G1 takes si to ti for all i.

Now consider some compact manifold M . Let γi : [0, 1] → M be a path in M with the same
conditions as above. Proceed exactly as above until the construction of the maps Fk. Assume that
ψk : Bi = B(γi(xk+1), ε1/2)→ Rn are charts. Define F̃k = ψ−1

k ◦ (ϕkfk) ◦ ψk, which is a smooth map

taking yk ∈M to yk+1 ∈M . Let G̃i = F̃` ◦ F̃`−1 ◦ · · · ◦ F̃1, which takes si to ti without disturbing any
of the other sj ’s and tj ’s. The situation looks like in the diagram below.

M

Rn

ϕ1f1 ϕ2f2 ϕ3f3 ϕ4f4

ψ1

ψ2 ◦ ψ−1
1

ψ2 ◦ ψ−1
1 ψ4 ◦ ψ−1

3

ψ4

B1 B2 B3 B4

Hence G̃ = G̃m ◦ G̃m−1 ◦ · · · ◦ G̃1 takes si to ti for all i, and is a smooth map of M . �

43. (November 6) Let M be a compact smooth orientable n-manifold. Show that there exists a smooth
map f : M → Sn of non-zero degree.
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Solution: We present a solution that works for a non-orientable non-compact manifold as well. Let
p ∈M and U 3 p a neighborhood of p, and ϕ : U → Rn a chart. Let ε > 0 such that B(ϕ(p), ε) ⊂ ϕ(U).
For Sn, let V = Sn \ {south pole} and ψ : V → Rn the stereographic projection. Define

g : Rn → Rn,
x 7→ x− ϕ(p),

and
h : Rn → Rn,

x 7→ x · 1
ε−|x| .

Then g(B(ϕ(p), ε)) = B(0, ε), and h(B(0, ε)) = B(0,∞) = ψ(V ). Let Ũ := ϕ−1(B(ϕ(p), ε)) and define
a map

f : M → Sn,

x ∈ Ũ 7→ (ψ−1 ◦ h ◦ g ◦ ϕ)(x),

x 6∈ Ũ 7→ {south pole}.
This is a smooth map, because all the components are smooth or the zero map (which is also smooth).
To find the degree of the map, recall that

f∗ : Hn(Sn) → Hn(M),
[ωS ] 7→ deg(f)[ωM ],

where [ωS ] is the orientation class of Sn and [ωM ] is the orientation class of M . Further, Recall

HnM =
∧n

T ∗M , and the map f on Ũ is a diffeomorphism, which is an isomorphism on the co-

homologies. Since f(Ũ) is all of Sn minus one point, and on Ũ the map f∗ is an isomorphism (so
deg(f) = 1), it follows that deg(f) = 1 everywhere. Hence we have a smooth map M → Sn of degree
1 6= 0. �

44. (November 9) Let P ⊂ R3 be a finite set. Show that there is a smooth embedding f : S2 → R3 such
that P ⊂ f(S2).

Solution: Let P = {p1, . . . , pk} ⊂ R3 be the given finite set. Let `pix ⊂ R3 be the line segment
connecting pi to some x ∈ R3. We claim that there is some x ∈ R3 such that `pix ∩ `pjx = {x} for all

i 6= j. This is immediate as the set L = {x ∈ Lpipj : ∀ 1 6 i, j 6 k} is a proper subset of R3 (even

more, a Lebesgue-measure zero subset of R3), where Lpipj is the unique line intersecting pi and pj .

Choose x ∈ R3 \ L, let r be the distance between x and P , and let S = S(x, 0 < r′ < r) be the
2-sphere of radius r′ centered at x. Let xi = S ∩ `pix and Ui ⊂ S some closed neighborhood of xi such
that Ui ∩ Uj = ∅ iff i 6= j, for all 1 6 i 6 k. Then for all i, there is a smooth bump function bi on S
with support only on Ui that takes xi to pi, as in the diagram below.

x

pi

Ui

bi−−→

x

pi

Let i(S2) = S, so i is a smooth embedding that takes the standard sphere S2 to a sphere of radius
d′ centered at x in R3. Then bi is a diffeomorphism for all i, and for f = bk ◦ bk−1 ◦ · · · ◦ b2 ◦ b1 ◦ i a
smooth embedding as well, we have that P ⊂ f(S2). �

45. (November 9) Let C be a closed curve in R2, given by the zero locus of f(x, y), and ω = x dy a 1-form
on R2. Show that the integral of ω over f is equal to the area enclosed by the curve.
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Solution: Recall Green’s theorem, which says that for a simple closed curve C in R2 and D the region
enclosed by C, if g, h are C1 in x, y, then∫

C

(g dx+ h dy) =

∫∫
D

(
∂h

∂x
− ∂g

∂y

)
dx dy.

In this case we have g = 0 and h = x, which are C1 in both variables. Hence∫
C

ω =

∫
C

x dy =

∫∫
D

∂x

∂x
dx dy =

∫∫
D

dx dy = area(D).

Equivalently, we can use Stokes’ theorem (of which Green’s is a special case), by letting Ω be the area
enclosed by C and ∂Ω = C. Then∫

C

ω =

∫
∂Ω

ω =

∫
Ω

dω =

∫
Ω

d(x dy) =

∫
Ω

dx dy = (area of Ω).

�

46. (November 9) Describe an equivalent statement to the exercise above, but for surfaces in R3.

Solution: A simple closed curve C in 2-space becomes a simple closed surface S in 3-space (which
still may be described as the zero locus of some f(x, y, z)). The “area enclosed” by C now is the 3-
dimensional manifold Σ with boundary ∂Σ = S. To see how ω generalizes, consider the generalization of
Green’s theorem, which is the divergence theorem (both of which are special cases of Stokes’ theorem).
It says that, given S a simple closed surface in R3 and Σ the region enclosed by S, if g, h, k are C1 in
x, y, z, then ∫

S

(g dx+ h dy + k dz) =

∫∫∫
Σ

(
∂g

∂x
+
∂h

∂y
+
∂k

∂z

)
dx dy dz.

In this case we can use ω = xdx, ydy, or zdz. We could also use ω = 1
3 (xdx + ydy + zdz). In all of

those cases, we would have g, h, k being C1 in all the variables, allowing us to say∫
S

ω =

∫∫∫
Σ

dx dy dz = volume(Σ).

Equivalently, we may ask: “Let C be a closed surface in R3, given by the zero locus of f(x, y, z), and
ω = x dy dz a 2-form on R3. Show that the integral of ω over f is equal to the volume enclosed by
the surface.” The answer would be the same as above:∫

C

ω =

∫
∂Ω

ω =

∫
Ω

dω =

∫
Ω

d(x dy dz) =

∫
Ω

dx dy dz = (volume of Ω).

�

47. (November 9) Let M 3 x be an n-manifold without boundary and B(x) ⊆ M a closed neighborhood
of x diffeomorphic to the unit n-ball. Prove that M − {x} is diffeomorphic to M −B(x).

Solution: Let Bn be the closed unit ball centered at x, and Bεn the closed ball of radus 1 + ε centered
at x. Without loss of generality, assume that B(x) ( Bn and Bεn ( M . If these do not hold, change
the radii of the defined balls. Let f : B(x)→ Bn be the diffeomorphism given, and let b : M →M be
a bump function given by

b(y) =

{
f(y) y ∈ B(x),

y y 6∈ Bεn.
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We may assume that b(x) = x, so the above is also a map M −{x} →M −{x} that takes B(x) to Bn.
Next consider the following map, which we claim is a diffeomorphism between M − {x} and M −Bn:

g : M − {x} → M −Bn,
y ∈ Bεn 7→ 1+ε

‖y‖ y,

y 6∈ Bεn 7→ y.

This map is smooth, its inverse is smooth, and both it and its inverse are bijective, so it is a diffeo-
morphism (all of these things are clear, because the map is just multiplication). Now consider the
map

h : M − {x} → M −B(x),
y 7→ b−1(g(x)).

Since g and b were diffeomorphisms, so is h. Finally, since b takes B(x) to Bn, its inverse b−1 takes
M −Bn to M −B(x), exactly as desired. Therefore M − {x} is diffeomorphic to M −B(x).

A more direct approach is to use Whitney’s embedding theorem to embed M in RN , for a N large
enough. Any continuous map defined on a compact subset of RN extends to all of it (this is the Tietze
extension theorem), so we apply this to the given diffeomorphism f , assuming the unit ball is a subset
of B(x) (otherwise shrink the ball). In fact, we only need to extend f to some open neighborhood U of
B(x), then apply a partition of unity to define it on M . This gives a map α : M −B(x)→M − (unit
ball), and by stretching an ε-shell of the unit ball to an (ε+ 1)-shell of the point, we get a diffeomor-
phism M −B(x)→M − {x}. �

48. (November 11) Show that S1 × S1 is not diffeomorphic to S2.

(Contributed by Nathan Lopez)
Solution: First note that S1×S2 is the torus and S2 is the sphere. The torus is not simply connected,
since it has non-trivial elements in its fundamental group, and the sphere is simply connected. If there
were to exist a diffeomorphism f : S1 × S1 → S2, then f would induce an isomorphism on homology
groups. However, H1(S1×S1;Z) = Z/2Z and H1(S2;Z) = 0, which are clearly not isomorphic. Hence
no such diffeomorphism exists. �

49. (November 13) Let M be a manifold with boundary ∂M . Show that an orientation M defines an
orientation on ∂M .

Solution: Let ω ∈ Ωn(M) be an orientation of M . Then we know [0] 6= [ω] ∈ Hn(M), so there does
not exist η ∈ Ωn−1(M) such that [dη] = [ω]. Let x1, . . . , xn be local coordinates on M such that the
image of ∂M lies in xn = 0. Write

ω = fdx1 ∧ · · · ∧ dxn for f ∈ C∞(M), f > 0.

We may choose f to be positive (this is the positive orientation of M). Note that we may consider
f |∂M ∈ C∞(∂M) as well, and since f > 0 on M , we have f |∂M > 0. Consider

ω̃ = f |∂Mdx1 ∧ · · · ∧ dxn−1 ∈ Ωn−1(∂M),

which is indeed in Ωn−1(∂M), by our choice of chart. To show ω̃ is an orientation on ∂M , we need
to show [0] 6= ω̃ in Hn−1(∂Ω). For contradiction, suppose that there exists η̃ ∈ Ωn−2(∂M) such that
dη̃ = ω̃. Then wedging with dxn we get

(dη̃) ∧ dxn = ω̃ ∧ dxn= f ′dx1 ∧ · · · ∧ dxn,
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where f ′ ∈ C∞(M) is some strictly positive extension of f |∂M to all of M , so [ω̃ ∧ dxn] = [ω]. Then

ω̃ ∧ dxn = (dη̃) ∧ dxn + (−1)n−2η̃ ∧ d(dxn)︸ ︷︷ ︸
= 0

= d(η̃ ∧ dxn),

by the Leibniz rule. However, η̃ ∧ dxn ∈ Ωn−1(M), giving an η for which [dη] = [ω], a contradiction.
Hence no such η̃ exists, and [0] 6= [ω̃] ∈ Hn−1(∂M). This shows that an orientation ω on M defines an
orientation ω̃ on ∂M . �

50. (November 13) Let M be a compact orientable manifold with boundary ∂M . Recall that a retract of
M onto a subset N ⊂M is a continuous map r : M → N such that r(n) = n for all n ∈ N . Show that
there is no smooth retract M → ∂M .

Solution: Since M is orientable, there exists a non-vanishing orientation form ω ∈ Ωn(M). By a
previous homework question, this induces a non-vanishing orientation form ω̃ ∈ Ωn−1(∂M). This
means that

∫
∂M

ω̃ > 0, where we have chosen the positive orientation.

Suppose there exists a smooth retract f : M → ∂M . Since f is smooth, there is an induced map
f∗ : Ωn−1(∂M) → Ωn−1(M). Since f is a retract, f∗ = id on Ωn−1(M). That is, ω̃ ∈ Ωn−1(∂M) is
also f∗ω̃ ∈ Ωn−1(M). Then

0 <

∫
∂M

ω̃ (hypothesis)

=

∫
∂M

f∗ω̃ (assumption)

=

∫
M

d(f∗ω̃) (Stokes’ theorem)

=

∫
M

f∗(dω̃). (pullbacks and d commute)

Since M is orientable, Hn(M) is 1-dimensional. If [dω̃] ∈ Hn(M) is not the zero class [0], it must be
a multiple of the orientation class [ω]. But then [ω] = [dω̃], contradicting the fact that ω is closed but
not exact. Hence dω̃ = 0, giving us a contradiction. Hence no such f exists, and there is no retract
M → ∂M . �
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