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Part I

Foundational topics

1 Algebra

1.1 Unit and counit adjunction

2016-02-24

Keywords: unit, counit, adjoint

Let F : C→→D : G be adjoint functors. That is, let F be left-adjoint to G, and let G be right-adjoint to F , so that
HomD(F(X), Y ) ∼= HomC(X,G(Y )) for any X ∈ Obj(C) and Y ∈ Obj(D).

Definition 1.1.1. This isomorphism gives natural maps ηX and εY as below:

HomD(F(X),F(X)) ∼= HomC(X,G(F(X)) HomC(G(Y ),G(Y )) ∼= HomD(F(G(Y )), Y )

idF(X) 7→
(
X

ηX−−−→ (G ◦ F)(X)
)

idG(Y ) 7→
(

(F ◦ G)(Y )
εY−−−→ Y

)
These may be viewed as natural transformations called the unit η and the counit ε:

η : 1C → G ◦ F ε : F ◦ G → 1D

They satisfy the triangle identities, that is, the following diagrams commute.

F

F FGF

G

GGFG
Fη

εF
idF

ηG

Gε

idG

1.2 Limits and colimits

2016-03-09

Keywords: limit, colimit, natural transformation, constant category

Definition 1.2.1. Given categories A,B and functors F ,G : A → B, a natural transformation η : F → G is a
collection of elements ηX ∈ HomB(F(X),G(X)) for all X ∈ Obj(A) such that the diagram

G(X) G(Y )

F(X) F(Y )

G(f)

F(f)

ηX ηY

commutes, whenever f ∈ HomA(X,Y ).

Definition 1.2.2. For X ∈ Obj(A), define the constant category X to be the category with Obj(X) = {X} and
HomX(X,X) = {idX}. For any other category B, this may also be viewed as a natural transformation X : B → A
with X(Y ) = X and X(f) = idX for any object Y and any morphism f of B.
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Definition 1.2.3. Let A be a small category and F : A → B a functor. The colimit colim(F) of F is an ob-
ject colim(F) ∈ Obj(B) and a natural transformation ι : F → colim(F) that is initial among all such natural
transformations. We write ιX : F(X)→ colim(F) and have ι(f) = idcolim(F) for any morphism f of A.

In other words, whenever Z ∈ Obj(B) and η : F → Z is a natural transformation, there is a unique map
ζ : colim(F)→ Z such that the following diagram commutes:

Z

colim(F)

F(X) F(Y )
F(f)

ιX ιY

ηX ηY
ζ

Definition 1.2.4. Let A be a small category and F : A → B a functor. The limit lim(F) of F is an object
lim(F) ∈ Obj(B) and a natural transformation π : lim(F)→ F that is final among all such natural transformations.
We write πX : lim(F)→ F(X) and have π(f) = idlim(F) for any morphism f of A.

In other words, whenever Z ∈ Obj(B) and ε : Z → F is a natural transformation, there is a unique map
θ : Z → lim(F) such that the following diagram commutes:

Z

lim(F)

F(X) F(Y )
F(f)

πX πY

εX εY
θ

Examples of colimits are initial objects, coproducts, cokernels, pushouts, direct limits. Examples of limits are
final objects, products, kernels, pullbacks, inverse limits.

Remark 1.2.5. Often we take the limit or colimit of an indexed set Xi. In the context described, this means Xi

are objects of B, and A = N, the natural numbers, with F(i) = Xi.

Remark 1.2.6. Hom commutes with limits and tensor commutes with colimits. That is:

Hom(A, lim(Bi)) = lim (Hom(A,Bi)) (colim(Ai))⊗B = colim(Ai ⊗B)

References: May (A Concise course in Algebraic Topology, Chapter 2.6), Aluffi (Algebra: Chapter 0, Chapter
VIII.1)

1.3 Examples of limits and colimits

2016-03-18

Keywords: limit, colimit, product, coproduct, kernel, cokernel, equalizer, coequalizer, pullback, pushout

Let C be a category and X,Y, Z ∈ Obj(C). Choose I to be a category with F : I → C a functor as described
below. Then we may consider the limit and colimit of F , noting that they may not always exist, as there may be no
suitable natural transformation i or π.
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Category I Image F(I) Limit Colimit

X Y Product of X and Y Coproduct of X and Y

X Y
f

Kernel of f Cokernel of f

X Y
f

g
Equalizer of f and g Coequalizer of f and g

Y X Z
f g

Pullback of f and g -

Y X Z
f g

- Pushout of f and g

The limit and colimit of the category I with two points and two arrows going between the points in opposite
directions, namely

,

are not interesting to consider. That is because as a category, it must satisfy compositions, so f ◦ g = id, which is a
restrictive condition on f and g. We may define a new map h : X → X with h = f ◦ g, but then more maps, such
as h ◦ f and so on need to be defined, which complicate the situation.

References: Borceux (Handbook of Categorical Algebra I, Chapter 2)

1.4 Exactness and derived functors

2016-03-20

Keywords: functor, exact functor, derived functor, projective, injective, free, resolution, tensor, hom, tor, ext

Let 0 → X → Y → Z → 0 be a short exact sequence of objects in a category A. Let F : A → B be a covariant
functor.

Definition 1.4.1. The functor F is right-exact if F(X)→ F(Y )→ F(Z)→ 0 is an exact sequence. It is left-exact
if 0→ F(X)→ F(Y )→ F(Z) is an exact sequence. It is exact if it is both left- and right-exact.

Example 1.4.2. These are some examples of left- and right-exact functors:
· HomA(X,−) is covariant left-exact
· HomA(−, X) is contravariant left-exact
· − ⊗R X is covariant right-exact, for X a left R-module

Recall that X ⊗R Y is naturally isomorphic to Y ⊗R X.

Definition 1.4.3. An object X ∈ Obj(A) is projective if HomA(X,−) is an exact functor. Similarly, X is injective
if HomA(−, X) is an exact functor.

Recall that a projective resolution of an object X is a sequence of projective objects · · · → P2 → P1 → P0 that
may or may not terminate on the left. The homology of the sequence in degree 0 is X, and trivial in other degrees.
Similarly, an injective resolution of X is a sequence of injective objects I0 → I1 → I2 → · · · that may or may not
terminate on the right. The cohomology is also concentrated in degree 0, and is X there. A free resolution is a
projective resolution where all the objects are free (whatever that means in the context).

These types of resolutions may not exist. A category “has enough injectives (projectives)” means we can always
construct injective (projective) resolutions.

Definition 1.4.4. Let F : A→ B be a covariant right-exact functor and G : A→ B a covariant left-exact functor.
Let X ∈ Obj(A) with P• a projective resolution of X and I• an injective resolution of X. The ith left-derived functor
of F is LiF(X) = Hi(F(P•)). The ith right-derived functor of G is RiG(X) = Hi(G(I•)).
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These objects of B are well-defined up to natural isomorphism. Note that Fop : Aop → Bop is a contravariant
right-exact functor. Moreover, if F was contravariant right-exact and G was contravariant left-exact, then LiF(X) =
Hi(F(I•)) and RiG(X) = Hi(G(P•)).

Example 1.4.5. Let R be a ring with X and Y both R-bimodules. Then

TorRi (Y,X) = Li(−⊗R X)(Y ) ExtiR(X,Y ) = Ri(HomR(X,−))(Y )

= Li(Y ⊗R −)(X), = Ri(HomR(−, Y ))(X).

Recall that TorRi (Y,X) is canonically isomorphic to TorRi (X,Y ), but it is not true for Ext. Also note that HomR(X,−)
is covariant and HomR(−, Y ) is contravariant, while −⊗R X and Y ⊗R − are both covariant functors.

References: Weibel (An introduction to homological algebra, Chapter 2)
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2 Geometry

2.1 The real and complex Jacobian

2016-09-03

Keywords: Jacobian, determinant, complex, holomorphic

Let f : Cn → Cn be a holomorphic function. We will show that the the real Jacobian is the square of the complex
Jacobian. Write f = (f1, . . . , fn) with fi = ui +

√
−1 vi, where the ui are functions of the zj = xj +

√
−1 yj . By the

Cauchy–Riemann equations
∂ui
∂xj

=
∂vi
∂yj

and
∂ui
∂yj

= − ∂vi
∂xj

and expanding, we have that

∂fi
∂zj

=
1

2

(
∂fi
∂xj
−
√
−1

∂fi
∂yj

)
=

1

2

(
∂ui
∂xj

+
√
−1

∂vi
∂xj
−
√
−1

(
∂ui
∂yj

+
√
−1

∂vi
∂yj

))
=

1

2

(
∂ui
∂xj

+
∂vi
∂yj

+
√
−1

(
∂vi
∂xj
− ∂ui
∂yj

))
=
∂ui
∂xj

+
√
−1

∂vi
∂xj

.

The complex Jacobian of f is JCf (or its determinant), with entries

(JCf)i,j =
∂fi
∂zj

,

and the real Jacobian of f is JRf (or its determinant), with entries

[
(JRf)2i−1,2j−1 (JRf)2i−1,2j

(JRf)2i,2j−1 (JRf)2i,2j

]
=


∂ui
∂xj

∂ui
∂yj

∂vi
∂xj

∂vi
∂yj


R2i−1+

√
−1 R2i→R2i−1−−−−−−−−−−−−−−−−−→


∂fi
∂zj

√
−1

∂f

∂z
∂vi
∂xj

∂vi
∂yj


C2j−

√
−1 C2j−i→C2j−−−−−−−−−−−−−−−−→


∂fi
∂zj

0

∂vi
∂xj

∂fi
∂zj

 ,
where the row and column operations have been performed for all rows 2i and all columns 2j. Moving all the
odd-indexed columns to the left and all odd-indexed rows to the top, we get that

JRf '
[
A 0
∗ B

]
with Ai,j =

∂fi
∂zj

, Bi,j =
∂fi
∂zj

.

Since the number of operations to switch the columns is the same as the number of operations to switch the rows,
the sign of the determinant of JRf will not change. That is,

det(JRf) = det(A) det(B) = det(JCf)det(JCf) = |det(JCf)|2.
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2.2 Classical Lie groups

2016-09-05

Keywords: Lie group, Lie algebra, symplectic

Definition 2.2.1. A Lie group G is both a group and a manifold, with a smooth map G × G → G, given by
(g, h) 7→ gh−1. The Lie algebra g of G is the tangent space TeG of G at the identity.

We distinguish between real and complex Lie groups by saying that the base manifold is either real or complex
analytic, respectively.

Example 2.2.2. Here are some examples of classical Lie groups and their dimension:

general linear group n2 GL(n) = {n× n matrices with non-zero determinant}
special linear group n2 − 1 SL(n) = {M ∈ GL(n) : det(M) = 1}

orthogonal group n(n− 1)/2 O(n) = {M ∈ GL(n) : MM t = I}
special orthogonal group n(n− 1)/2 SO(n) = {M ∈ O(n) : det(M) = 1}

unitary group n2 U(n) = {M ∈ GL(n,C) : MM∗ = I}
special unitary group n2 − 1 SU(n) = {M ∈ U(n) : det(M) = 1}

symplectic group n(2n+ 1) Sp(n) = {n× n matrices : ω(Mx,My) = ω(x, y)}

For the symplectic group, the skew-symmetric bilinear form ω is defined as

ω(x, y) =

n∑
i=1

xiyi+n − yixi+n =

(
0 −I
I 0

)
x · y,

where · is the regular dot product (a symmetric bilinear form). Also note that the unitary group is a real Lie group
- real because there is no holomorphic map G×G→ G as would be necessary, so we view the entries of a matrix in
U(n) in terms of its real and imaginary parts. Hence the dimension indicated above is real dimension.

References: Kirillov Jr (An introduction to Lie groups and Lie algebras, Chapter 2)

2.3 Degree and orientation

2016-09-28

Keywords: degree, orientation, relative, excision, homology, cohomology, orientation, Stokes

Topology

Recall that a topological manifold is a Hausdroff space in which every point has a neighborhood homeomorphic to
Rn for some n. An orientation on M is a choice of basis of Rn in each neighborhood such that every path in M
keeps the same orientation in each neighborhood. Every manifold M 3 x appears in a long exact sequence (via
relative homology) with three terms

Hn(M − {x}) f−−→ Hn(M)
g−−→ Hn(M,M − {x}).

The first term is 0, because removing a point from an n-dimensional space leaves only its (n− 1)-skeleton, which is
at most (n− 1)-dimensional. For U a neighborhood of x in M , the last term (via excision) is

Hn(M − U c,M − {x} − U c) = Hn(U,U − {x}) ∼= Hn(Rn,Rn − {x}) ∼= Hn(Rn, Sn−1),

which in turn fits into a long exact sequence whose interesting part is

Hn(Rn)→ Hn(Rn, Sn−1)→ Hn−1(Sn−1)→ Hn−1(Rn),

and since the first and last terms are zero, Hn(M,M−{x}) = Z. Since f is zero, g into Z must be injective, meaning
that Hn(M) = Z or 0.
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Theorem 2.3.1. Let M be a connected compact (without boundary) n-manifold. Then
1. if M is orientable, g is an isomorphism for all x ∈M , and
2. if M is not orientable, g = 0.

Definition 2.3.2. Let f : M → N be a map of connected, oriented n-manifolds. Since Hn(M) = Hn(N) is infinite
cyclic, the induced homomorphism f∗ : Hn(M)→ Hn(N) must be of the form x 7→ dx. The number d is called the
degree of f .

In the special case when we are computing the degree for a map f : Sn → Sn, by excision we get

deg(f) =
∑

xi∈f−1(y)

deg
(
Hn(Ui, Ui − xi)

f∗−−→ Hn(V, V − y)
)
,

for any y ∈ Y , some neighborhood V of y, and preimages Ui of V . This is called the local degree of f .

Geometry

Let M be a smooth n-manifold. Recall ΩrM is the space of r-forms on M and dr : ΩrM → Ωr+1
M is the differential

map. Also recall the de Rham cohomology groups Hr(M) = ker(dr)/im(dr−1).

Definition 2.3.3. An n-manifold M is orientable if it has a nowhere-zero n-form ω ∈ ΩnM . A choice of ω is called
an orientation of M .

We also have a map Hn(M)→ R, given by α 7→
∫
M
α, where the integral is normalized by the volume of M , so

that integrating 1 across M gives back 1. It is immediate that this doesn’t make sense when M is not compact, but
when M is compact and orientable, we get that Hn(M) 6= 0. Indeed, if η ∈ Ωn−1

M with dη = ω, by Stokes’ theorem
we have ∫

M

ω =

∫
M

dη =

∫
∂M

η =

∫
∅
η = 0,

as M has no boundary (since it is a manifold). But ω is nowhere-zero, meaning the first expression on the left cannot
be zero. Hence ω is not exact and is a non-trivial element of Hn(M).

Theorem 2.3.4. Let M be a smooth, compact, orientable manifold of dimension n. Then Hn(M) is one-dimensional.

Proof: The above discussion demonstrates that dim(Hn(M)) > 1. We can get an upper bound on the dimension by
noting that the space of n-forms on M , given by ΩnM =

∧n
(TM)∗, has elements described by dxi1 ∧ · · · ∧ dxin , with

{i1, . . . , in} ⊂ {1, . . . , n}. By rearranging the order of the dxij , every element looks like αdx1 ∧ · · · ∧ dxn for some
real number α. Hence dim(ΩnM ) 6 1, so dim(Hn(M)) is either 0 or 1. Therefore dim(Hn(M)) = 1. �

Definition 2.3.5. Let f : M → N be a map of smooth, compact, oriented manifolds of dimension n. Since Hn(M)
and Hn(N) are 1-dimensional, the induced map f∗ : Hn(N)→ Hn(M) must be of the form x 7→ dx. The number d
is called the degree of f . Equivalently, for any ω ∈ ΩnN ,∫

M

f∗ω = d

∫
N

ω

References: Hatcher (Algebraic Topology, Chapters 2, 3.3), Lee (Introduction to Smooth Manifolds, Chapter 17)

2.4 The tangent space and differentials

2016-09-29

Keywords: manifold, tangent space, differential, pushforward, derivation, cotangent, tangent, derivative

Let M,N be smooth n-manifolds. Here we discuss different definitions of the tangent space and differentials, or
pushforwards, of smooth maps f : M → N .
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Derivations (Lee)

Definition 2.4.1. A derivation of M at p ∈M is a linear map v : C∞(M)→ R such that for all f, g ∈ C∞(M),

v(fg) = f(p)v(g) + g(p)v(f).

The tangent space TpM to M at p is the set of all derivations of M at p.

Given a smooth map F : M → N and p ∈ M , define the differential dFp : TpM → Tf(p)N , which, for v ∈ TpM
and f ∈ C∞(N) acts as

dFp(v)(f) = v(f ◦ F ) ∈ R.

Dual of cotangent (Hitchin)

Definition 2.4.2. Let Zp ⊂ C∞(M) be the functions whose derivative vanishes at p ∈ M . The cotangent space
T ∗pM to M at P is the quotient space C∞(M)/Zp. The tangent space to M at P is the dual of the cotangent space
TpM = (T ∗pM)∗ = Hom(T ∗pM,R).

Given a smooth map F : M → N and p ∈M , define the differential

dFp : TpM → TF (p)N,

(f : C∞(M)/Zp → R) 7→
(
g : C∞(N)/ZF (p) → R,

h 7→ f(h ◦ F ).

)
This definition makes clear the relation to the first approach. Since h 6∈ ZF (p), the derivative of h does not vanish at
F (p). Hence the derivative of h ◦ F at p, which is the derivative of h at F (p) multiplied by the derivative of F at p,
does not a priori vanish at p.

Derivative of chart map (Guillemin and Pollack)

Definition 2.4.3. Let f : Rn → Rm be a smooth map. Then the derivative of f at x ∈ Rn in the direction y ∈ Rn

is defined as

dfx(y) = lim
h→0

[
f(x+ yh)− f(x)

h

]
.

Given x ∈ M and charts ϕ : Rn → M ⊂ Rm, the tangent space to M at p is the image TpM = dϕ0(Rn), where we
assume ϕ(0) = p.

Given a smooth map F : M → N and charts ϕ : Rn →M , ψ : Rn → N , with ϕ(0) = p and ψ(0) = F (p), define
the differential dFp : TpM → TF (p)N via the diagrams below.

Rn Rn

M N

ϕ ψ

F

h

Rn Rn

TpM TF (p)N

dϕ0 dψ0

dh0

dFp

Here h = ψ−1 ◦ F ◦ ϕ, so dh0 is well-defined. Hence dFp = dψ0 ◦ dh0 ◦ dϕ−1
0 is also well-defined.

Sometimes the differential is referred to as the pushforward, in which case it is denoted by (F∗)p.

References: Lee (Introduction to Smooth Manifolds, Chapter 3), Hitchin (Differentiable manifolds, Chapter 3.2),
Guillemin and Pollack (Differential topology, Chapter 1.2)
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2.5 Vector fields

2016-10-10

Keywords: vector field, integral curve, flow, Lie derivative, Lie bracket, interior product, differential forms

Here we will have an overview of vector fields and all things related to them. Let M be an n-dimensional manifold,
and π : M → TM its tangent bundle.

Definition 2.5.1. A vector field is a map X : M → TM such that π ◦X = idM .

A vector field may also be viewed as a section of the tangent bundle, and smooth vector fields as the space of
smooth sections Γ(TM). Given a chart (U,ϕ) of M near p, we have the pushforward ϕ∗ : TpM → Tϕ(p)(R

n) = Rn,
where we may assume ϕ(p) = 0. Given the standard basis {ei} of Rn, we get a basis of TpM given by{

∂

∂xi

∣∣∣∣
p

= (ϕ∗)
−1(ei)

}n
i=1

.

Recall that TM may be viewed as the space of derivations, or maps C∞(M)→ R satisfying the Leibniz rule. Then
for p ∈ M , we have X(p) : C∞(M)→ R, so we have X(p)(f) = Xp(f) ∈ R for all f ∈ C∞(M). Hence Xp ∈ TpM ,
and X(f) ∈ C∞(M). Briefly,

f : M → R,
X : M → TM,

Xf : M → R,
fX : M → TM.

Definition 2.5.2. Given a vector field X ∈ Γ(TM), an integral curve of X is a smooth curve γ : R→M such that
γ′(t) = Xγ(t) for all t ∈ R.

The domain of γ need not be all of R, though any integral curve may be extended to a maximal integral curve,
for which the domain can not be made larger. A collection of integral curves for a particular vector field is a flow.

Definition 2.5.3. A flow, or a one paramater group of diffeomorphisms, is a smooth map ψ : R ×M → M such
that

1. ψ(t, ·) is a diffeomorphism of M , for all t,
2. ψ(0, ·) = idM ,
3. ψ(s+ t, ·) = ψ(s, ·) ◦ ψ(t, ·).

For convenience, we write ψt(p) = ψ(t, p), Note that fixing p ∈M , the map ψ(·, p) is a integral curve. Moreover,
flows and vector fields are related uniquely by

df

dt
ψt(p)

∣∣∣∣
t=0

= Xp(f).

Indeed, if we have a flow ψ and an element f ∈ Hom(T ∗pM,R), this gives us a vector field X ∈ Γ(TM). Conversely,
if we have a vector field X, by the existence and uniqueness of solutions to first order ordinary differential equations
(with boundary conditions), we can find a ψ that satisfies this equality.

Definition 2.5.4. Let X,Y ∈ Γ(TM) and ψ be the associated flow of X. The Lie derivative of Y in the direction
of X, or Lie bracket of X and Y , is an element of Γ(TM) given by

(LXY )p (f) =
df

dt


t=0

(
(ψt)

−1
∗ (Yψt(p)(f))

)
= [X,Y ]p(f)

= Xp(Y (f))− Yp(X(f))

The Lie derivative has some properties, among them LX(fY ) = X(fY ) + f(LXY ) for any f ∈ C∞(M). If we
let Y be the map M → TM given by

Y : M → Hom(T ∗M,R),

p 7→
(
fp : C∞(M) → R,

g 7→ g(p),

)
,

then Y f = f , so LXY = X −X = 0, and we have LXf = Xf .
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Remark 2.5.5. Vector fields are 1-forms, or elements of A0
M (TM) = Γ(TM ⊗

∧0
T ∗M) = Γ(TM). We may

generalize the definition above to consider the Lie derivative LXω of a differential k-form ω . Note that a differential
k-form takes in k vector fields and gives back a smooth function M → R. With this in mind, we may define new
operations on vector fields:

(LXω)(Y1, . . . , Yk) = LX(ω(Y1, . . . , Yk))−
k∑
i=1

ω(Y1, . . . ,LXYi, . . . , Yk)

(dω)(Y1, . . . , Yk+1) =

k+1∑
i=1

(−1)i−1Yi(ω(Y1, .., Ŷi, .., Yk+1)) +

k+1∑
j>i=1

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1)

(iXω)(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1)

The last is the interior product. All three are related by Cartan’s formula LXω = d(iXω) + iX(dω):

(LY1ω)(Y2, . . . , Yk+1) = Y1(ω(Y2, . . . , Yk+1))−
k+1∑
i=2

ω(Y2, . . . , [Y1, Yi], . . . , Yk)

= Y1(ω(Y2, . . . , Yk+1))−
k+1∑
i=2

(−1)iω([Y1, Yi], Y2, . . . , Ŷi, . . . , Yk)

(d(iY1ω))(Y2, . . . , Yk+1) =

k+1∑
i=2

(−1)iYi(ω(Y1, .., Ŷi, .., Yk+1))−
k+1∑
j>i=2

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1)

(iY1
(dω))(Y2, . . . , Yk+1) = (dω)(Y1, . . . , Yk+1)

=

k+1∑
i=1

(−1)i−1Yi(ω(Y1, .., Ŷi, .., Yk+1)) +

k+1∑
j>i=1

(−1)i+jω([Yi, Yj ], Y1, .., Ŷi, .., Ŷj , .., Yk+1)

Remark 2.5.6. The action of a k-differential form on a k-vector field is given by

(dx1 ∧ · · · ∧ dxk)

(
∂

∂y1
, . . . ,

∂

∂yp

)
= det


dx1

∂
∂y1

dx1
∂
∂y2

· · · dx1
∂
∂yp

dx2
∂
∂y1

dx2
∂
∂y2

· · · dx2
∂
∂yp

...
...

. . .
...

dxp
∂
∂y1

dxp
∂
∂y2

· · · dxp
∂
∂yp

 = det

(
dxi

∂

∂yj

)
.

This may be generalized to get a map ∧kT ∗M ⊕ Γ(TM)⊕` →
∧k−`

T ∗M , for ` 6 k. For example, given a basis x, y
of our space M ,

(dx ∧ dy)

(
x
∂

∂x
+ y

∂

∂y

)
= dx

(
x
∂

∂x
+ y

∂

∂y

)
dy − dy

(
x
∂

∂x
+ y

∂

∂y

)
dx = x dy − y dx.

When ` = 1, this is just the interior product.

References: Lee (Introduction to smooth manifolds, Chapter 8), Hitchin (Differentiable manifolds, Chapter 3)

2.6 Explicit pushforwards and pullbacks

2016-11-01

Keywords: tangent space, cotangent space, differential, pushforward, pullback

Here we consider a map f : M → N between manifolds of dimension m and n, respectively, and the maps that it
induces. Let p ∈M with x1, . . . , xm a local chart for U 3 p and y1, . . . , yn a local chart for V 3 f(p). Induced from



14

f are the differential (or pushforward) df and the pullback df∗, which are duals of each other:

dfp : TpM → Tf(p)N

df : TM → TN
α 7→ (β 7→ α(β ◦ f))

df∗p : T ∗f(p)N → T ∗pM

df∗ : T ∗N → T ∗M
ω 7→ ω ◦ f∧k

T ∗N →
∧k

T ∗M
ω dy1 ∧ · · · ∧ dyk 7→ (ω ◦ f) d(y1 ◦ f) ∧ · · · ∧ d(yk ◦ f)

These maps may be described by the diagram below.

p

Rm

M

TpM
f(p)

Rn

N

Tf(p)N
f

dfp

df∗p

Example 2.6.1. For example, consider the map f : R3 → R3 given by f(x, y, z) = (x − y, 3z2, xz + yz), with the
image having coordinates (u, v, w). With elements

2x
∂

∂x
− 5z

∂

∂y
∈ TM, 2uv +

√
w − 5 ∈ C∞(N), cos(uv) ∈ T ∗N,

we have

dfp

(
2x

∂

∂x
− 5z

∂

∂y

)
(2uv +

√
w − 5) =

(
2x

∂

∂x
− 5z

∂

∂y

)(
6(x− y)z2 +

√
xz + yz − 5

)
(p),

df∗p (cos(uv)) = cos((x− y)3z2),(∧2
df∗p

)
(cos(uv)du ∧ dw) = cos((x− y)3z2)d(3z2) ∧ d(xz + yz)

= cos((x− y)3z2)
(
−6z2 dx ∧ dz − 6z2 dy ∧ dz

)
.

2.7 Images of manifolds and transversality

2016-11-07

Keywords: immersion, embedding, transversality, regular value, Sard, preimage theorem

Let X,Y be manifolds embedded in Rn, and f : X → Y a map, with dfx : TxX → Tf(x)Y the induced map on
tangent spaces.

Definition 2.7.1. The map f is a
- homeomorphism if it is continuous and has a continuous inverse,
- diffeomorphism if it is smooth and has a smooth inverse,
- injection if f(a) = f(b) implies a = b,
- immersion if dfx is injective for all x ∈ X,
- embedding if it is an immersion and dfx is a homeomorphism onto its image,
- submersion if dfx is surjective for all x ∈ X.

Transversality is a mathematical relic whose only practical use is, perhaps, in classical algebraic geometry.

Definition 2.7.2. The manifolds X and Y are transverse if TpX ⊕TpY ∼= Rn for every p ∈ X ∩Y . The map f and
Y are transverse if im(f) and Y are transverse.
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Note that being transverse (or transversal) is a symmetric, but not a reflexive, nor a transitive relation. Recall
that a regular value of f is y ∈ Y such that dfx : TxX → Tf(x)Y is surjective for all x ∈ f−1(y). If y is not in the
image of f , then f−1(y) is empty, so y is trivially a regular value. Every value that is not a regular value is a critical
value.

Theorem 2.7.3. [Preimage theorem]
For every regular value y of f , the subset f−1(y) ⊂ X is a submanifold of X of dimension dim(X)− dim(Y ).

Now let M be a submanifold of Y .

Corollary 2.7.4. If f is transverse to M , then f−1(M) is a manifold, with codimY (M) = codimX(f−1(M)).

Theorem 2.7.5. [Transversality theorem]
Let {gs : X → Y | s ∈ S} be a smooth family of maps. If g : X × S → Y is transverse to M , then for almost every
s ∈ S the map gs is transverse to M .

If we replace f with df , and ask that it be transverse to M , then df |s is also transverse to M .

Example 2.7.6. Consider the map gs : X → Rn given by gs(X) = i(X) + s = X + s, where i is the embedding
of X into Rn. Since g(X ×Rn) = Rn and g varies smoothly in both variables, we have that g is transverse to X.
Hence by the transversality theorem, X is transverse to its translates X + s for almost all s ∈ Rn.

Theorem 2.7.7. [Sard]
For f smooth and ∂Y = ∅, almost every y ∈ Y is a regular value of f and f |∂X . Equivalently, the set of critical
values of f has measure zero.

Resources: Guillemin and Pollack (Differential topology, Chapters 1, 2), Lee (Introduction to smooth manifolds,
Chapter 6)

2.8 Differential 1-forms are closed if and only if they are exact

2016-11-10

Keywords: differential forms, paths, integration

The title refers to 1-forms in Euclidean n-space Rn, for n > 2. This theorem is instructive to do in the case n = 2,
but we present it in general. We will use several facts, most importantly that the integral of a function f : X → Y
over a curve γ : [a, b]→ X is given by∫

γ

f dx1 ∧ · · · ∧ dxk =

∫ b

a

(f ◦ γ) d(x1 ◦ γ) ∧ · · · ∧ d(xn ◦ γ),

where x1, . . . , xn is some local frame on X. We will also use the fundamental theorem of calculus and one of its
consequences, namely ∫ b

a

∂f

∂t
(t) dt = f(b)− f(a).

Theorem 2.8.1. A 1-form on Rn is closed if and only if it is exact, for n > 2.

Proof: Let ω = a1dx1 + · · · andxn ∈ Ω1
Rn be a 1-form on Rn. If there exists η ∈ Ω0

Rn such that dη = ω, then
dω = d2η = 0, so the reverse direction is clear. For the forward direction, since ω is closed, we have

0 = dω =

n∑
i=1

∂a1

∂xi
dxi ∧ dx1 + · · ·+

n∑
i=1

∂an
∂xn

dxi ∧ dxn =⇒ ∂ai
∂xj

=
∂aj
∂xi
∀ i 6= j.

Now fix some (x1, . . . ,xn) ∈ Rn, and define f ∈ Ω0
Rn by

f(x1, . . . ,xn) =

∫
γ(x1,...,xn)

ω,
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for γ the composition of the paths

γ1 : [0,x1] → Rn,
t 7→ (t, 0, . . . , 0),

γ2 : [0,x2] → Rn,
t 7→ (x1, t, 0, . . . , 0),

· · · γn : [0,xn] → Rn,
t 7→ (x1, . . . ,xn−1, t).

By applying the definition of a pullback and the change of variables formula (use s = γi(t) for every i),∫
γ(x1,...,xn)

ω =

n∑
i=1

∫
γi

a1dx1 + · · ·+
n∑
i=1

∫
γi

andxn

=

n∑
i=1

∫
γi

a1(x1, . . . , xn) dx1 + · · ·+
n∑
i=1

∫
γi

an(x1, . . . , xn) dxn

=

n∑
i=1

∫ xi

0

a1(γi(t)) d(x1 ◦ γi)(t) + · · ·+
n∑
i=1

∫ xi

0

an(γi(t)) d(xn ◦ γi)(t)

=

∫ x1

0

a1(γ1(t))γ′1(t) dt+ · · ·+
∫ xn

0

an(γn(t))γ′n(t) dt

=

∫ (x1,0,...,0)

(0,...,0)

a1(s) ds+ · · ·+
∫ (x1,...,xn)

(x1,...,xn−1,0)

an(s) ds

=

∫ x1

0

a1(s, 0, . . . , 0) ds+ · · ·+
∫ xn

0

an(x1, . . . ,xn−1, s) ds.

To take the derivative of this, we consider the partial derivatives first. In the last variable, we have

∂f

∂xn
=

∂

∂xn

∫ xn

0

an(x1, . . . ,xn−1, s) ds = an(x1, . . . ,xn) = an.

In the second-last variable, applying one of the identities from ω being closed, we have

∂f

∂xn−1
=

∂

∂xn−1

∫ xn−1

0

an−1(x1, . . . ,xn−2, s, 0) ds+
∂

∂xn−1

∫ xn

0

an(x1, . . . ,xn−1, s) ds

= an−1(x1, . . . ,xn−1, 0) +

∫ xn

0

∂an
∂xn−1

(x1, . . . ,xn−1, s) ds

= an−1(x1, . . . ,xn−1, 0) +

∫ xn

0

∂an−1

∂s
(x1, . . . ,xn−1, s) ds

= an−1(x1, . . . ,xn−1, 0) + an−1(x1, . . . ,xn)− an−1(x1, . . . ,xn−1, 0)

= an−1(x1, . . . ,xn)

= an−1.

This pattern continues. For the other variables we have telescoping sums, and we compute the partial derivative in
the first variable as an example:

∂f

∂x1
=

∂

∂x1

∫ x1

0

a1(s, 0, . . . , 0) ds+

n∑
i=2

∂

∂x1

∫ xi

0

ai(x1, . . . ,xi−1, s, 0, . . . , 0) ds

= a1(x1, 0, . . . , 0) +

n∑
i=2

∫ xi

0

∂ai
∂x1

(x1, . . . ,xi−1, s, 0, . . . , 0) ds

= a1(x1, 0, . . . , 0) +

n∑
i=2

∫ xi

0

∂a1

∂s
(x1, . . . ,xi−1, s, 0, . . . , 0) ds

= a1(x1, 0, . . . , 0) +

n∑
i=2

(a1(x1, . . . ,xi, 0, . . . , 0)− a1(x1, . . . ,xi−1, 0, . . . , 0))

= a1(x1, . . . ,xn)

= a1.
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Hence we get that

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn = a1dx1 + · · ·+ andxn = ω,

so ω is exact. �

References: Lee (Introduction to smooth manifolds, Chapter 11)

2.9 Loose ends of smooth manifolds

2016-11-18

Keywords: inverse function theorem, Stokes theorem, classification, manifold, orientation, tangent space

Here we round up some theorems that have escaped previous roundings-up. Let X,Y be smooth manifolds and
f : X → Y a smooth map.

Theorem 2.9.1. [Inverse function theorem]
If dfp is invertible for some p ∈ M , then there exist U 3 p and V 3 f(p) connected such that f |U : U → V is a
diffeomorphism.

Corollary 2.9.2. [Stack of records theorem]
If dim(X) = dim(Y ), then every regular value y ∈ Y has a neighborhood V 3 y such that f−1(Y ) = U1 t · · · t Uk,
where f |Ui : Ui → V is a diffeomorphism.

Proof: Since y ∈ Y is a regular value, dfx is surjective for all x ∈ f−1(y). Since dim(X) = dim(Y ) and dfx is linear,
dfx is an isomorphism, hence invertible. By the inverse function theorem, there exist U 3 x and V 3 y connected
such that f |U : U → V is a diffeomorphism. Before we actually apply this, we need to show that f−1(y) is a finite set.

First we note that by the preimage theorem, since y is a regular value, f−1(y) is a submanifold of X of dimension
dim(X) − dim(Y ) = 0. Next, if f−1(y) = {xi} were infinite, since X is compact, there would be some limit point
p ∈ X of {xi}. But then by continuity,

y = lim
i→∞

[f(xi)] = f
(

lim
i→∞

[xi]
)

= f(p),

so p ∈ f−1(y). But then either p cannot be separated from other elements of f−1(y), meaning f−1(y) is not a
manifold, or the sequence {xi} is finite in length. Hence f−1(y) = {x1, . . . , xk}. Let Ui 3 xi and Vi 3 y be the sets
asserted to exist by the inverse function theorem (the Ui may be assumed to be disjoint without loss of generality).

Let V =
⋂k
i=1 Vi and U ′i = f−1(V ) ∩ Ui, for which we still have f |U ′i : U ′i → V a diffeomorphism. �

Theorem 2.9.3. [Classification of manifolds]
Up to diffeomorphism,

- the only 0-dimensional manifolds are collections of points,
- the only 1-dimensional manifolds are S1 and R, and
- the only 2-dimensional compact manifolds are S2#(T 2)#n or S2#(RP2)#n, for any n > 0.

Compact 2-manifolds are homeomorphic iff they are both (non)-orientable and have the same Euler characteristic.
Note that

χ
(
S2#(T 2)#n

)
= 2− 2n, χ

(
S2#(RP2)#n

)
= 2− n.

These surfaces are called orientable (on the left) and non-orientable (on the right) surfaces of genus n.

Theorem 2.9.4. [Stokes’ theorem]
For X oriented and ω ∈ Ωn−1

X ,
∫
X
dω =

∫
∂X

ω.

Theorem 2.9.5. The tangent bundle TX is always orientable.
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Proof: Let U, V ⊂ X with ϕ : U → Rn and ψ : V → Rn trivializing maps, and ψ ◦ ϕ−1 : Rn → Rn the transition
function. To show that TX is always orientable, we need to show the Jacobian of the induced transition function
(determinant of the derivative) on TX is always non-negative. On TU and TV , we have trivializing maps (ϕ, dϕ)
and (ψ, dψ), giving a transition function

(ψ ◦ ϕ−1, dψ ◦ dϕ−1) = (ψ ◦ ϕ−1, d(ψ ◦ ϕ−1)).

The Jacobian of this is

det(d(ψ ◦ ϕ−1, d(ψ ◦ ϕ−1))) = det(d(ψ ◦ ϕ−1), d(ψ ◦ ϕ−1))) = det(d(ψ ◦ ϕ−1)) · det(d(ψ ◦ ϕ−1)) > 0,

and since d(ψ ◦ ϕ−1) 6= 0 (as ψ ◦ ϕ−1 is a diffeomorphism, its derivative is an isomorphism), the result is always
positive. �

References: Lee (Introduction to smooth manifolds, Chapter 4), Guillemin and Pollack (Differential topology,
Chapter 1)
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3 Topology

3.1 Complexes and their homology

2016-09-16

Keywords: simplex, simplicial complex, delta complex, cell, cell complex, CW complex, homology

Here I’ll present complexes from the most restrictive to the most general. Recall the standard n-simplex is

∆n = {x ∈ Rn+1 :
∑
xi = 1, xi > 0}.

Definition 3.1.1. Let V be a finite set. A simplicial complex X on V is a set of distinct subsets of V such that if
σ ∈ X, then all the subsets of σ are in X.

Every n-simplex in a simplicial complex is uniquely determined by its vertices, hence no pair of lower dimensional
faces of a simplex may be identified with each other.

Definition 3.1.2. Let A,B be two indexing sets. A ∆-complex (or delta complex ) X is

X =
⊔
α∈A

∆nα
α

/{
Fkββ

}
β∈B

, Fkββ = {∆kβ
1 , . . . ,∆

kβ
mβ},

such that if σ appears in the disjoint union, all of its lower dimensional faces also appear. The identification of the
k-simplices in Fk is done in the natural (linear) way, and restricting to identified faces gives the identification of the
Fk−1 where the faces appear.

To define simplicial homology of a simplicial or ∆-complex X, fix an ordering of the set of 0-simplices (which
gives an ordering of every σ ∈ X), define Ck to be the free abelian group generated by all σ ∈ X of dimension k
(defined by k + 1 0-simplices), and define a boundary map

∂k : Ck → Ck−1,

[v0, . . . , vk] 7→
∑k
i=0(−1)i[v0, . . . , v̂i, . . . , vk].

Then Hk(X) := ker(∂k)/im(∂k+1).

Recall the standard n-cell is en = {x ∈ Rn : |x| 6 1}, also known as the n-disk or n-ball.

Definition 3.1.3. Let X0 be a finite set. A cell complex (or CW complex ) is a collection X0, X1, . . . where

Xk := Xk−1

⊔
α∈Ak

ekα

/{
∂ekα ∼ fk,α(∂ekα)

}
α∈Ak

,

where the fk,α describe how to attach k-cells to the (k − 1)-skeleton Xk−1, for k > 1. Xk may also be described by
pushing out ek t∂ek Xk−1. Note that ∂ek = Sk−1, the (k − 1)-sphere.

To define cellular homology, we need more tools (relative homology and excision) that require a blog post of their
own.

References: Hatcher (Algebraic topology, Chapter 2.1)

3.2 Tools of (co)homology

2016-10-13

Keywords: homology, reduced homology, relative homology, excision, local homology, Mayer–Vietoris, universal co-
efficient theorem, Kunneth formula, Poincaré duality, Alexander duality

Let X,Y be topological spaces, G a group, and R a unital commutative ring.
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Defining homology groups

Theorem 3.2.1. If (X,A) is a good pair (there exists a neighborhood U ⊂ X of A such that U deformation retracts
onto A), then for i : A ↪→ X the inclusion and q : X � X/A the quotient maps, there exists a long exact sequence
of reduced homology groups

· · · → H̃n(A)
i∗−−→ H̃n(X)

q∗−−→ H̃n(X/A)→ · · · .

Theorem 3.2.2. For any pair (X,A), there exists a long exact sequence of homology groups

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ · · · ,

where the last is called a relative homology group. Hence Hn(X,A) ∼= H̃n(X/A) for a good pair (X,A).

Theorem 3.2.3. [Excision]
For any triple of spaces (Z,A,X) with cl(Z) ⊂ int(A), there is an isomorphism Hn(X − Z,A− Z) ∼= Hn(X,A).

For any x ∈ X, the local homology of X at x is the relative homology groups Hn(X,X −{x}). By excision, these
are isomorphic to Hn(U,U − {x}) for U any neighborhood of x. If X is nice enough around x (that is, if U ∼= Rk),
then these groups are isomorphic to Hn(Rk,Rk − {x}) ∼= Hn(Dk, ∂Dk) = Hn(Sk).

Theorem 3.2.4. [Mayer–Vietoris] For X = A ∪B, there is a long exact sequence of homology groups

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ · · · ,

and if A ∩B is non-empty, there is an analogous sequence for reduced homology groups.

Extending with coefficients

Recall the Tor and Ext groups, which were, respectively, the left and right derived functors of, respectively, ⊗ and
Hom (see post “Exactness and derived functors,” 2016-03-20). Here we only need Tor1 and Ext1, which are given
by, for any groups (that is, Z-modules) A, B,

Tor(A,B) = H1(projres(A)⊗B) = H1(A⊗ projres(B)),
Ext(A,B) = H1(Hom(A, injres(B))) = H1(Hom(projres(A), B)).

Note that Tor is symmetric in its arguments, while Ext is not. Recall that Tor0(A,B) = A ⊗ B and Ext0(A,B) =
Hom(A,B).

Theorem 3.2.5. [Universal coefficient theorem]
There exist isomorphisms

Hn(X;G) ∼= Hom(Hn(X), G)⊕ Ext(Hn+1(X), G) ∼= Hn(X)⊗G ⊕ Tor(Hn−1(X), G),
Hn(X;G) ∼= Hom(Hn(X), G)⊕ Ext(Hn−1(X), G) ∼= Hn(X)⊗G ⊕ Tor(Hn+1(X), G).

Here are some common Hom, Tor, and Ext groups:

Hom(Z, G) = G Tor(Z, G) = 0 Ext(Z, G) = 0

Hom(Zm,Z) = 0 Tor(G,Z) = 0 Ext(Zm,Z) = Zm

Hom(Zm,Zn) = Zgcd(m,n) Tor(Zm,Zn) = Zgcd(m,n) Ext(Zm,Zn) = Zgcd(m,n)

Hom(Q,Zn) = 0 Ext(Q,Zn) = 0

Hom(Q,Q) = Q Ext(G,Q) = 0

Theorem 3.2.6. [Künneth formula]
For X,Y CW-complexes, F a field, and Hk(Y ;G) or Hk(X;G) finitely generated for all k, there are isomorphisms,
for all k,

Hk(X × Y ;F ) ∼=
⊕
i+j=k

Hi(X;F )⊗F Hj(Y ;F ), Hk(X × Y ;G) ∼=
⊕
i+j=k

Hi(X;G)⊗G Hj(Y ;G)
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Dualities

Theorem 3.2.7. [Poincaré duality]
For X a closed n-manifold (compact, without boundary) that is R-orientable (consistent choice of R-generator for
each local homology group), for k = 0, . . . , n there are isomorphisms

Hk(X;R) ∼= Hn−k(X;R).

Note that a simply orientable manifold means Z-orientable. A manifold that is not Z-orientable is always Z2-
orientable (in fact all manifolds are Z2-orientable).

Theorem 3.2.8. [Alexander duality]
For X ( Sn a non-empty closed locally contractible subset, for k = 0, . . . , n− 1 there are isomorphisms

H̃k(X) ∼= H̃n−k−1(Sn −X).

References: Hatcher (Algebraic topology, Chapters 2, 3), Aguilar, Gitler, and Prieto (Algebraic Topology from a
Homotopical Viewpoint, Chapter 7)

3.3 Basic topological constructions

2016-10-25

Keywords: cone, suspension, wedge, smash, join, homology

Let X,Y be topological spaces based at x0, y0, respectively, and I = [0, 1] the unit interval.

cone CX = X × I/X × {0}
suspension ΣX = X × I/X × {0}, X × {1}

reduced suspension Σ̃X = X × I/X × {0}, X × {0}, {x0} × I
wedge X ∨ Y = X t Y/{x0} ∼ {y0}
smash X ∧ Y = X × Y/X × {y0}, {x0} × Y

join X ∗ Y = X × Y × I
/

X × {y} × {0} ∀ y ∈ Y
{x} × Y × {1} ∀ x ∈ X

connected sum X#Y = (X \Dn
X) t (Y \Dn

Y )/∂Dn
X ∼ ∂Dn

Y

In the last description, X and Y are assumed to be n-manifolds, with Dn
X a closed n-dimensional disk in X

(similarly for Y ). The quotient identification may also be made via some non-trivial map. In fact, only the interior
of each n-disk is removed from X and Y , so that the quotient makes sense.

Remark 3.3.1. Some of the above constructions may be expressed in terms of others, for example

X ∧ Y = X × Y/X ∨ Y, X ∗ Y = Σ(X ∧ Y ).

The first is clear by viewing X = X ×{y0} and Y = {x0}×Y as sitting inside X ×Y . The second is clear by letting
X × {y} × {0} be identified to {x0} × {y} × {0} for every y ∈ Y , and analogously with Y .

Example 3.3.2. Here are some of the constructions above applied to some common spaces.

CX ' pt ΣSn = Sn+1 Sn ∧ Sm = Sn+m

ΣX = S1 ∧X Sn ∗ Sm = Sn+m+1

Remark 3.3.3. We may also calculate the homology of the new spaces in terms of the old ones.

H̃k(CX) = 0 via homotopy

H̃k(ΣX) = H̃k−1(X) via Mayer–Vietoris

H̃k(X ∨ Y ) = H̃k(X)⊕ H̃k(Y ) via Mayer–Vietoris

H̃k(X ∧ S`) = H̃k−`(X) via Künneth

H̃k(X#Y ) = H̃k(X)⊕ H̃k(Y ) via Mayer–Vietoris and relative homology
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The last equality holds for k < n− 1, for M and N both n-manifolds, and for k = n− 1 when at least one of them
is orientable.

References: Hatcher (Algebraic Topology, Chapters 0, 2)

3.4 Tools of homotopy

2016-11-04

Keywords: connectedness, homotopy, good pair, homotopy extension property, fundamental group, free group, Borsuk–
Ulam, ham sandwich, van Kampen

Let X,Y be topological spaces and A a subspace of X. Recall that a path in X is a continuous map γ : I → X,
and it is closed (or a loop), if γ(0) = γ(1). When X is pointed at x0, we often require γ(0) = x0, and call such paths
(and similarly loops) based.

Definitions

Definition 3.4.1.
- X is connected if it is not the union of two disjoint nonempty open sets.
- X is path connected if any two points in X have a path connecting them, or equivalently, if π0(X) = 0.
- X is simply connected if every loop is contractible, or equivalently, if π1(X) = 0.
- X is semi-locally simply connected if every point has a neighborhood whose inclusion into X is π1-trivial.

Path connectedness and simply connectedness have local variants. That is, for P either of those properties, a
space is locally P if for every point x and every neighborhood U 3 x, there is a subset V ⊂ U on which P is satisfied.

Remark 3.4.2. In general, X is n-connected whenever πr(X) = 0 for all r 6 n. Note that 0-connected is path
connected and 1-connected is simply connected and connected. Also observe that the suspension of path connected
space is simply connected.

Definition 3.4.3.
- A retraction (or retract) from X to A is a map r : X → A such that r|A = idA.
- A deformation retraction (or deformation retract) from X to A is a family of maps ft : X → X continuous in

t,X such that f0 = idX , f1(X) = A, and ft|A = idA for all t.
- A homotopy from X to Y is a family of maps ft : X → Y continuous in t,X.
- A homotopy equivalence from X to Y is a map f : X → Y and a map g : Y → X such that g ◦ f ' idX and

f ◦ g ' idY .

Definition 3.4.4. A pair (X,A), where A ⊂ X is a closed subspace, is a good pair, or has the homotopy extension
property (HEP), if any of the following equivalent properties hold:

1. there exists a neighborhood U ⊂ X of A such that U deformation retracts onto A,
2. X × {0} ∪A× I is a retract of X × I, or
3. the inclusion i : A ↪→ X is a cofibration.

In some texts such a pair (X,A) is called a neighborhood deformation retract pair, and HEP is reserved for any
map A → X, not necessarily the inclusion, that is a cofibration. For more on cofibrations, see a previous blog post
(2016-07-31, “(Co)fibrations, suspensions, and loop spaces”).

Definition 3.4.5. There is a functor π1 : Top∗ → Grp called the fundamental group, that takes a pointed topological
space X to the space of all pointed loops on X, modulo path homotopy.

This may be generalized to πn, which takes X to the space of all pointed embeddings of Sn.

Definition 3.4.6. Let G,H be groups. The free product of G and H is the group

G ∗H = {a1 · · · an : n ∈ Z>0, ai ∈ G or H, ai ∈ G(H) =⇒ ai+1 ∈ H(G)},

with group operation concatenation, and identity element the empty string ∅. We also assume eGeH = eHeG = eG =
eH = ∅, for eG (eH) the identity element of G (H).

The above construction may be generalized to a collection of groups G1 ∗ · · · ∗ Gm, where the index may be
uncountable. If every Gα = Z (equivalently, has one generator), then ∗α∈AGα is called the free group on |A|
generators.
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Theorems

Theorem 3.4.7. [Borsuk–Ulam]
Every continuous map Sn → Rn takes a pair of antipodal points to the same value.

Theorem 3.4.8. [Ham Sandwich theorem]
Let U1, . . . , Un be bounded open sets in Rn. There exists a hyperplane in Rn that divides each of the open sets Ui
into two sets of equal volume.

Volume is taken to be Lebsegue measure. The Ham sandwich theorem is an application of Borsuk–Ulam (see
Terry Tao’s blog post for more).

Theorem 3.4.9. If X and Y are path-connected, then π1(X × Y ) ∼= π1(X)× π1(Y ).

Now suppose that X =
⋃
αAα is based at x0 with x0 ∈ Aα for all α. There are natural inclusions iα : Aα → X

as well as jα : Aα ∩Aβ → Aα and jβ : Aα ∩Aβ → Aβ .

XAα ∩Aβ

Aα

Aβ

jα

jβ

iα

iβ

Both iα and jα induce maps on the fundamental group, each (and all) of the iα∗ : π1(Aα) → π1(X) extending to a
map Φ : ∗απ1(Aα)→ π1(X).

Theorem 3.4.10. [van Kampen]
1. If Aα ∩Aβ is path-connected, then Φ is a surjection.
2. If Aα ∩Aβ ∩Aγ is path connected, then ker(Φ) = 〈jα∗(g)(jβ∗(g))−1 | g ∈ π1(Aα ∩Aβ , x0)〉.

As a consequence, if triple intersections are path connected, then π1(X) ∼= ∗αAα/ ker(Φ). Moreover, if all double
intersections are contractible, then ker(Φ) = 0 and π1(X) ∼= ∗αAα.

Proposition 3.4.11. If π1(X) = 0 and H̃n(X) = 0 for all n, then X is contractible.

References: Hatcher (Algebraic topology, Chapter 1), Tao (blog post “The Kakeya conjecture and the Ham
Sandwich theorem”)

3.5 More (co)homological constructions

2016-11-08

Keywords: CW complex, homology, cellular homology, chain, cochain, cup product, cap product, cohomology

Recall a previous post (2016-09-16, “Complexes and their homology”) that focused on constructing topological
spaces in different ways and recovering the homology. Here we complete that task, introducing cellular homology.
Recall a cell complex (or CW complex ) X was a sequence of skeleta Xk for k = 0, . . . ,dim(X) consisting of k-cells
eki and their attaching maps to the (k − 1)-skeleton.

Cellular homology

Definition 3.5.1. The long exact sequence in relative homology for the pair Xk, Xk−1 shares terms with the long
exact sequence for the pair Xk+1, Xk, as well as Xk−1, Xk−2. By letting dk be the composition of maps in different



24

long exact sequences, for k > 1, that make the diagram

...

Hk+1(Xk+1)

Hk+1(Xk+1, Xk)

Hk(Xk)

Hk(Xk+1)

· · · Hk(Xk, Xk−1) Hk−1(Xk−1) Hk−1(Xk)

...

Hk−1(Xk−1, Xk−2)

Hk−2(Xk−2)

Hk−2(Xk−1)

· · · Hk−2(Xk−2, Xk−3) Hk−3(Xk−3) Hk−3(Xk−2)

...

Hk−3(Xk−3, Xk−4)

Hk−4(Xk−4)

Hk−4(Xk−3)

dk+1

dk

dk−1

dk−2

commute, we get a complex of equivalence classes of chains

· · · → Hk+1(Xk+1, Xk)
dk+1−−−−→ Hk(Xk, Xk−1)

dk−−→ Hk−1(Xk−1, Xk−2)→ · · · → H1(X1, X0)
d1−−→ H0(X0)

d0−−→ 0,

whose homology HCW
k (X) = ker(dk)/im(dk−1) is called the cellular homology of X. The map d1 is the connecting

map in the long exact sequence of the pair X1, X0, and d0 = 0.

This seems quite a roundabout way of defining homology groups, but it turns out to be very useful. Note that
for k = 1, the map d1 is the same as for a simplicial complex, hence

d1

( )
= − = 0, d1

( )
= − .

Theorem 3.5.2. In the context above,
1. for k > 0, HCW

k (X) ∼= Hk(X);

2. for k > 1, Hk(Xk, Xk−1) = Z`, where ` is the number of k-cells in X; and

3. for k > 2, dk(eki ) =
∑
j

deg(∂eki︸︷︷︸
Sk−1

fk,i−−−→ Xk−1
π−−→ Xk−1/Xk−1 − ek−1

j︸ ︷︷ ︸
Sk−1

)ek−1
j .

Example 3.5.3. Real projective space RPn has a cell decomposition with one cell in each dimension, and 2-to-1
attaching maps ∂(ek) = 2Xk−1 for k > 1. This gives us a construction

X0 = e0, X1 = e1

⊔
∂(e1)=e0

X0, X2 = e2

⊔
∂(e2)=2e1

X1, X3 = e3

⊔
∂(e3)=2e2

X2, . . .

It is immediate that d0 = d1 = 0, and for higher degrees, we have

dk(ek) = deg(Sk−1 → RPk−1 → Sk−1)ek−1.

Since this is a map between spheres, we may apply local degree calculations. The first part is the 2-to-1 cover, where
every point in RPk−1 is covered by two points from Sk−1, one in each hemisphere. One covers it via the identity,
the other via the antipodal map. As long as we choose a point not in RPk−2 ⊂ RPk−1, the second step doesn’t
affect these degree calculations. The antipodal map Sk−1 → Sk−1 has degree (−1)k, hence for a the antipodal map,
the composition has degree

deg(Sk−1 → RPk−1 → Sk−1) = deg(idSk−1) + deg(aSk−1) = 1 + (−1)k =

{
2 k even,

0 k odd.
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Products in (co)homology

Recall that an n-chain on X is a map σ : ∆n → X, where ∆n = [v0, . . . , vn] is an n-simplex. These form the group
Cn of n-chains. An n-cochain is an element of Cn = Hom(Cn,Z), though the coefficient group does not need to be
Z necessarily.

Definition 3.5.4. The diagonal map X → X × X induces a map on cohomology H∗(X × X) → H∗(X), and by
Künneth, this gives a map H∗(X)⊗H∗(X)→ H∗(X), and is called the cup product.

For a ∈ Hp(X) and b ∈ Hq(X), representatives of the class a are in Hom(Cp,Z) and representatives of the class
b are in Hom(Cq,Z), though we will conflate the notation for the class with that of a representative. Hence for a
(p+ q)-chain σ the cup product of a and b acts as

(a ^ b)σ = a
(
σ|[v0,...,vp]

)
· b
(
σ|[vp,...,vp+q ]

)
.

Definition 3.5.5. The cap product combines p-cochains with q-chains to give (q − p)-chains, by

_ : Hp(X)×Hq(X) → Hq−p(X),
(a, σ) 7→ a

(
σ|[v0,...,vp]

)
· σ|[vp,...,vq ].

The cap product with the orientation form of an orientable manifold X gives the isomorphism of Poincaré duality.

Remark 3.5.6. Given a map f : X → Y , the cup and cap products satisfy certain identities via the induced map
on cohomology groups. Let a, b ∈ H∗(Y ) and c ∈ H∗(X) be cochain and chain classes, for which

f∗(a ^ b) = f∗(a) ^ f∗(b), a _ f∗c = f∗(f
∗a _ c).

The first identity asserts that f∗ is a ring homomorphism and the second describes the commutativity of an appro-
priate diagram. The cup and cap products are related by the equation

a(b _ σ) = (a ^ b)σ,

for a ∈ Hp, b ∈ Hq and σ ∈ Cp+q.

References: Hatcher (Algebraic topology, Chapter 2.2), Prasolov (Elements of homology theory, Chapter 2)

3.6 Covering spaces

2016-11-13

Keywords: covering space, universal cover, normal cover, lift, fundamental group, deck transformation

Let X,Y be topological spaces.

Definition 3.6.1. A space X̃ and a map p : X̃ → X are called a covering space of X if either of two equivalent
conditions hold:

1. There is a cover {Uα}α∈A of X such that p−1(Uα) ∼=
⊔
β∈Bα Uβ .

2. Every point x ∈ X has a neighborhood U ⊂ X such that p−1(U) ∼=
⊔
β∈B Uβ .

We also demand that every Uβ is carried homeomorphically onto Uα (or U) by p, and the Uα (or U) are called evenly
covered.

Some definitions require that p be surjective. A universal cover of X is a covering space that is universal with
respect to this property, in that it covers all other covering spaces. Moreover, a cover that is simply connected is
immediately a universal cover.

Remark 3.6.2. Every path connected (pc), locally path connected (lpc), and semi locally simply connected (slsc)
space has a universal cover.

Theorem 3.6.3. [Lifting criterion]

Let Y be pc and lpc, and X̃ a covering space for X. A map f : Y → X lifts to a map f̃ : Y → X̃ iff f∗(π1(Y )) ⊂
p∗(π1(X̃)).
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Further, if the initial map f0 in a homotopy ft : Y → X lifts to f̃0 : Y → X̃, then ft lifts uniquely to X̃. This
is called the homotopy lifting property. Next, we will see that path connected covers of X may be classified via a
correspondence through the fundamental group.

Theorem 3.6.4. Let X be pc, lpc, and slsc. There is a bijection (up to isomorphism) between pc covers p : X̃ → X

and subgroups of π1(X), described by p∗(π1(X̃)).

Example 3.6.5. Let X = T 2, the torus, with fundamental group Z ⊕ Z. Below are some covering spaces of
p : X̃ → X with the corresponding subgroups p∗(π1(Z⊕ Z)).

Z⊕ Z 2Z⊕ Z

3Z⊕ 2Z

Definition 3.6.6. Given a covering space p : X̃ → X, an isomorphism g of X̃ for which idX ◦ p = p ◦ g, is called a
deck transformation, the collection of which form a group G(X̃) under composition. Further, X̃ is called normal (or

regular) if for every x ∈ X and every x̃1, x̃2 ∈ p−1(x), there exists g ∈ G(X̃) such that g(x̃1) = x̃2.

For path connected covering spaces over path connected and locally path connected bases, being normal is
equivalent to p∗(π1(X̃)) 6 π1(X) being normal. In this case, G(X̃) ∼= π1(X)/p∗(π1(X̃)). This simplifies even more

for X̃ a universal cover, as π1(X̃) = 0 then.

Theorem 3.6.7. Let G be a group, and suppose that every x ∈ X has a neighborhood U 3 x such that g(U)∩h(U) =
∅ whenever g 6= h ∈ G. Then:

- The quotient map q : X → X/G describes a normal cover of X/G.
- If X is pc, then G = G(X).

A group action satisfying the hypothesis of the previous theorem is called a covering space action.

Proposition 3.6.8. For any n-sheeted covering space X̃ → X of a finite CW complex, χ(X̃) = nχ(X).

References: Hatcher (Algebraic Topology, Chapter 1)

3.7 Čech (co)homology

2017-05-28

Keywords: Čech, Leray, sheaf, cosheaf, cover, nerve, simplicial complex

In this post we briefly recall the construction of Čech cohomology as well as compute a few examples. Let X be
a topological space with a cover U = {Ui}, F a C-valued sheaf on X, and F̂ a C-valued cosheaf on X, for some
category C (usually abelian groups).

Definition 3.7.1. The nerve N of U is the simplicial complex that has an r-simplex ρ for every non-empty intersec-
tion of r+ 1 opens of U . The support Uρ of ρ is this non-empty intersection. The r-skeleton Nr of N is the collection
of all r-simplices.

Remark 3.7.2. The sheaf F and cosheaf F̂ may be viewed as being defined either on the opens of U over X,
or on the nerve N of U . Indeed, the inclusion map V ↪→ U on opens is given by the forgetful map ∂. That is,
∂i : Nr → Nr−1 forgets the ith open defining ρ ∈ Nr, so if Uρ = U0 ∩ · · · ∩ Ur, then U∂0ρ = U1 ∩ · · · ∩ Ur.

The Čech (co)homology will be defined as the (co)homology of a particular complex, whose boundary maps will
be induced by, equivalently, the inclusion map on opens or ∂i on simplices.
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Definition 3.7.3. In the context above:
- a p-chain is a finite formal sum of elements aσi ∈ F̂(Uσi), for every σi a p-simplex,
- a q-cochain is a finite formal sum of elements bτj ∈ F(Uτj ), for every τj a q-simplex,

- the p-differential is the map dp : Čp(U ,F)→ Čp−1(U ,F) given by

dp(aσ) =

p∑
i=0

(−1)iF̂(∂i)(aσ),

- the q-codifferential is the map δq : Čq(U ,F)→ Čq+1(U ,F) given by

δq(bτ ) =

q+1∑
j=0

(−1)jF(∂j)(bτ ).

The collection of p-chains form a group Čp(U ,F) and the collection of q-cochains also form a group Čq(U ,F),
both under the respective group operation in each coordinate. The Čech homology H∗(U ,F) is the homology of the
chain complex of Čp groups, and the Čech cohomology H∗(U ,F) is the cohomology of the cochain complex of Čq

groups.

Example 3.7.4. Let X = S1 with a cover U = {U, V,W} and associated nerve NU as below.

X ⊆ U :

U

V

W

NU :

σUσU∩V

σV

σV ∩W σW

σW∩U

The cover is chosen so that all intersections are contractible. Let k be a field. Let F̂ be a cosheaf over N and F a sheaf
over N , with F̂(0-cell) = F(1-cell) = (1, 1) ∈ k2 and F̂(1-cell) = F(0-cell) = 1 ∈ k, so that the natural extension
and restriction maps work. Then all the degree 0 and 1 chain and cochain groups are k3. Giving a counter-clockwise
orientation to X, we easily see that

d1σU∩V = σV − σU , δ0σU = σU∩V − σW∩U ,
d1σV ∩W = σW − σV , δ0σV = σV ∩W − σU∩V ,
d1σW∩U = σU − σW , δ0σW = σW∩U − σV ∩W .

If we give an ordered basis of (σU∩V , σV ∩W , σW∩U ) to Č1(U , F̂) and Č1(U ,F), and (σU , σV , σW ) to Č0(U , F̂) and
Č0(U ,F), we find that

d1 =

−1 0 1
1 −1 0
0 1 −1

 ∼
1 0 −1

0 1 −1
0 0 0

 , δ0 =

−1 1 0
0 −1 1
1 0 −1

 ∼
1 0 −1

0 1 −1
0 0 0

 .
The Čech chain and cochain complexes are then

0→ Č1(U , F̂)
d1−−→ Č0(U , F̂)→ 0, 0→ Č0(U ,F)

δ0−−→ Č1(U ,F)→ 0,

for which

H1(U , F̂) = ker(d1) = k, H0(U ,F) = ker(δ0) = k,

H0(U , F̂) = k3/im(d1) = k3/k2 = k, H1(U ,F) = k3/im(δ0) = k3/k2 = k.

By the Čech–de Rham theorem, we know that the (co)homology groups should agree with the usual groups for S1,
as U was a good cover, which they do. Next we compute another example with a view towards persistent homology.
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Definition 3.7.5. Let X be a topological space and f : X → Y a map with U covering f(X). The Leray sheaf Li

of degree i over NU is defined by Li(σ) = Hi(f−1(Uσ)) and Li(σ ↪→ τ) = Hi(f−1(Uτ ) ↪→ f−1(Uσ)), whenever σ is a
face of τ .

Theorem 3.7.6. [Curry, Theorem 8.2.21]
In the context above, if NU is at most 1-dimensional, then for any t ∈ R,

Hi(f−1(−∞, t]) ∼= H0((−∞, t], Li)⊕H1((−∞, t], Li−1).

The idea is to apply this theorem in a filtration, for different values of t, but in the example below we will have t
large enough so that X ⊂ f−1(−∞, t].

Example 3.7.7. Let f : S1 → R be a projection map, and let X = f(S1) with a cover U = {U, V } as below.

f−1(U)

f−1(V )

f

R

(
)

(
)

U

V

σU∩V

σU

σV

Note that although f−1(U)∩ f−1(V ) is not contractible, U ∩ V is, and the Čech cohomology will be over U ⊂ R, so
we are fine in applying the Čech–de Rham theorem. It is immediate that the only non-zero Leray sheaves are L0,
for which

L0(σU ) = k, L0(σV ) = k, L0(σU∩V ) = k2,

hence Č0(U , L0) = Č1(U , L0) = k2. Giving Č0(U , L0) the ordered basis (σU , σV ) and noting the homology maps
H0(f−1(U) ↪→ f−1(U ∩ V )) and H0(f−1(V ) ↪→ f−1(U ∩ V )) are simply 1 7→ (1, 1), the Čech complex is

0→ Č0(U , L0)

[
−1 −1
1 1

]
−−−−−−−→ Č1(U , L0)→ 0.

Hence H0(U , L0) = ker(δ0) = k and H1(U , L0) = k2/im(δ0) = k2/k = k, allowing us to conclude, using Curry’s and
the Čech–de Rham theorems, that

H0(S1) ∼= H0(U , L0)⊕H1(U , L−1) = k ⊕ 0 = k,

H1(S1) ∼= H0(U , L1)⊕H1(U , L0) = 0⊕ k = k,

H2(S1) ∼= H0(U , L2)⊕H1(U , L1) = 0⊕ 0 = 0,

as expected.

References: Bott and Tu (Differential forms in algebraic topology, Section 10), Bredon (Sheaf theory, Section
VI.4), Curry (Sheaves, cosheaves, and applications, Section 8)

3.8 Ordering simplicial complexes with unlabeled vertices

2017-12-03

Keywords: ordering, simplicial complex, continuity, quotient, symmetric group, poset, Ran space

The goal of this post is to describe a partial order on the collection of simplical complexes with 6 n unlabeled
vertices that is nice in the context of the space X = Ran6n(M)×R>0.

First note that there is a natural order on (abstract) simplicial complexes, given by set inclusion. Interpreting
elements of X as simplicial complexes induces a more restrictive order, as new vertices must “split off” from existing
ones rather than just be introduced anywhere. Also note that the category usually denoted by SC of simplicial
complexes and simplicial maps contains objects with unordered vertices. Here we assume an order on them and
consider the action of the symmetric groups to remove the order.
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Definition 3.8.1. Let SCk, for some positive integer k, be the collection of simplicial complexes with k uniquely
labeled vertices. This collection is a poset, with S 6 T iff σ ∈ T for every σ ∈ S.

The symmetric group on k elements acts on SCk by permuting the vertices, and taking the image under this
action we get SCk/Sk, the collection of simplicial complexes with k unlabeled vertices. This set also has a partial
order, with S 6 T in SCk/Sk iff S′ 6 T ′ in SCk, for some S′ ∈ q−1

k (S) and T ′ ∈ q−1
k (T ), where qk : SCk � SCk/Sk

is the quotient map.

Definition 3.8.2. For all i = 1, . . . , k, let sk,i be the ith splitting map, which splits the ith vertex in two. That is,
if the vertices of S ∈ SCk are labeled v1, . . . , vk, then sk,i is defined by

sk,i : SCk → SCk+1,

S 7→

〈
S′ ∪ {vi, vi+1} ∪

⋃
{vi,w}∈S

{vi+1, w}

〉
,

where S′ is S with vj relabeled as vj+1 for all j > i, and 〈T 〉 is the simplicial complex generated by T .

By “generated by T” we mean generated in the Vietoris–Rips sense, that is, if {va, vb} ∈ T for all a, b in some
indexing set I, then {vc : c ∈ I} ∈ 〈T 〉. The ith splitting map is essentially the ith face map used for simplicial
sets.

Let A =
⋃n
k=1 SCk/Sk. The splitting maps induce a partial order on A, with S 6 T , for S ∈ SCk/Sk and

T ∈ SCk+1/Sk+1, iff sk,i(S
′) 6 T ′ in SCk, for some S′ ∈ q−1

k (S), T ′ ∈ q−1
k+1(T ), and i ∈ {1, . . . , k}. This generalizes

via composition of the splitting maps to any pair S, T ∈ A, and is visually decribed by the diagram below.

SCk−1/Sk−1 SCk/Sk SCk+1/Sk+1

SCk−1 SCk SCk+1

qk−1 qk qk+1

sk−1,i sk,i
· · ·· · ·

Now, let M be a smooth, compact, connected manifold embedded in RN , and X = Ran6n(M)×R>0. Let f : X → A
be given by (P, t) 7→ V R(P, t), the Vietoris–Rips complex around the points of P with radius t.

Proposition 3.8.3. The map f : X → A is continuous.

Proof: Let S ∈ A and US ⊆ A be the open set based at S. Take any (P, t) ∈ f−1(US) ⊆ X, for which we will show
that there is an open ball B 3 (P, t) completely within f−1(US).

Case 1: t 6= d(Pi, Pj) for all pairs Pi, Pj ∈ P . Then set

ε = min

{
t,min
i<j
|t− d(Pi, Pj)|, min

i<j
d(Pi, Pj)

}
.

Set B = B
Ran6n(M)
ε/4 (P )×BR>0

ε/4 (t), which is an open neighborhood of (P, t) in X. It is immediate that f(P ′, t′), for

any other (P ′, t′) ∈ B, has all the simplices of f(P, t), as ε 6 |t − d(Pi, Pj)| for all i < j. If Pi has split in two in
P ′, then for every simplex containing Pi in f(P, t) there are two simplices in f(P ′t′), with either of the points into
which Pi split. That is, there may be new simplices in f(P ′, t′), but f(P ′, t′) will be in the image of the splitting
maps. Equivalently, f(P, t) 6 f(P ′, t′) in A, so B ⊆ f−1(US).

Case 2: t = d(Pi, Pj) for some pairs Pi, Pj ∈ P . Then set

ε = min

t, min
i<j

t 6=d(Pi,Pj)

|t− d(Pi, Pj)|, min
i<j

d(Pi, Pj)

 ,

and define B as above. We are using the definition of Vietoris–Rips complex for which we add an edge between Pi
and Pj whenever t > d(Pi, Pj). Now take any (P ′, t′) ∈ B such that its image and the image of (P, t) under f are
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both in SCk/Sk. Then any points Pi, Pj ∈ P with d(Pi, Pj) = t that have moved around to get to P ′, an edge will
possibly be added, but never removed, in the image of f (when comparing with the image of (P, t)). This means
that we have f(P, t) 6 f(P ′, t′) in SCk/Sk, so certainly f(P, t) 6 f(P ′, t′) in A. The same argument as in the first
case holds if points of P split. Hence B ⊆ f−1(US) in this case as well. �

This proposition shows in particular that X is poset-stratified by A.

3.9 Induced orders on sets

2018-04-27

Keywords: set, partial order, Čech, continuity

The goal of this post is to understand when a map from a poset to an unordered set induces a partial order, and
how that applies to the specific case of the set of simplicial complexes. Thanks to Yanlong Hao for spotting some
mistakes in my seminar talk on the same topic yesterday.

Definition 3.9.1. Let (A,6A) be a poset and f : A → B a map of sets. The relation 6B on B, with a 6A a′

implying f(a) 6B f(a′), is the relation induced by f on B. The map f is monotonic if whenever b 6b b′,

1. if a ∈ f−1(b), a′ ∈ f−1(b) are comparable, then a 6A a′, and

2. if a′ ∈ f−1(b′), then there exists a ∈ f−1(b) such that a 6A a′.

Since f may not be surjective, there may be b ∈ B with f−1(b) = ∅. For such b we only have b 6B b and b is not
comparable to any other element of B.

Lemma 3.9.2. If f : A→ B is monotonic, then the induced relation 6B is a partial order on B.

Proof. For reflexivity, take any a ∈ A, which has a 6A a by reflexivity of 6A. Then f(a) 6B f(a), so every b ∈ im(f)
satisfies reflexivity. Every b 6∈ im(f) also satisfies reflexivity by the comment above.

For anti-symmetry, suppose that b 6B b′ and b′ 6B b. Since b 6B b′, there is some a ∈ f−1(b) and a′ ∈ f−1(b′)
such that a 6A a′. Similarly, there is some c′ ∈ f−1(b′) and c ∈ f−1(b) such that c′ 6A c. Since c ∈ f−1(b) and
c′ ∈ f−1(b′) are comparable, and the first assumed relation is b 6B b′, by property 1 of Definition 3.9.1, we must
have c 6A c′. By anti-symmetry of A, we now have that c = c′, so it follows that b = f(c) = f(c′) = b′.

For transitivity, suppose that b 6B b′ and b′ 6B b′′. Take a′′ ∈ f−1(b′′), for which property 2 of Definition 3.9.1
guarantees that there exists a′ ∈ f−1(b′) such that a′ 6A a′′. Similarly, the first assumed relation and the same
property guarantees there exists a ∈ f−1(b) such that a 6A a′. By transitivity of A, we have a 6A a′′. By the
definition of 6B , we have b = f(a) 6B f(a′′) = b′′.

Let M be a piecewise linear, compact, connected, embedded manifold in RN , and SC the category of simplicial
complexes. Let A = {1 < 2a > 2b < 3}. The product AN has the product order, which we denote by 6A. Fix
n ∈ Z>0 and let T be the set of all distinct 2-,3-,...,n-tuples in {1, . . . , n}, or T :=

⋃n
k=2

(
{1, . . . , n}k \∆

)
/Sk . This

set has size
∑n
k=2

(
n
k

)
= 2n − n− 1. Assume every v ∈ T is ordered in the canonical way. Then v induces a natural

projection πv : Mn →Mv, as well as another map

π′v : Mn ×R>0 → A,

(P, t) 7→


1 ∀ i, j, πv(P )i = πv(P )j ,

2a ∃ i, j s.t. πv(P )i 6= πv(P )j and
⋂|v|
i=1B(πv(P )i, t) 6= ∅,

2b ∃ i, j s.t. πv(P )i 6= πv(P )j and
⋂|v|
i=1B(πv(P )i, t) = ∗,

3 ∃ i, j s.t. πv(P )i 6= πv(P )j and
⋂|v|
i=1B(πv(P )i, t) = ∅.

Here all the balls B are closed, and Mn has the Hausdorff topology.

Lemma 3.9.3. The map πv is continuous on Mv ×R>0.
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Proof. Every (Q, s) ∈ (π′v)
−1(3) has an open ball of radius maxi,j{d(πv(Q)i, πv(Q)j)}/2 − s around it that is still

contained within (π′v)
−1(3). Similarly, every (Q, s) ∈ (π′v)

−1(2a) has an open ball of radius

min

1

2
diam

 |v|⋂
i=1

B(πv(Q)i, s)

 ,max
i,j
{d(πv(Q)i, πv(Q)j)}

 (1)

around it that is still contained within (π′v)
−1(2a). The first expression in the min makes sure the intersection is

non-empty, and the second expression makes sure all elements of Q are not the same.

The set (π′v)
−1(1 < 2a) is open by the same argument as for 2a ∈ A, enlarging the open ball by removing the

second expression in the min of expression (1). Finally, the set (π′v)
−1(2a > 2b < 3) is open by the same argument,

now enlarging the ball used for 2a ∈ A by removing the first expression in the min of expression (1).

Let q : Mn → Ran6n(M) be the natural quotient map, and Č : Ran6n(M) ×R>0 → SC be the Čech simplical
complex map. For the next propositions, we will use two maps f and g defined as

f : Mn ×R>0 → A2n−n−1,
(P, t) 7→

∏
v∈T π

′
v(P, t),

g : im(f) → SC,
f(P, t) 7→ Č(q(P ), t).

The map g is well-defined because a ∈ A2n−n−1 with non-empty preimage in Mn × R>0 specifies whether or not
every k-tuple of points has a simplex spanning it, for all k = 2, . . . , n. This defines a unique simplicial complex, so
choosing any (P, t) ∈ f−1(a) will give the same Čech complex, up to renaming of vertices.

Proposition 3.9.4. The map f : Mn ×R>0 → A2n−n−1 is continuous.

Proof. Let a ∈ A2n−n−1 and suppose that f−1(a) 6= ∅. Let ai ∈ A be in the ith factor of a, and ri the radius of the
open ball decreed by Lemma 3.9.3 to still be within (π′v)

−1(ai), where v is the ith tuple in the chosen order on T .
Then every (P, t) ∈ f−1(a) has an open ball of radius mini{ri} around it that is still contained within f−1(a), so f
is continuous.

Proposition 3.9.5. The map g is monotonic.

Note that any relation S 6SC S′ may be split up as a chain of relations S = T1 6SC · · · 6SC T` = S′, where the
only differences between Ti and Ti+1 are either (i) Ti has a k-simplex σ that Ti+1 does not have, or (ii) where Ti has
a single 0-simplex where a k-simplex σ and all its faces used to be in Ti+1. Hence it suffices to show that properties
1 and 2 of Definition 3.9.1 are satisfied in cases (i) and (ii).

Proof. Case (i): Suppose that S 6SC S′, and take a ∈ g−1(S), a′ ∈ g−1(S′) with a 6A a′. If there is b ∈ g−1(S) and
b′ ∈ g−1(S′) such that b′ 6A b, then g(b) has the k-simplex σ that g(b′) does not have, but since b′ is ordered lower
than b, it must be that this k-simplex has collapsed to a point. Then we would be in case (ii), a contradiction, so
property 1 holds in this case.

Now let i1, . . . , iσ be the indices of a′ and a representing the (k + 1)-fold intersection that describes σ, so a′j = 3

and aj = 2b for all j = i1, . . . , iσ. Take any b′ ∈ g−1(S′), which also has some indices `1, . . . , `σ representing this same
(k+ 1)-fold intersection, so b′j = 3 at all j = `1, . . . , `σ. Let b ∈ A2n−n−1 be the element with all the same factors as
b′, except at indices `1, . . . , `σ, which have been changed to 2b. This element b is still in im(f) as removing only this
k-simplex still leaves the well-defined simplex S′ we assumed at the beginning. Hence g(b) = S′ and property 2 holds.

Case (ii): Suppose that S 6SC S′, and take a ∈ g−1(S), a′ ∈ g−1(S′) with a 6A a′. If there is b ∈ g−1(S) and
b′ ∈ g−1(S′) such that b′ 6A b, then g(b′) has the k-simplex σ and all its faces that g(b) does not have, but since b′

is ordered lower than b, it must be that we have introduced σ and all its faces. Then we would be in case (i), or a
chain of case (i) situations, a contradiction, so property 1 holds in this case.

Now let i1, . . . , iσ be the indices of a′ and a representing the (k + 1)-fold intersection that describes σ, and all
the implied (f + 1)-fold intersections that describe the f -faces of σ, f > 0. That is, a′j = 2a and aj = 1 for all

j = i1, . . . , iσ. Take any b′ ∈ g−1(S′), which also has some indices `1, . . . , `σ representing this same (k + 1)-fold
(and lower) intersection, so b′j = 3 at all j = `1, . . . , `σ. Let b ∈ A2n−n−1 be the element with all the same factors
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as b′, except at indices `1, . . . , `σ, which have been changed to 1. This element b is still in im(f) as collapsing this
k-simplex and all its faces to a single 0-simplex still leaves the well-defined simplex S′ we assumed at the beginning.
Hence g(b) = S′ and property 2 holds.

Since g is monotonic, by Lemma 3.9.2 the relation 6SC is a partial order on SC.
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Part II

Extending foundations

1 Homotopy theory

1.1 The Eilenberg–Steenrod axioms

2016-02-26

Keywords: homology theory, topological space, axioms, functor, homotopy, excision, weak equivalence

The category Top of topological spaces may be generalized to the category Top∗ of pointed topological spaces.
This in turn may be generalized to the category Toprel of pairs (X,A), where X ∈ Obj(Top) and A is a subspace
of X. The morphisms of Toprel on (X,A) are the morphisms of Top on X paired with their restrictions to A. We
write (X) for (X, ∅).

Definition 1.1.1. Let X,Y ∈ Obj(Top∗). Then f ∈ HomTop∗(X,Y ) is an n-equivalence if the induced map on
homotopy groups f∗ : πk(X,x)→ πk(Y, f(x)) is an isomorphism for k < n and an epimorphism for k = n. Further,
f is a weak equivalence if it is an n-equivalence for all n > 1. Similarly, f ∈ HomToprel((X,A), (Y,B)) is a weak
equivalence if f ∈ HomTop∗(X,Y ) and f |A ∈ HomTop∗(A,B) are weak equivalences.

Definition 1.1.2. Let C,D be two categories. A functor F : C → D is an assignment F(X) ∈ Obj(D) for every
X ∈ Obj(C), and F(f) ∈ HomD(F(X),F(Y )) for every f ∈ HomC(X,Y ). This assignment satisfies the following
relations:
· F(g ◦ f) = F(g) ◦ F(f) for every f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z)
· F(idX) = idF(X) for every X ∈ Obj(C)

Definition 1.1.3. Let C be any category and F : Top → C a functor. Then F is homotopy invariant if f ' g in
Top implies F(f) = F(g) in C, where ' is the homotopy of maps.

Definition 1.1.4. A (relative) homology theory of topological spaces is a collection of homotopy-invariant functors
Hn : Toprel → Ab and a collection of natural transformations dn : Hn(X,A)→ Hn−1(A).

The Eilenberg–Steenrod axioms are properties a relative homology theory may satisfy. The number of axioms
depends on how general a view of homology theories one would like. Eilenberg and Steenrod (7), May (4), Aguilar,
Gitler, and Prieto (4), Wikipedia (5), and other sources (6,8) have all different numbers of axioms. The order of the
axioms below is alphabetical.

For any (X,A) ∈ Obj(Toprel) and all n:

Axiom 1: Additivity. If (X,A) =
⊕

i(Xi, Ai), then

Hn(X,A) ∼=
⊕
i

Hn(Xi, Ai),

where the isomorphism is induced by the inclusions (Xi, Ai) ↪→ (X,A).

Axiom 2: Exactness. There is a long exact sequence

· · · dn+1−−−−→ Hn(A) −−→ Hn(X) −−→ Hn(X,A)
dn−−−→ Hn−1(A) −−→ · · ·

where Hn(A) → Hn(X) and Hn(X) → Hn(X,A) are induced by the inclusions (A) ↪→ (X) and (X) ↪→ (X,A),
respectively.

Axiom 3: Excision. If there exists a subset U of X with cl(U) ⊂ int(A), then there is an isomorphism
Hn(X \ U,A \ U) ∼= Hn(X,A) induced by the inclusion (X \ U,A \ U) ↪→ (X,A).
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Axiom 4: Dimension. Hn(∗) = 0 for all n 6= 0.

Axiom 5: Weak equivalence. If f ∈ HomToprel((X,A), (Y,B)) is a weak equivalence, then the induced map on
homology f∗ : Hn(X,A)→ Hn(Y,B) is an isomorphism.

Singular homology is a homology theory that satisfies all the axioms above. K-theory is a homology theory that
does not satisfy the dimension axiom.

References: May (A Concise course in Algebraic Topology, Chapter 13.1), Aguilar, Gitler, and Prieto (Algebraic
Topology from a Homotopical Viewpoint, Chapter 5.3)

1.2 Ghost maps

2016-04-25

Keywords: path space, loop space, spectrum, homotopy group, ghost map

Definition 1.2.1. Let X be a topological space based at x ∈ X. Let PX be the space of based paths of X, that
is, maps [0, 1] → X with 0 7→ x. Let ΩX ⊂ PX be the space of based loops of X, that is, maps [0, 1] → X with
0, 1 7→ x.

Note that Ω is a functor on the category of based topoloigcal spaces right-adjoint to the suspension functor Σ.
Also observe there is a fibration

ΩX → PX
p−−→ X,

where p is evaluation at 1 ∈ [0, 1]. Since PX is contractible, Hn(PX) = 0 for n 6= 0, so H1(ΩX) ∼= H2(X).

Definition 1.2.2. A spectrum E is a sequence of based topological spaces (En, xn) and based homeomorphisms
αn : En → ΩEn+1. A map of spectra f : E → F is a sequence of based homeomorphisms fn : En → Fn compatible
with the based homeomorphisms of E and F , that is, so that the diagram

Fn ΩFn+1

En ΩEn+1

αn

βn

fn Ωfn+1

commutes for all n.

Definition 1.2.3. Let E,F be spectra. A map of spectra f : E → F is a ghost map if the induced map πnf :
πnX → πnY on stable homotopy groups is the zero map.

Most commonly this term is used in spectra, but the idea of a ghost map may be generalized to other situations,
where a map induces the zero map on homology, cohomology, or some similar functor.

References: Weibel (An introduction to homological algebra, Chapters 5.3, 10.9)

1.3 Spectral sequences and filtrations

2016-05-17

Keywords: spectral sequence, filtration, good filtration, bête filtration, truncation

Definition 1.3.1. Let C• ∈ C(A) be a cochain complex with boundary maps d• over some category A. A filtration
of C• is a sequence of objects FnC• with boundary maps d•,nh in the category of cochain complexes C(A) of A, either
a

decreasing filtration C• ⊇ · · · ⊇ Fn−1C• ⊇ FnC• ⊇ Fn+1C• ⊇ · · · or

increasing filtration C• ⊇ · · · ⊇ Fn+1C• ⊇ FnC• ⊇ Fn−1C• ⊇ · · · ,
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where “⊇” is defined as necessary, along with maps d•,nv : FnC• → Fn±1C•. These maps are compatible, in the

sense that dk±1,n
v dk,nh = dk,n∓1

h dk,nv .

Example 1.3.2. Define “⊇” as X ⊇ Y iff Hom(Y,X) is non-empty. The bête (or brutal) filtration of C• is a
decreasing filtration

(FnC•)
i

=

{
0 if i < n,

Ci if i > n,
with Hk(FnC•) =


0 if k < n

Zn if k = n,

Hk(C•) if k > n.

This filtration may be represented by the diagram

· · · 0 Cn−1 Cn Cn+1 · · ·

· · · 0 0 Cn Cn+1 · · ·

· · · 0 0 0 Cn+1 · · ·

,

which clearly commutes. The good filtration of C• is also a decreasing filtration

(FnC•)
i

=


Ci if i < n,

ZiC• if i = n,

0 if i > n,

with Hk(FnC•) =

{
Hk(C•) if k 6 n,

0 if k > n.

This filtration may be represented by the diagram

· · · Cn−1 Cn Zn+1 0 · · ·

· · · Cn−1 Zn 0 0 · · ·

· · · Zn−1 0 0 0 · · ·

,

which also commutes. Both of these are also called truncations. The good filtration is “better” because the cocycle
groups Zn do not appear in the cohomology groups. The same may be done for homology groups.

Definition 1.3.3. Set FnCk = (FnC•)k = FnC•∩Ck, and let the zeroth page of the cohomology spectral sequence
of C• with the filtration F be given by

Ep,q0 = F pCp+q/F p+1Cp+q if F is decreasing,

= F pCp+q/F p−1Cp+q if F is increasing.

Let the first page of the cohomology spectral sequence of C• with the filtration F be given by

Ep,q1 = Hp+q(F pC•/F p+1C•) if F is decreasing,

= Hp+q(F pC•/F p−1C•) if F is increasing.

From now on, assume that F is an increasing filtration. Let the second page of the cohomology spectral sequence of
C• with the filtration F be given by

Ep,q2 =
ker(Ep,q1 → Ep+1,q

1 )

im(Ep−1,q
1 → Ep,q1 )

.

Continue in this manner and let the rth page of the cohomology spectral sequence of C• with the filtration F be
given by

Ep,qr =
{x ∈ F pCp+q : dx ∈ F p+rCp+q+1}

F p+1Cp+q + dF p−r+1Cp+q−1
.
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The same may be done for a homology spectral sequence. Note that a spectral sequence may also be defined
without coming from a filtration.

Definition 1.3.4. A homology spectral sequence is a collection of objects Erp,q and maps drp,q : Erp,q → Erp−r,q+r−1

with drdr = 0 such that
Er+1
p,q
∼= ker(drp,q)/im(drp+r,q−r+1).

Similarly, a cohomology spectral sequence is a collection of objects Ep,qr and maps dp,qr : Ep,qr → Ep+r,q−r+1
r with

drdr = 0 such that
Ep,qr+1

∼= ker(dp,qr )/im(dp−r,q+r−1
r ).

References: Weibel (An introduction to homological algebra, Chapter 1.2), McCleary (A user’s guide to spectral
sequences, Chapter 2.2), Hutchings (Algebraic topology lecture notes, see
math.berkeley.edu/∼hutching/teach/215b-2011)

1.4 (Co)fibrations, suspensions, and loop spaces

2016-07-31

Keywords: fibration, cofibration, extension, lifting, suspension, loop space

Recall the exponential object ZY , which, in the category of topological spaces, is the set of all continuous functions
Y → Z. In general, the definition involves a commuting diagram and gives an isomorphism Hom(X × Y,Z) ∼=
Hom(X,ZY ). The subspace F (Y,Z) of ZY consists of based functions Y → Z.

Definition 1.4.1. Let F,E,B,X be topological spaces. A map i : F → E is a cofibration if for every map f : E → X
and every homotopy h : F × I → X, there exists a homotopy h̃ : E × I → X (extending h) making either of the
equivalent diagrams below commute.

E

F

E × I

F × I

Xi i× idf

h

h̃

E

F XI

X

i

h

f

h̃

The horizontal maps on the left are the natural inclusion maps x 7→ (x, 0) and the map on the right is the natural
evaluation map ϕ 7→ ϕ(0). Similarly, a map p : E → B is a fibration if for every map g : X → E and every homotopy
h : X × I → B, there exists a homotopy h̃ : X × I → E (lifting h) making either of the equivalent diagrams below
commute.

E

B

EI

BI

Xp ◦pg

h

h̃
E

B

X

X × I

p

g

h

h̃

The horizontal maps on the right are the natural evaluation maps and the map on the right is the natural inclusion
map.

Instead of this terminology, often we say the pair (F,E) has the homotopy extension property and the pair (E,B)
has the homotopy lifting property. Now, let let (X,x) be a pointed topological space.

Definition 1.4.2. The (reduced) suspension ΣX of X is

ΣX := X × I/X × {0} ∪X × {1} ∪ {x} × I.

The unreduced suspension SX of X is

SX := X × I/X × {0} ∪X × {1}.

The loop space ΩX of X is
ΩX := F (S1, X).
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Remark 1.4.3. If X is well-pointed (the inclusion i : {x} ↪→ X is a cofibration), then the natural quotient map
SX → ΣX is a homotopy equivalence. Moreover, there is an adjunction F (ΣX,Y ) ∼= F (X,ΩY ). In the fundamental
group this gives the adjunction

[ΣX,Y ] ∼= [X,ΩY ],

where [A,B] is the set of based homotopy classes of maps A→ B.

References: May (A concise course in algebraic toplogy, Chapters 6, 7, 8), Aguilar, Gitler, and Prieto (Algebraic
topology from a homotopical viewpoint, Chapter 2.10)

1.5 Some facts about formal group laws

2016-08-08

Keywords: formal group law, morphism, finite field

Here we solve some problems from the 2016 West Coast Algebraic Topology Summer School (WCATSS) at The
University of Oregon. Thanks to Piotr Pstragowski and Carolyn Yarnall for the solutions. First we recall some
definitions.

Definition 1.5.1. Let R be a commutative ring with unit. A formal group law F over R is an element F ∈ R[[x, y]]
satisfying

1. F (x, y) = F (y, x) (symmetry),
2. F (x, 0) = x and F (0, y) = y (uniticity),
3. F (F (x, y), z) = F (x, F (y, z)) (associativity).

It follows from these three properties that F (x, y) = x+ y + (higher order terms) for all F .

Proposition 1.5.2. For any formal group law F (x, y) over R, x has a formal inverse. That is, there exists an
element i(x) ∈ R[[x]] such that F (x, i(x)) = 0.

Proof: Consider F (x, y + z), with |z| = n. Note that

F (x, y + z) = x+ y + z +
∑
i,j>1

aijx
i(y + z)j

= x+ y + z +
∑
i,j>1

aijx
i

j∑
k=0

(
j

k

)
ykzj−k

= x+ y + z +
∑
i,j>1

aijx
i

(
yj +

j−1∑
k=0

(
j

k

)
ykzj−k

)

= x+ y + z +
∑
i,j>1

aijx
iyj +

∑
i,j>1

aijx
i

︸ ︷︷ ︸
deg > 1

j−1∑
k=0

(
j

k

)
ykzj−k︸ ︷︷ ︸

deg = k+n(j−k)>n

= F (x, y) + z + (terms of deg > n+ 1).

First choose z1 to be the negative of all the degree-1 terms of F (x, 0), so that F (x, z1) has terms of degree 2 and
higher. Now choose z2 to be the negative of all the degree-2 terms of F (x, z1), so F (x, z1 + z2) has terms of degree 3
and higher. Continue in this manner ad infinitum to get a formal inverse

∑
i zi (this will be a power series) of x. �

Recall that we call fa(x, y) = x + y the additive formal group law and Fm(x, y) = x + y + xy the multiplicative
formal group law. Via the universal Lazard ring of formal group laws, these turn out to be the formal group laws
of ordinary singular cohomology theory (additive) and complex K-theory KU (multiplicative). Recall also nested
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notation: for F a formal group law, we write

[1]F (x) = x,

[2]F (x) = F (x, x),

[3]F (x) = F (F (x, x), x),

[4]F (x) = F (F (F (x, x), x), x),

and so on.

Definition 1.5.3. Let F be a formal group law over R. A morphism of formal group laws is an element ϕ ∈ R[[u]],
giving a formal group law ϕF ∈ R[[x, y]] by ϕF (x, y) := F (ϕ(x), ϕ(y)).

An isomorphism of formal group laws is a morphism where the formal power series ϕ is an isomorphism.

Proposition 1.5.4. The additive formal group law and the multiplicative formal group law are not isomorphic over
Fp.

Proof: We compare [p]Fm(x) and [p]Fa(x) and show they are not the same. If there were an isomorphism ϕ between
Fa and Fm, we should have that

Fm(x, x) = Fa(ϕ(x), ϕ(x)) = ϕ(Fa(x, x)) =⇒ [p]Fm(x) = ϕ([p]Fa(x)),

since ϕ is a homomorphism. However, we first see that

[1]Fa(x) = x , [2]Fa(x) = Fa(x, x) = 2x , [3]Fa(x) = Fa(Fa(x, x), x) = 3x,

and so continuing this pattern we get that [p]Fa(x) = px = 0 in Fp. Next, for the multiplicative formal group law we
find that

[1]Fm(x) = x, , [2]Fm(x) = Fm(x, x) = 2x+ x2 , [3]Fm(x) = Fm(2x+ x2, x) = 3x+ 3x2 + x3.

Here the pattern is not immediate, but continuing these small examples we find that [p]Fm(x) = (x + 1)p − 1 =
1 +xp−1 = xp in Fp. An isomorphism sends only 0 to 0, but in this case ϕ should send xp 6= 0 to 0, a contradiction.
Hence no such isomorphism exists over Fp. �

1.6 What is a stack?

2016-08-13

Keywords: groupoid, sheaf, stack, Hopf, algebroid

This is from discussions at the 2016 West Coast Algebraic Topology Summer School (WCATSS) at The University
of Oregon. Thanks to Piotr Pstragowski for explaining the material.

Definition 1.6.1. A groupoid is a category where all the morphisms are invertible. Alternatively, a groupoid is a
set of objects A, a set of morphisms Γ, and a collection of maps as described by the diagram below.

A Γ Γ× Γidentity
composition

domain

codomain
inverse

To describe stacks, we compare them with sheaves. Both start out with a space X and a topology on it, so that
we may consider open sets U .
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sheaf space stack space

U → F(U) a group U → F̂(U) a groupoid

O(X)op → Set open sets to groups O(X)op → Grpd open sets to groupoids

if si ∈ F(Ui) and sj ∈ F(Uj) such that
si|Ui∩Uj = sj |Ui∩Uj , then there exists
s ∈ F(U) such that s|Ui = si and s|Uj = sj

if si ∈ F̂(Ui) and sj ∈ F̂(Uj) such that there
an isomorphism ϕij : si|Ui∩Uj → sj |Ui∩Uj ,
then there exists s ∈ F(U) and isomorphisms
ϕi : s|Ui → si, ϕj : s|Uj → sj such that the
diagram below commutes:

si|Ui∩Uj sj |Ui∩Uj

s

ϕij

ϕi|Ui∩Uj ϕj |Ui∩Uj

In addition to these conditions, there is a triple intersection condition for stacks that does not have an analogous
one in sheaves. It is given by:

for every Ui, Uj , Uk and si, sj , sk ∈ F̂(Ui), F̂(Uj), F̂(Uk), respectively, such that there exist isomorphisms
ϕij : si|Ui∩Uj → sj |Ui∩Uj , ϕjk : sj |Uj∩Uk → sk|Uj∩Uk , and ϕik : si|Ui∩Uk → sk|Ui∩Uk , the diagram below
commutes:

si|Ui∩Uj∩Uk sj |Ui∩Uj∩Uk

sk|Ui∩Uj∩Uk

ϕij |Ui∩Uj∩Uk

ϕi|Ui∩Uj∩Uk ϕj |Ui∩Uj∩Uk

Example 1.6.2. A Hopf algebroid may be viewed as a functor into groupoids, so that with the appropriate topology,
it becomes a stack. Indeed, by definition a Hopf algebroid is a pair of k-algebras (A,Γ) such that (Spec(A),Spec(Γ))
is a groupoid object in affine schemes, or in other words, is a functor from affine schemes into groupoids.

References: nLab (article on groupoids)

1.7 Sheaves and cosheaves

2017-06-04

Keywords: presheaf, sheaf, precosheaf, cosheaf, sampling

Let X be a topological space with an open cover U = {Ui}, and category Op(X) of open sets of X. Let C be any
abelian category, most often groups.

Definition 1.7.1. A presheaf F over X is a functor Op(X)op → D, and a sheaf if it satisfies the gluing axiom. A

precosheaf F̂ over X is a functor Op(X)→ D, and a cosheaf if it satisfies the cutting axiom.

The gluing axiom may be interpreted as a colimit condition and the cutting axiom (thanks to Keaton Quinn
for suggesting the name) may be interpreted as a limit condition. The components of sheaves and cosheaves are
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compared in the table below.

sheaf cosheaf

functoriality
Op(S)op → D

U 7→ F(U)
(V ↪→ U)op 7→ (ρUV : F(U)→ F(V ))

Op(S) → D

U 7→ F̂(U)

(V ↪→ U) 7→ (εV U : F̂(V )→ F̂(U))

gluing / cutting

if si|Ui∩Uj = sj |Ui∩Uj ,

then
∃s ∈ F(Ui ∪ Uj) s.t.
s|Ui = si, s|Uj = sj .

if si|Ui∪Uj = sj |Ui∪Uj ,

then
∃s ∈ F̂(Ui ∩ Uj) s.t.
s|Ui = si, s|Uj = sj .

colimit / limit cond. F(U)
∼=−−→ lim←−

V⊆U
F(V ) F̂(U)

∼=←−− lim−→
V⊆U

F̂(V )

The maps ρUV are called restrictions and εV U are called extensions. Above, si is a (co)section over Ui and sj is
a (co)section over Uj . For s a (co)section of U with V ⊂ U ⊂ W , write s|V for ρUV (s) and s|W for εUW (s). The
isomorphisms with the colimits and limits are the natural maps from the respective colimit and limit diagrams.

Now we relate sheaves to persistent homology. All cohomology is be taken over a field k.

Remark 1.7.2. Suppose we have a finite point sample P and some t > 0, for which we can construct the nerve
Nt,P , a cellular complex, of the union of balls of radius t around the points of P . If t′ < t, then there is a natural
inclusion Nt′,P ↪→ Nt,P , which induces a map H`(Nt′,P ) → H`(Nt,P ) on degree ` homology groups. Define a sheaf
F` over R for which

F`(U) = H`(Ninf(U),P ), F`t = H`(Nt,P ).

This is indeed a sheaf, as V ⊆ U implies that inf(U) 6 inf(V ), giving a natural map F`(U) → F`(V ). The gluing
axiom is also satisfied: assume without loss of generality that inf(Ui) 6 inf(Uj) and take si ∈ F`(Ui), sj ∈ F`(Uj)
with the assumptions as above. Then inf(Ui) = inf(Ui ∪ Uj) and inf(Uj) = inf(Ui ∩ Uj), so

F`(Ui) = F`(Ui ∪ Uj), F`(Uj) = F`(Ui ∩ Uj),

hence si = s ∈ F`(Ui ∪ Uj) and s|Uj = si|Uj = si|Ui∩Uj = sj |Ui∩Uj = sj |Uj = sj . Therefore sheaves capture all the
persistent homology data. Note we do not take the sheaf cohomology of F`, instead the usual sequence of homology
groups is induced by any increasing sequence in R.

References: Bredon (Sheaf theory, Section VI.4), Bott and Tu (Differential forms in algebraic topology, Section 10)

1.8 Exit paths and entry paths through ∞-categories

2018-04-20

Keywords: exit path, entry path, conical stratification, infinity category, quasi-category, Kan complex, nerve, horn,
homotopy category, adjoint

Let X be a topological space, (A,6) a poset, and f : X → (A,6) a continuous map.

Definition 1.8.1. An exit path in an A-stratified space X is a continuous map σ : |∆n| → X for which there exists
a chain a0 6 · · · 6 an in A such that f(σ(t0, . . . , ti, 0, . . . , 0)) = ai for ti 6= 0. An entry path is a continuous map
τ : |∆n| → X for which there exists a chain b0 6 · · · 6 bn in A such that f(τ(0, . . . , 0, ti, . . . , tn)) = bi for ti 6= 0.

Up to reordering of vertices of ∆n and induced reordering of the realization |∆n|, an exit path is the same as an
entry path. The next example describes this equivalence.

Example 1.8.2. The standard 2-simplex |∆2| is uniquely an exit path and an entry path with a chain of 3 distinct
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elements, stratfied in the ways described below.

t0

t2

t1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

a1

a0

a2

stratified image
via exit path

b1

b0

b2

stratified image
via entry path

Recall the following algebraic constructions, through Joyal’s quasi-category model:

• A simplicial set is a functor ∆op → Set.

• A Kan complex is a simplicial set satisfying the inner horn condition for all 0 6 k 6 n. That is, the kth n-horn
lifts (can be filled in) to a map on ∆n.

• An ∞-category is a simplicial set satisfying the inner horn condition for all 0 < k < n.

Moreover, if the lift is unique, then the Kan complex is the nerve of some category. Recall also the category
Sing(X) = {continuous σ : |∆n| → X}, which can be combined with the stratification f : X → A of X

Remark 1.8.3. The subcategory SingA(X) of exit paths and the subcategory SingA(X) of entry paths are full
subcategories of Sing(X), with (SingA(X))op = SingA(X). If the stratification is conical, then these two categories
are ∞-categories.

not conically stratified
no lift of Λ2

1 exists
conically stratified
a lift of Λ2

1 exists

Recall the nerve construction of a category. Here we are interested in the nerve of the category SC of simplicial
complexes, so N(SC)n = {sequences of n composable simplicial maps}. Recall the kth n-horns, which are compatible
diagrams of elements of N(SC)n. In general, they are colimits of a diagram in the category ∆. That is,

Λnk := colim

 ⊔
06i<j6n

∆n−2 ⇒
⊔

06i6n
i6=k

∆n−1

 .

Example 1.8.4. The images of the 3 different types of 2-horns and 4 different types of 3-horns in SC are given
below. Note that they are not unique, and depend on the choice of simplices Si (equivalently, on the choice of functor
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∆op → SC).

S0

S1

S2

f

g

Λ2
0

S0

S1

S2

f h

Λ2
1

S0

S1

S2g

h

Λ2
2

S0

S1

S2 S3

f01 f01

f02

f02

f03

f03

f12 f13

f23

	

�

	

Λ3
0

S0

S1

S2 S3

f01 f01

f02 f03

f12

f12

f13

f13

f23

	

�

	

Λ3
1

S0

S1

S2 S3

f01

f02

f02
f03

f12

f12 f13

f23

f23

	

	

	

Λ3
2

S0

S1

S2 S3

f01

f02

f03

f03

f12

f13

f13

f23

f23

�

	

	

Λ3
3

For example, the 0th 2-horn Λ2
0 can be filled in if there exists a simplicial map h : S1 → S2 in SC (that is, an

element of N(SC)1) such that h ◦ f = g. Similarly, the 1st 3-horn Λ3
1 can be filled in if there exists a functor

F : [0 < 1 < 2] → SC for which F (0 < 1) = f02, F (0 < 2) = f03, and F (1 < 2) = f23 (equivalently, a compatible
collection of elements of N(SC)2).

Definition 1.8.5. Let A,B be ∞-categories. A functor F : A→ B is a morphism of the simplicial sets A,B. That
is, F : A→ B is a natural transformation for A,B ∈ Fun(∆op,Set).

A functor of simplicial sets of a particular type can be identified with a functor of 1-categories. Recall the nerve
of a 1-category, which turns it into an ∞-category. This construction has a left adjoint.

Definition 1.8.6. Let C be an ∞-category. The homotopy category hC of C has objects C0 and morphisms
HomhC(X,Y ) = π0(MapC(X,Y )).

By Lurie, h is left-adjoint to N . That is, h : sSet � Cat :N , or MapsSet(C, N(D)) ∼= MapCat(hC,D), for any
∞-category C and any 1-category D. Our next goal is to describe a functor SingA(X) → N(SC), maybe through
this adjunction, where SC is the 1-category of simplicial complexes and simplicial maps.

References: Lurie (Higher topos theory, Sections 1.1.3 and 1.2.3), Lurie (Higher algebra, Appendix A.6), Goerss
and Jardine (Simplicial homotopy theory, Section I.3), Joyal (Quasi-categories and Kan complexes)

1.9 A functor from entry paths to the nerve of simplicial complexes

2018-04-22

Keywords: functor, simplicial set, face map, degeneracy map, natural transformation, entry path, simplicial complex

Fix n ∈ Z>0 and let X = Ran6n(M) ×R>0 for M a compact, connected PL manifold embedded in RN . Take

h̃ : X → (B,6) the conical stratifying map from a previous post (“Conical stratifications via semialgebraic sets,”
2018-04-16) compatible with the natural stratification h : X → SC. The goal of this post is to construct a functor
F : SingB(X)→ N(SC) from the ∞-category of entry paths that encodes the structure of X.

Recall that a simplicial set is a functor, an element of Fun(∆op,Set). A simplicial set S is defined by its collection
of n-simplices Sn, its face maps si : Sn−1 → Sn, and degeneracy maps di : Sn+1 → Sk, for all i = 0, . . . , n. For the
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first simplicial set of interest in this post, we have

SingB(X)n = HomB
Top(|∆n|, X),

(si : [n]→ [n− 1]) 7→
( (

|∆n−1| → X
)
7→ (|∆n| → X)

collapses ith with (i+ 1)th vertex, then maps as source

)
(di : [n]→ [n+ 1]) 7→

( (
|∆n+1| → X

)
7→ (|∆n| → X)

maps as ith face of source map

)
We write HomB

Top for the subset of HomTop that respects the stratification B in the context of entry paths. For the
second simplicial set, the nerve, we have

N(SC)n = {(S0
f1−−→ · · · fn−−−→ Sn) : Si ∈ SC, fi are simplicial maps},

(si : [n]→ [n− 1]) 7→
((
S0

f1−−→ · · · fn−1−−−−→ Sn−1

)
7→
(
S0

f1−−→ · · · fi−−→ Si
id−−→ Si

fi+1−−−−→ · · · fn−1−−−−→ Sn−1

))
,

(di : [n]→ [n+ 1]) 7→


i = 0 : (S0 · · ·Sn+1) 7→

(
S1

f2−−→ · · · fn+1−−−−→ Sn+1

)
0 < i < n : (S0 · · ·Sn+1) 7→

(
S0

f1−−→ · · · fi−1−−−−→ Si−1
fi+1◦fi−−−−−−→ Si+1

fi+2−−−−→ · · · fn+1−−−−→ Sn+1

)
i = n : (S0 · · ·Sn+1) 7→

(
S0

f1−−→ · · · fn−−−→ Sn

)
 .

Define F on k-simplices as

F
(
γ : |∆k| → Ran6n(M)×R>0

)
=

(
h̃(γ(1, 0, . . . , 0))

(h̃◦γ◦sk◦···◦s2)(|∆1|)
−−−−−−−−−−−−−−−→ · · ·

(h̃◦γ◦sk−2◦···◦s0)(|∆1|)
−−−−−−−−−−−−−−−−−→ h̃(γ(0, . . . , 0, 1))

)
.

A morphism in SingB(X) is a composition of face maps si and degeneracy maps di, so F must satisfy the commutative
diagrams

SingB(X)n

SingB(X)n−1

N(SC)n,

N(SC)n−1

si

F

F

si

SingB(X)n

SingB(X)n+1

N(SC)n,

N(SC)n+1

di

F

F

di

for all si, di. Since the maps are unwieldy when in coordinates, we opt for heuristic arguments, neglecting to trace
out notation-heavy diagrams.

Commutativity of the diagram on the left is immediate, as considering a simplex |∆n−1| as the ith face of a larger
simplex |∆n| is the same as adding a step that is the identity map in the Hamiltonian path of vertices of |∆n−1|.
Similarly, observing that the image of the shortest path vi−1 → vi → vi+1 in |∆n+1|, for vi = (0, . . . , 0, 1, 0, . . . , 0)
the ith standard basis vector, induced by an element γ : |∆n+1| → X in SingB(X)n+1, is homotopic to the image of
the shortest path vi−1 → vi+1 shows that the diagram on the right commutes. Since F is a natural transformation
between the two functors SingB(X) and N(SC), it is a functor on the functors as simplicial sets.

Remark 1.9.1. The particular choice of X did not seem to play a large role in the arguments above. However,
the stratifying map h̃ : X → B has image sitting inside SC, the nerve of which is the target of F , and every
morphism in SingB(X) can be interpreted as a relation in B ⊆ SC (both were necessary for the commutativity of
the diagrams). Hence it is not unreasonable to expect a similar functor SingA(X)→ N(A′) may exist for a stratified
space X → A ⊆ A′.

1.10 Enriched and straightened categories

2018-06-12

Keywords: monoidal category, enriched category, weakly enriched category, bicategory, topological category, pseudo-
functor, lax functor, cartesian morphism, fibered category, cleavage, straightening, unstraightening
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Definition 1.10.1. A category C is monoidal if it is accompanied by

• a functor ⊗ : C × C → C,

• an object 1 ∈ Obj(C), and

• isomorphisms

– αX,Y,Z ∈ HomC((X ⊗ Y )⊗ Z,X ⊗ (Y ⊗ Z)),

– λX ∈ HomC(1⊗X,X), and

– ρX ∈ HomC(X ⊗ 1, X),

for all X,Y, Z,W ∈ Obj(C), such that ⊗ is unital and α is associative over ⊗. That is, the diagrams below commute.

X ⊗ Y

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y ),αX,1,Y

ρX ⊗ idY idX ⊗ λY

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z (W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z).

αW⊗X,Y,Z αW,X,Y⊗Z

αW,X,Y ⊗ idZ idW ⊗ αX,Y,Z

αW,X⊗Y,Z

“⊗ is unital” “ α is associative over ⊗”

Definition 1.10.2. Let C be monoidal as above. A category D is enriched over C if it is accompanied by

• an object D(P,Q) ∈ Obj(C) for every P,Q ∈ Obj(D), and

• morphisms

– γP,Q,R ∈ HomC(D(Q,R)⊗D(P,Q),D(P,R)), and

– iP ∈ HomC(1,D(P, P )),

for all P,Q,R, S ∈ Obj(D), such that γ is unital and associative over ⊗. The category D is weakly enriched over
C if γ is unital and associative over ⊗ up to homotopy. That is, the diagrams below commute for D enriched, and
commute up to homotopy for D weakly enriched.

D(P,Q)

1⊗D(P,Q)

D(Q,Q)⊗D(P,Q)

λD(P,Q)

γP,Q,Q

iQ ⊗ idD(P,Q)

D(P,Q)⊗ 1

D(P,Q)⊗D(P, P ),

ρD(P,Q)

γP,P,Q

idD(P,Q) ⊗ iP

D(P, S)

D(Q,S)⊗D(P,Q) D(R,S)⊗D(P,R)

(D(R,S)⊗D(Q,R))⊗D(P,Q) D(R,S)⊗ (D(Q,R)⊗D(P,Q)).

γP,Q,S γP,R,S

γQ,R,S ⊗ idD(P,Q) idD(R,S) ⊗ γP,Q,R

αD(R,S),D(Q,R),D(P,Q)

“ γ is unital”

“ γ is associative over ⊗”
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Definition 1.10.3. A topological space X is compactly generated if its basis of topology of closed sets is given by
continuous images of compact Hausdorff spaces K whose preimages are closed in K. A topological space is weakly
Hausdorff if the continous image of every compact Hausdorff space is closed in X.

We write CG for the category of compactly generated and weakly Hausdorff spaces. This is a monoidal category
with the usual product of topological spaces.

Example 1.10.4. Here are some examples of enriched categories.

• A topological category is a category enriched over CG.

• A bicategory, or weak 2-category, is a category weakly enriched over Cat, the category of small categories.

Definition 1.10.5. Let C,D be bicategories. An assignment F : C → D is a pseudofunctor when it has

• an object F (X) ∈ Obj(D),

• a functor F (X,Y ) : C(X,Y )→ D(F (X), F (Y )), and

• invertible 2-morphisms

– F (idX) : idX ⇒ F (X,X)(idX), and

– F (X,Y, Z)(f, g) : F (Y,Z)(g) ◦ F (X,Y )(f)⇒ F (X,Z)(g ◦ f),

for all X,Y, Z ∈ Obj(C), such that F (X,Y ) is unital and associative over composition. The assignment F is a lax
functor when the last two morphisms are not necessarily invertible.

Definition 1.10.6. Let C,D be categories and F : C → D a functor. A morphism f ∈ HomC(A,B) is F -cartesian if

A
B

F (A)
F (B)

f

Ff

fits into

A
B

F (A)
F (B),

X

Y

f

Ff

then

A
B

F (A)
F (B)

X

Y

f

Ff

∃ ! g

commutes for some unique g ∈ HomC(A, Y ) (all the vertical arrows are F ).

This definition can be rephrased in the language of simplicial sets: the morphism f is F -cartesian if whenever
Ff = d1∆2 for some ∆2 ∈ D2, then every Λ2 ∈ C with Λ2

1 = f and FΛ2
0 = d0∆2 can be filled in by g with Fg = d2∆2.

Definition 1.10.7. Let f : C → D be a functor.

• The category C is F -fibered over D if for every morphism h ∈ HomD(U, V ) and every B ∈ Obj(C) with
F (B) = V , there is some F -cartesian f ∈ HomC(−, B) with Ff = h.

• A cleavage of an F -fibered category C is a class of cartesian morphisms K in C such that for every morphism
h ∈ HomD(U, V ) and every B ∈ Obj(C) with F (B) = V , there is a unique F -cartesian f ∈ K with Ff = h.

• A cleavage of C is a splitting if it contains all the the identity morphisms and is closed under composition.

If C is F -fibered over D and C′ is F ′-fibered over D, then a functor F : C → C′ is a morphism of fibered categories
if F = F ′ ◦ F and Ff is F ′-cartesian whenever f is F -cartesian.

Theorem 1.10.8. Let C be F -fibered over D.

• Every cleavage of C defines a pseudofunctor D → Cat.

• Every pseudofunctor D → Cat defines an F ′-fibered category C′ with a cleavage over D.
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The above result follows from sections 3.1.2 and 3.1.3 of Vistoli. Theorem 2.2.1.2 of Lurie generalizes this and
provides an equivalence between the category of fibered simplicial sets over S ∈ sSet and the category of functors
sCat→ sSet. The forward direction is called straightening and the backward direction is called unstraightening.

References: nLab (articles “Monoidal category,” “enriched category,” and “pseudofunctor.”), Strickland (The
category of CGWH spaces), Vistoli (Notes on Grothendieck topologies, Chapter 3), Noohi (A quick introduction),
Lurie (Higher Topos Theory, Section 2.2)
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2 Algebraic geometry

2.1 The canonical bundle of projective space and hypersurfaces

2016-03-01

Keywords: bundle, canonical bundle, hypersurface, sheaf, sheaf of regular functions, Serre twist

Let Pn be projective n-space with coordinates [x0 : · · · : xn]. Cover Pn with affine pieces Ui = {xi 6= 0}, each
of which are An, in coordinates (y1, . . . , yn), where yj = xj/xi. Recall that the canonical bundle of Pn is the n-fold
wedge of the cotangent bundle of Pn, or ωPn =

∧n
T ∗Pn . The canonical bundle for an arbitrary variety is defined

analogously.

Definition 2.1.1. Let X be a projective n-dimensional variety. The sheaf of regular functions on X is OX , with
OX(U) = {f/g : f, g ∈ k[x1, . . . , xn]/I(X), g 6= 0}, and the restriction maps are function restriction.

There is a natural grading on OX , given by deg(f) − deg(g). A shift in the grading may be applied, called a
Serre twist, to get a differently graded (but isomorphic) module: for ϕ ∈ OX with deg(ϕ) = k, set ϕ ∈ OX(`) to
have deg(ϕ) = k − `.

Let α = dy1 ∧ · · · ∧ dyn ∈ ωPn , which is well-defined on all of Ui. We claim this is well-defined on all of Pn. We
check this on the overlap U0 ∩ Un (for nicer notation), but the approach is analogous for Ui ∩ Uj .

U0 = {(y1, . . . , yn) : yi = xi/x0} yi =
zi+1

zi
dyi =

z1dzi+1 − zi+1dz1

z2
1

Un = {(z1, . . . , zn) : zi = xi−1/xn} yn =
1

z1
dyn =

−dz1

z2
1

Therefore

α = dy1 ∧ · · · ∧ dyn

=
z1dz2 − z2dz1

z2
1

∧ · · · ∧ z1dzn − zndz1

z2
1

∧ −dz1

z2
1

=
dz2

z1
∧ · · · ∧ dzn

z1
∧ −dz1

z2
1

=
(−1)n

zn+1
1

dz1 ∧ · · · ∧ dzn.

Since the transition function has a pole of order n+ 1 when z1 = 0, which happens when x0 = 0, we have that α has
a pole of order n+ 1 at ∞. Therefore ωPn

∼= OPn(−n− 1).

Let X ⊂ Pn be a smooth hypersurface defined by a degree d equation F (x0, . . . , xn) = 0. On the affine piece U0

this becomes f(y1, . . . , yn) = F (1, x1

x0
, . . . , xnx0

) with yi = xi/x0. The total derivative is

∂f

∂y1
dy1 + · · ·+ ∂f

∂yn
dyn =

n∑
i=1

∂f

∂yi
dyi = 0,

and since X is smooth, the terms never all vanish at the same time. Let Vi = { ∂f∂yi 6= 0}, and set

βi =
(−1)i−1

∂f/∂yi
dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn ∈ ωX ,
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which is well-defined on all of Vi ⊂ U0. We claim that the choice of Vi does not matter, and indeed, assuming i < j,

βj =
(−1)j−1

∂f/∂yj
dy1 ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn

=
(−1)j−1+i−1dyi

∂f/∂yj
∧ dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn

=

(−1)j−1+i−1 −1
∂f/∂yi

(
∂f
∂y1

dy1 + · · ·+ ∂̂f
∂yi

dyi + · · ·+ ∂f
∂yn

dyn

)
∂f/∂yj

∧ dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn

=
(−1)j−1+i−1+1 1

∂f/∂yi
· ∂f∂yj dyj

∂f/∂yj
∧ dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn

=
(−1)j−1+i−1+1+j−2

∂f/∂yi
dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn

=
(−1)i−1

∂f/∂yi
dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn

= βi.

Hence βi is well-defined on all of U0, and we call it simply β. Next we claim it is well-defined on all of X. Again
we only check on the overlap of U0 ∩ Un. On the affine piece Un this becomes g(z1, . . . , zn) = F ( x0

xn
, . . . , xn−1

xn
, 1) =

f( z2z1 , . . . ,
zn
z1
, 1
z1

) with zi = xi−1/xn. We employ the chain rule ∂f
∂yi

= ∂f
∂zj

∂zj
∂yi

and the results above to find that

β =
(−1)i−1

∂f/∂yi
dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn

=
(−1)i−1

∂f/∂zj · ∂zj/∂yi
z1dz2 − z2dz1

z2
1

∧ · · · ∧ d̂yi ∧ · · · ∧
z1dzn − zndz1

z2
1

∧ −dz1

z2
1

=
(−1)i−1

∂f/∂zj · ∂zj/∂yi
(−1)n−1

zn1
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn

=
(−1)i+n(

1
z1

)d−1

(c+ · · · ) zn1
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn

=
(−1)i+n

zn−d+1
1 (c+ · · · )

dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn,

where c does not contain z1 as a factor. This comes from expressing f in terms of the zis and factoring. Since the
transition function has a pole of order n − d + 1 when z1 = 0, which happens when x0 = 0, we have that β has a
pole of order n− d+ 1 at ∞. Therefore ωX ∼= OX(−n+ d− 1).

References: Griffiths and Harris (Principles of Algebraic Geometry, Chapter 1.2)

2.2 The Hodge decomposition, diamond, and Euler characteristics

2016-03-31

Keywords: sheaf, differential forms, structure sheaf, Hodge number, Hodge diamond, Hodge decomposition, symme-
try, Euler characteristic, hypersurface

Recall the sheaf of r-differential forms ΩrX on X (with ΩrX(U) = {fdxi1 ∧ · · · ∧ dxir : f is well-defined on U}
and such sums) and the structure sheaf OX on X (with OX(U) = {f/g : f, g ∈ k[U ], g 6= 0 on U}). Then we may
consider the sheaf cohomology of X, with values in ΩrX or OX .

Definition 2.2.1. Let X be a smooth manifold of dimension n. The (p, q)th Hodge number is hp,q = dim(Hp,q),
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where Hp,q = Hq(X,ΩpX). These numbers are arranged in a Hodge diamond as below.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

hn,0 hn−1,1 h1,n−1 h0,n

hn,n−1 hn−1,1

hn,n

...
. . .

. . .
...

· · ·

The Hodge diamond has a lot of repetition - by complex conjugation, we get that hp,q = hq,p, so it is symmetric
about its vertical axis. By the Hard Lefschetz theorem (or the Hodge star operator, or Poincare duality), we get
that hp,q = hn−q,n−p, so it is symmetric about its horizontal axis.

Proposition 2.2.2. Let X be a Kähler manifold (note that all smooth projective varieties are Kähler) of dimension
n. Then the cohomology groups of X decompose as

Hk(X,C) =
⊕
p+q=k

Hp,q(X),

for all 0 6 k 6 2n. This is called the Hodge decomposition of X.

This decomposition immediately gives all the Hodge numbers for Pn, knowing its cohomology. For a manifold of
complex dimension n, there are several numbers and polynomials that may be defined. These are:

χtop(X) =

2n∑
i=1

(−1)i dim(Hi(X,C)) the (topological) Euler characteristic

χp(X) =

n−1∑
q=0

(−1)qhp,q the chi-p characteristic

χy(X) =

n−1∑
p=0

χpyp the chi-y characteristic

Note the Euler characteristic is the alternating sum of the rows of the Hodge diamond, and the chi-p characteristic
is the alternating sum of the left-right diagonals of the diamond.

Example 2.2.3. In the case X is a hypersurface in projective n-space Pn defined by a degree d polynomial,

χy = [zn]
1

(1 + zy)(1− z)2
· (1 + zy)d − (1− z)d

(1 + zy)d + y(1− z)d
.

Since every row except the middle row of the Hodge diamond of a hypersurface is known (as it comes from the
Hodge diamond of Pn by the Lefschetz hyperplane theorem), this expression gives all the unknown numbers. This
particular formula is a simplification of Theorem 22.1.1 in Hirzebruch, which itself comes from the Riemann–Roch
theorem.

References: Huybrechts (Complex Geometry: An Introduction, Chapters 3.2, 3.3), Hirzebruch (Topological Meth-
ods in Algebraic Geometry, Appendix 1, Section 22)

2.3 What is a scheme?

2016-08-11

Keywords: scheme, affine scheme, Spec, sheaf, structure sheaf, Zariski, localization, locally ringed space

This is from a problem session at the 2016 West Coast Algebraic Topology Summer School (WCATSS) at The
University of Oregon. Thanks to Tyler Lawson for explaining the material.
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Definition 2.3.1. Affine schemes are the category Ringop. An object R ∈ Ring becomes an object Spec(R) in affine
schemes, and a ring map R→ S becomes a map Spec(S)→ Spec(R), where Spec denotes the set of prime ideals.

We try to think of Spec(R) as a geometrical object.

Example 2.3.2. Let k be a field and consider the ring

R = k[x1, . . . , xn]/(f1(x1, . . . , xn), . . . , fr(x1, . . . , xn)).

Spec(R) is supposed to be a substitute for the set of solutions to a system of equations

f1(x1, . . . , xn) = 0,

...

fr(x1, . . . , xn) = 0.

The scheme Spec(R) has a more precise definition. It consists of a set, a topology, and a sheaf.

1. Set: The underlying set of the scheme Spec(R) is the set of prime ideals of R. For example:
· if R = C[x], then the prime ideals are (x− α) and (0);
· if R = C[x, y], then the prime ideals are (x− α, y − β), irreducible polynomials (f(x, y)), and (0).

2. Topology: For every ideal I ⊂ R, the set V (I) = {P ⊂ R prime, P ⊃ I} is a closed set. Note that

N⋃
n=1

V (In) = V

(
N⋂
n=1

In

)
and

⋂
α∈I

V (Iα) = V

(∑
α∈A

IA

)
.

Geometrically, the closed sets are sets of points where one or more identities (like f(x) = 0) can hold. For
example, if R = C[x], then we have three different closed set types: Spec(C[x]), ∅, or a finite union of
(x− α1, . . . , x− αn). Solutions to equations can be one of the following types below.

finite union
of points

1-dimensional general point combination

3. Sheaf: Let X be a set with a topology. OX is the sheaf for which:
· to each open set U ⊆ X we get a ring OX(U);
· to each containment V ⊆ U ⊆ X of open sets, there exists a restriction map resUV : OX(U)→ OX(V );
· the restriction maps are compatible, in the sense that resVW ◦ resUV = resUW .

This is called the structure sheaf of X.

Say R is our ring, Spec(R) our set of primes, and we have some open set U ⊆ Spec(R). We like to think of it in the
following way:
· elements of R are functions;
· elements of Spec(R) are points where we can evaluate a function f ∈ P (or where the function vanishes);
· subsets S ⊂ R are the sets {f ∈ R : f only vanishes at points outside U}.

Note that S is closed under multiplication. We localize R at S to get a set

S−1R =

{[
f

s

]
: f ∈ R, s ∈ S

}
,

for which OX(U) = S−1R (good enough for today’s purposes). Now we have a triple (Spec(R), τ,OX), for τ the
Zariski topology, which we call a locally ringed space.
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Definition 2.3.3. A scheme is a space X with a topology and a sheaf of rings that is locally isomorphic to Spec(R).

Since the sheaf has the space X and the topology (through the open sets) encoded in it, we may think of a scheme
as a special type of sheaf. Also, isomorphism is meant in the category of locally ringed spaces.

Proposition 2.3.4. Morphisms of schemes Spec(R)→ Spec(S) are the same as ring maps S → R.

Example 2.3.5. In the Zariski topology, take U ⊆ Spec(k[x, y]). Locally U looks like it is covered by rings, though
that may not be the case globally. Indeed:

A2 = Spec(k[x, y]) Spec(k[x±1, y])

∪

Spec(k[x, y±1])

=

not Spec of
anything

Example 2.3.6. Consider projective space P2, where [x : y : z] = [λx : λy : λz]. We may write

P2 = U0 ∪ U1 ∪ U2.
[1 : y : z] [x : 1 : z] [x : y : 1]

Spec(k[y, z]) Spec(k[x, z]) Spec(k[x, y])

How can we express U0 ∩ U1? This is left as an exercise.

2.4 Morphisms of schemes

2016-08-13

Keywords: scheme, sheaf, fiber product

This is from discussions at the 2016 West Coast Algebraic Topology Summer School (WCATSS) at The University
of Oregon. Thanks to Zijian Yao for explaining the material.

Consider a morphism of schemes ϕ : S′ → S and coherent sheaves F ,G over S. Consider also a map of sheaves
f : F → G and a map f ′ between the pullbacks of F and G, as described by the diagram below.

S

F G
f

S′

ϕ∗F ϕ∗G
f ′

ϕ

There are two natural questions to ask.
1. When is f ′ = ϕ∗f?
2. If we start with G′ over S′, when is G′ = ϕ∗G?

To answer these questions, consider fiber products of schemes and projections from them, as given below.

S S′ S′ ×S S′ S′ ×S S′ ×S S′
ϕ p1

p2

π31
π32
π21

· · ·

∆ π

Remark 2.4.1. If 1. is true, then p∗1(f ′) = p∗2(f ′). If the previous statement is an equivalence, then ϕ is a morphism
of descent.

Remark 2.4.2. If 2. is true, then there exists α : p∗1(G′)→ p∗2(G′) such that π∗32(α)π∗21(α) = π∗31(α) and π∗(∆) = α.
If the previous statement is an equivalence, then ϕ is effective.
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2.5 Serre duality on schemes

2017-02-24

Keywords: duality, scheme, sheaf, dualizing sheaf, delta functor, effacable functor, local ring, Cohen–Macaulay ring

This post goes through the statement and proof of Serre duality for arbitrary projective schemes, as presented in
Chapter III.7 of Hartshorne. Only the necessary tools and definitions to prove the statement are introduced.

Recall a scheme is a topological space X and a sheaf of rings OX such that for every open set U ⊂ X, OX(U) ∼=
Spec(R) for some ring R. Its dimension is its dimension as a topological space. A projective scheme is a scheme
where X ⊂ Pn. A sheaf (or scheme) over a scheme X is a sheaf (or scheme) Y and a morphism Y → X. Recall

also the sheafification F̃ of a presheaf F .

Definition 2.5.1. Let F be a sheaf over a projective scheme X. Then F is
proper if it is the image of a proper morphism (separated, finite type, universally closed),

quasi-coherent if there exists a cover {Ui = Spec(Ai)} of X such that F|Ui = M̃i for some Ai-module Mi,
coherent if it is quasi-coherent and each Mi is finitely-generated as an Ai-module,

locally free if for every x ∈ X, there exists U 3 x open such that F|U =
⊕

i∈I OX |U ,
very ample if there is an immersion i : X → Pn for some n such that i∗O(1) ∼= F .

Often we say F is very ample if it has “enough sections,” as Pn has many sections.

Remark 2.5.2. Recall some basic definitions of the Ext functor. Let F ,G be sheaves of OX -modules, and L a
locally free sheaf of finite rank. Then:

1. Exti(OX ,F) ∼= Hi(X,F) for all i > 0 Proposition III.6.3

2. Exti(F ⊗ L,G) ∼= Exti(F,L∨ ⊗ G) Proposition III.6.7

3. ExtiOX (Fx,Gx) ∼= Ext(F ,G)x Proposition III.6.8

4. Exti(F ,G(q)) ∼= Γ(X, Exti(F ,G(q)) Proposition III.6.9

5. Exti(F ⊗ L,G) ∼= Exti(F,L∨ ⊗ G) ∼= Exti(F ,G)⊗ L∨

6. Ext0(OX ,F) ∼= F
7. Exti(OX ,F) ∼= 0 for all i > 0

Recall that a local ring of a scheme X is OX,x for x ∈ X. It is equivalently a ring with a unique maximal left or
right ideal. A regular local ring is a local ring R whose maximal ideal is generated by dim(R) elements.

Preliminary definitions and lemmas

Let A,B be abelian categories (recall this means kernels and cokernels exist).

Definition 2.5.3. A δ-functor between A and B is a collection of functors T i : A → B that generalize derived
functors, in the sense that RiF = T i. A δ-functor is universal if for any other δ-functor U , there is a natural
transformation f : T 0 → U0 that induces a unique collection of morphisms f i>0 : T i → U i that extend f .

See Weibel for a more thorough definition (and Grothendieck for the original setting). These functors may be
covariant or contravariant, homological or cohomological. Note that δ-functors are unique up to isomorphism.

Definition 2.5.4. Let F : A → B be a functor. F is effaceable if for every X ∈ A there exists a monomorphism
u ∈ HomA(X,Y ) such that F (u) = 0. Similarly, F is coeffaceable if for every X ∈ A there exists an epimorphism
v ∈ HomA(Y,X) such that F (v) = 0.

Lemma 2.5.5. If a covariant (or contravariant) cohomological δ-functor is effaceable for every i > 0, then it is
universal. Similarly, if a covariant (or contravariant) homological δ-functor is coeffaceable for every i > 0, then it is
universal.

This appears as Proposition II.2.2.1 in Grothendieck and Exercise 2.4.5 in Weibel. Now let F be a sheaf over a
projective scheme X.

Lemma 2.5.6. (Theorem III.5.2 in Hartshorne) If F is coherent, there is q � 0 such that Hi(X,F(q)) = 0 all i > 0.
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Definition 2.5.7. The dualizing sheaf of X is a coherent sheaf ω◦X and a trace map t : Hn(X,ω◦X) → k such that
the isomorphism Hom(F , ω◦X)→ Hn(X,F)∨ is induced by the natural pairing

Hom(F , ω◦X)×Hn(X,F)→ Hn(X,ω◦X)

composed with t.

Lemma 2.5.8. (Corollary II.5.18 in Hartshorne) If F is coherent, then it is a quotient of
⊕N

i=1OX(−q) for q � 0.

Next we recall some ring theory. Let A be a ring and M an A-module.

Definition 2.5.9. A sequence a1, . . . , an ∈ M is M -regular if ai is not a zero divisor of M/(a1, . . . , ai−1)M and
M 6= (a1, . . . , ai)M for all i. The depth of M is the maximal length of an M -regular sequence of elements in some
maximal ideal m 6M . A local Noetherian ring is Cohen–Macaulay if depth(A) = dim(A), where dimension is Krull
dimension (maximal length of prime ideal chains). A scheme X is Cohen–Macaulay if every point x ∈ X has a
neighborhood U such that the local ring OX(U) is Cohen–Macaulay.

Lemma 2.5.10. Let A be a regular local ring of dimension n and M,N be A-modules. Then:

1. pd(M) 6 n iff Exti(M,N) = 0 for all i > n Proposition III.6.10A

2. pd(M) + depth(M) = n if M is f.g. Proposition III.6.12A

Main theorem and proof

First we state the duality theorem for X = Pn, without proof. Let ωX be the canonical sheaf of X.

Theorem 2.5.11. (Theorem III.7.1 in Hartshorne) For F coherent over Pn, for i > 0 there are natural isomorphisms

Hom(F , ωX) ∼= Hn(X,F)∨, Exti(F , ω) ∼= Hn−i(X,F)∨.

Now we give the duality theorem for an arbitrary projective scheme, going through the proof as in Hartshorne.

Theorem 2.5.12. (Theorem III.7.6 in Hartshorne) Let X be a projective scheme of dimension n such that O(1) is
very ample. For F coherent,

Exti(F , ω◦X) ∼= Hn−i(X,F)∨ ⇐⇒ Hi(X,F(−q)) = 0 for all F locally free, i < n, q � 0,

⇐⇒ X is CM and equidimensional.

Proof: Natural maps Exti(F , ω◦X)→ Hn−i(X,F)∨ exist, as Exti(−, ω◦X) : Coh(X)→ Mod is a coeffaceable δ-functor
for every i > 0, hence universal by Lemma 2.5.5. Indeed, by Lemma 2.5.8, we have a surjection

N⊕
j=1

OX(−q)︸ ︷︷ ︸
E

u−−→ F → 0, (2)

for which

Exti(E , ω◦X) =

N⊕
j=1

Exti(OX(−q), ω◦X) =

N⊕
j=1

Exti(OX , ω◦X(q)) = 0

for i > 0. The first equality was distributing Exti over the sum and the second was by applying property 2.5.2.2.
Hence Exti(−, ω◦X)(u) = 0 for i > 0, so the functor is coeffeaceable for i > 0, and so universal. By Definition 2.5.3
there exist maps generalizing the map Ext0 from Definition 2.5.7.

First iff ⇐: Since universal δ-functors are unique (up to isomorphism), we show Hn−i(X,−)∨ : Coh(X)→ Mod
is also universal contravariant, which follows as it is coeffaceable for i > 0. Using the same sequence and sheaf as in
equation (2), we have that

Hn−i(X, E) =

N⊕
j=1

Hn−i(X,OX(−q)) = 0
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whenever n − i < n by hypothesis, or equivalently, when i > 0. The dual module is then also zero for i > 0, so we
are done.

First iff ⇒: Assume the hypothesis with index n− i and a locally free sheaf F(−q) for q � 0, for which

Hi(X,F(−q))∨ ∼= Extn−i(F(−q), ω◦X) (hypothesis)

∼= Extn−i(OX ,F∨ ⊗OX(q)⊗ ω◦X) (property 2.5.2.2)

∼= Hn−i(X, (F∨ ⊗ ω◦X)⊗OX(q)). (property 2.5.2.1)

Tensoring with OX(q) is twisting by q, and Lemma 2.5.6 says that Hn−i(X,G(q)) = 0 for G coherent, for all n−i > 0,
for q large enough. So for i < n and q large enough Hi(X,F(−q))∨ = 0, and so its dual, the original cohomology
group, is also trivial.

Second iff ⇐: Embed X ↪→ PN . As X is Cohen–Macaulay and equidimensional of dimension n, for F locally
free on X, a stalk Fx of a closed point x ∈ X has depth n. Also, Fx ⊂ OPN ,x, and OPn,x is regular as PN is smooth
over k. By Lemma 2.5.10.2, we have that

pd(Fx) + n 6 pd(OPN ,x) + n = N,

so Lemma 2.5.10.1 and property 2.5.2.3 gives us that, for i > N − n,

Exti(Fx,−) = 0 =⇒ Exti(Fx,−) = 0 =⇒ Exti(F ,−) = 0.

Applying Theorem 2.5.11, property 2.5.2.4, and letting the functor Exti(F ,−) act on ωPN (q), we have

Hi(X,F(−q))∨ ∼= ExtN−iPn (F , ωPN (q)) ∼= Γ(PN , ExtN−i
PN

(F , ωPn(q))) ∼= Γ(PN , 0) = 0

for q � 0 and N − i > N − n, or i < n. Since the dual is trivial, the cohomology group Hi(X,F(−q)) is also trivial.

Second iff ⇒: Omitted (techniques are similar to previous step, but use many others not used elsewhere). �

Addendum

In certain cases, Serre duality holds for the canonical sheaf instead of the dualizing sheaf.

Proposition 2.5.13. For X a smooth projective variety over k = k, ω◦X
∼= ωX .

References: Grothendieck (Tohoku paper), Hartshorne (Algebraic Geometry, Section III.7), Weibel (An intro-
duction to homological algebra, Section 2.1), Matsumura (Commutative algebra, Chapter 6)

2.6 The Fubini–Study metric and length in projective space

2017-03-05

Keywords: metric, Fubini–Study, Hermitian, Riemannian, projective, distance, paths

In this post we inspect how the Fubini–Study metric works and compute an example. Thanks to Professor Mihai
Păun for helpful discussions. Recall that from projective space Pn there are natural maps

[x0 : x1 : · · · : xn]
ϕi−−→

(
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
for i = 0, . . . , n. The maps land in Cn with coordinates (z1, z2, . . . , zn). We use ϕ0 as the main map, and conflate
notation for objects in Pn and in Cn under ϕ0. Most of this post deals with the n = 2 case.
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The metric

The metric used on Pn is the Fubini–Study metric. Directly from Section 3.1 of Huybrechts, for n = 2 the associated
differential 2-form and its image in C2 are

ω =
i

2π
∂∂̄ log

(
1 +

∣∣∣∣x1

x0

∣∣∣∣2 +

∣∣∣∣x2

x0

∣∣∣∣2
)
,

ϕ0(ω) =
i

2π
∂∂̄ log

(
1 + |z1|2 + |z2|2

)
=

i

2π(1 + |z1|2 + |z2|2)2︸ ︷︷ ︸
λ2

2∑
k,`=1

(1 + |z1|2 + |z2|2)δk` − zkz`︸ ︷︷ ︸
χk`

dzk ∧ dz`. (3)

A Hermitian metric on a complex manifold X may be described as a 2-tensor h = g − iω, where g is a Riemannian
metric (also a 2-tensor) on the underlying real manifold and ω is a Kähler form, a 2-form. As in Lemma 3.3 of
Voisin, the relationship between g and ω is given by

g(u, v) = ω(u, Iv) = ω(Iu, v), (4)

where I : TxX → TxX is a tangent space endomorphism defined by

I|T 1,0
x X = i · id,
∂
∂zi

7→ i ∂∂zi ,

I|T 0,1
x X = −i · id,
∂
∂zi

7→ −i ∂∂zi ,

as in Proposition 1.3.1 of Huybrechts.

An application

Let γ : [0, 1] → C2 be a path, described as γ(t) = (γ1(t), γ2(t)). Writing γ1 = u1 + iv1, with u1 = Re(γ1) and
v1 = im(γ1), the derivative of γ1 with respect to t is given by

dγ1

dt
=
du1

dt

∂

∂x1
+ i

dv1

dt

∂

∂y1
=
du1

dt

(
∂

∂z1
+

∂

∂z1

)
+ i

dv1

dt

(
∂

∂z1
− ∂

∂z1

)
=

(
du1

dt
+ i

dv1

dt

)
︸ ︷︷ ︸

γ′1

∂

∂z1
+

(
du1

dt
− idv1

dt

)
︸ ︷︷ ︸

γ′1

∂

∂z1
,

and analogously for γ2. Hence
dγ

dt
= γ′1

∂

∂z1
+ γ′1

∂

∂z1
+ γ′2

∂

∂z2
+ γ′2

∂

∂z2
. (5)

The length of γ is ∫ 1

0

√
g

(
dγ

dt
,
dγ

dt

)
dt =

∫ 1

0

√
ω

(
dγ

dt
, I
dγ

dt

)
dt,

using equation (4). Recall that the pairing of vectors with covectors is given by

(dα1 ∧ · · · ∧ dαn)

(
∂

∂β1
, . . . ,

∂

∂βn

)
= det


dα1

∂
∂β1

dα1
∂
∂β2

· · · dα1
∂
∂βn

dα2
∂
∂β1

dα2
∂
∂β2

· · · dα2
∂
∂βn

...
...

. . .
...

dαn
∂
∂β1

dαn
∂
∂β2

· · · dαn
∂
∂βn

 = det

(
dαi

∂

∂βj

)
,

for αi, βj a basis of the underlying real manifold (as in the previous post “Vector fields,” 2016-10-10). The components
of the vector (5) may be viewed as given in directions z1, z1, z2, z2, respectively, which also indicates how the coefficient
functions χk` act on (5). Apply the definition of ω from equation (3), and note that we are always at the tangent
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space to the point γ(t) = (γ1(t), γ2(t)), to get that

ω

(
dγ

dt
, I
dγ

dt

)
= λ2(γ(t))

2∑
k,`=1

χk`(γ(t))dzk ∧ dz`
(
γ′1

∂

∂z1
+ γ′1

∂

∂z1
+ γ′2

∂

∂z2
+ γ′2

∂

∂z2
, iγ′1

∂

∂z1
− iγ′1

∂

∂z1
+ iγ′2

∂

∂z2
− iγ′2

∂

∂z2

)

= λ2(γ(t))

2∑
k,`=1

χk`(γ(t)) det

[
γ′k(t) iγ′k(t)

γ′`(t) −iγ′`(t)

]

=
(1 + |γ2(t)|2)|γ′1(t)|2 − γ1(t)γ2(t)γ′1(t)γ′2(t)− γ2(t)γ1(t)γ′2(t)γ′1(t) + (1 + |γ1(t)|2)|γ′2(t)|2

π
(

1 + |γ1(t)|2 + |γ2(t)|2
)2 .

Unfortunately this expression does not simplify too much. In Pn, with γ = (γ1, . . . , γn) : [0, 1]→ Cn, we have that

g

(
dγ

dt
,
dγ

dt

)
= λn(γ(t))

n∑
k,`=1

χk`(γ(t)) det

[
γ′k(t) iγ′k(t)

γ′`(t) −iγ′`(t)

]
.

An example

Here we compute the distance between two points in P2. Let γ be the straight line segment connecting p = [p0 : p1 :
p2] and q = [q0 : q1 : q2]. The word “straight” is used loosely, and means the segment may be parametrized as

γ(t) = [(1− t)p0 + tq0 : (1− t)p1 + tq1 : (1− t)p2 + tq2],

so γ(0) = p and γ(1) = q. The image of γ under ϕ0 and its derivative are given by

ϕ0(γ(t)) =

(
(1− t)p1 + tq1

(1− t)p0 + tq0
,

(1− t)p2 + tq2

(1− t)p0 + tq0

)
= (γ1, γ2), γ′i =

qip0 − q0pi
((1− t)p0 + tq0)2

.

If, for example, p = [1 : 1 : 0] and q = [1 : 0 : 1], then

length(γ) =
3

4π

∫ 1

0

1

(t2 − t+ 1)2
dt =

9 + 2π
√

3

18π
.

A further goal is to consider the path γ as lying on a projective variety, beginning with a complete intersection.
This would allow some of the dzi to be expressed in terms of other dzj .

References: Huybrechts (Complex geometry, Section 3.1), Voisin (Hodge theory and complex algebraic geometry
1, Chapter 3.1), Wells (Differential analysis on complex manifolds, Chapter V.4)

2.7 Lengths of paths on projective varieties

2017-03-15

Keywords: metric, Fubini–Study, curve, variety, projective, distance, paths, complete intersection

This post contains calculations that continue on the ideas from the previous post “Fubini–Study metric,” 2017-
03-05. First we suppose that γ lies on a curve C ⊂ P2, with the curve defined as the zero locus of a polynomial P .
Taking the derivative of P on C2 gives Pz1dz1 + Pz2dz2 = 0, which can be manipulated to give

dz2 =
−Pz1
Pz2

dz1,
∂

∂z2
=
−Pz2
Pz1

∂

∂z1
,

dz2 =
−Pz1
Pz2

dz1,
∂

∂z2
=
−Pz2
Pz1

∂

∂z1
.
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Using the above and equation (5) from the previous post, for e = ∂
∂z1

+ ∂
∂z1

+ ∂
∂z2

+ ∂
∂z2

, we get

dγ

dt
=

(
γ′1 −

Pz2
Pz1

γ′2

)
∂

∂z1
+

(
γ′1 −

Pz2
Pz1

γ′2

)
∂

∂z1 2∑
k,`=1

χk`(γ)dzk ∧ dz`

 (e, e) = 1 + |γ2|2 +
Pz1
Pz2

γ1γ2 +
Pz1
Pz2

γ1γ2 +

∣∣∣∣Pz1Pz2

∣∣∣∣2 (1 + |γ1|2
)

= 1 +

∣∣∣∣Pz1Pz2

∣∣∣∣2 +

∣∣∣∣Pz1Pz2
γ1 + γ2

∣∣∣∣2 ,
(dz1 ∧ dz1)

(
dγ

dt
, I
dγ

dt

)
= det

γ′1 − Pz2
Pz1

γ′2 i
(
γ′1 −

Pz2
Pz1

γ′2

)
γ′1 −

Pz2
Pz1

γ′2 −i
(
γ′1 −

Pz2
Pz1

γ′2

)
 = −2i

∣∣∣∣γ′1 − Pz2
Pz1

γ′2

∣∣∣∣2 .
Hence

g

(
dγ

dt
,
dγ

dt

)
=

(
1 +

∣∣∣Pz1Pz2

∣∣∣2 +
∣∣∣Pz1Pz2

γ1 + γ2

∣∣∣2) ∣∣∣γ′1 − Pz2
Pz1

γ′2

∣∣∣2
π (1 + |γ1|2 + |γ2|2)

2 .

Now we move to Pn, and consider X ⊂ Pn a complete intersection of codimension r, or the zero set of polynomials
P1 = 0, . . . , Pr = 0. Expressing some covectors in terms of others reduces the number of determinants we calculated
above from 2n to 2(n− r). Then

P1,z1dz1 + · · ·+ P1,zndzn = 0, dzn = cn,1dz1 + · · ·+ cn,n−rdzn−r,

...
...

Pr,z1dz1 + · · ·+ Pr,zndzn = 0, dzn−r+1 = cn−r+1,1dz1 + · · ·+ cn−r+1,n−rdzn−r,

for the ci,j some combinations of the Pk,z` . By orthonormality of the basis vectors, and assuming that the ci,j are
all non-zero, we find

∂

∂zi
=

n−r∑
j=1

1

(n− r)ci,j
∂

∂zj
,

∂

∂zi
=

n−r∑
j=1

1

(n− r)ci,j
∂

∂zj
,

for all integers n− r < i 6 n. This allows us to rewrite the path derivative as

dγ

dt
=

n∑
i=1

γ′i
∂

∂zi
+ γ′i

∂

∂zi

=

n−r∑
i=1

(
γ′i

∂

∂zi
+ γ′i

∂

∂zi

)
+

n∑
i=n−r+1

n−r∑
j=1

γ′i
(n− r)ci,j

∂

∂zj
+

n−r∑
j=1

γ′i
(n− r)ci,j

∂

∂zj


=
n−r∑
i=1

γ′i +

n∑
j=n−r+1

γ′j
(n− r)cj,i

 ∂

∂zi
+

γ′i +
n∑

j=n−r+1

γ′j
(n− r)cj,i

 ∂

∂zi
.

In the case of a curve in Pn, when r = n− 1, let c1,1 = 1 and e = ∂
∂z1

+ ∂
∂z1

+ · · ·+ ∂
∂zn

+ ∂
∂zn

to get

dγ

dt
=

 n∑
j=1

γ′j
cj1

 ∂

∂z1
+

 n∑
j=1

γ′j
cj1

 ∂

∂z1
,

 n∑
k,`=1

χk`(γ)dzk ∧ dz`

 (e, e) =

n∑
k,`=1

(
1 +

n∑
i=1

|γi|2
)
δk` − γkc`1γ`ck1,

(dz1 ∧ dz1)

(
dγ

dt
, I
dγ

dt

)
= det

∑n
j=1

γ′j
cj1

i
∑n
j=1

γ′j
cj1∑n

j=1

γ′j
cj1

−i
∑n
j=1

γ′j
cj1

 = −2i

∣∣∣∣∣∣
n∑
j=1

γ′j
cj1

∣∣∣∣∣∣
2

.

Hence

g

(
dγ

dt
,
dγ

dt

)
=

(∑n
k,`=1

(
1 +

∑n
i=1 |γi|2

)
δk` − γkc`1γ`ck1

) ∣∣∣∑n
j=1

γ′j
cj1

∣∣∣2
π (1 +

∑n
i=1 |γi|2)

2 .



58

The terms γkc`1γ`ck1 may be rearranged into terms |γkc`1−γ`ck1|2, but it does not provide any enlightening results,
similarly to the rest of this post.

2.8 Sheaves, derived and perverse

2017-12-05

Keywords: sheaf, direct image, inverse image, support, derived category, derived functor, derived sheaf, cohomology
sheaf, constructible sheaf, perverse sheaf, complex

Let X,Y be topological spaces and f : X → Y a continuous map. We let Shv(X) be the category of sheaves on
X, D(Shv(X)) the derived category of sheaves on X, and Db(Shv(X)) the bounded variant. Recall that D(A) for
an abelian category A is constructed first by taking C(A), the category of cochains of elements of A, quotienting by
chain homotopy, then quotienting by all acylic chains.

Remark 2.8.1. Let F ∈ Shv(X). Recall:

• a section of F is an element of F(U) for some U ⊆ X,

• a germ of F at x ∈ X is an equivalence class in {s ∈ F(U) : U 3 x}/ ∼x,

• s ∼x t iff every neighborhood W of x in U ∩ V has s|W = t|W , for s ∈ F(U), t ∈ F(V ),

• the support of the section s ∈ F(U) is supp(s) = {x ∈ U : s �x 0},

• the support of the sheaf F is supp(F) = {x ∈ X : Fx 6= 0}.

Definition 2.8.2. The map f induces functors between categories of sheaves, called

direct image f∗ : Shv(X) → Shv(Y ),
(U 7→ F(U)) 7→ (V 7→ F(f−1(V ))),

inverse image f∗ : Shv(Y ) → Shv(X),

(V 7→ G(V )) 7→ sh

(
U 7→ colim

V⊇f(U)
G(V )

)
,

direct image with compact support f! : Shv(X) → Shv(Y ),
(U 7→ F(U)) 7→

(
V 7→

{
s ∈ F(f−1(V )) : f |supp(s) is proper

})
.

Above we used that f : X → Y is proper if f−1(K) ⊆ X is compact, for every K ⊆ Y compact. Next, recall
that a functor ϕ : A → B induces a functor Rϕ : D(A) → D(B), called the (first) derived functor of ϕ, given by
Rϕ(A•) = H1(ϕ(A)•).

Remark 2.8.3. Each of the maps f∗, f
∗, f! have their derived analogues Rf∗, Rf

∗, Rf!, respectively. For reasons
unclear, Rf! has a right adjoint, denoted Rf ! : D(Shv(Y )) → D(Shv(X)). This is called the exceptional inverse
image.

We are now ready to define perverse sheaves.

Definition 2.8.4. Let A• ∈ D(Shv(X)). Then:

• the ith cohomology sheaf of A• is Hi(A•) = ker(di)/im(di),

• A• is a constructible complex if Hi(A•) is a constructible sheaf for all i,

• A• is a perverse sheaf if A• ∈ Db(Shv(X)) is constructible and dim(supp(H−i(P ))) 6 i for all i ∈ Z and for
P = A• and P = (A•)∨ = (A∨)• the dual complex of sheaves.

We finish off with an example.
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Example 2.8.5. Let X = R be a stratified space, with X0 = 0 the origin and X1 = R \ 0. Let F ∈ Shv(X) be an
R-valued sheaf given by F(U) = infx∈U |x|, and define a chain complex A• in the following way:

0 −→ A−1 = F d−1=id−−−−−−→ A0 = F d0=0−−−−→ 0.

Note that for any U ⊆ R, we have H−1(A•)(U) = ker(d−1)(U) = ker(id : F(U) → F(U)) = ∅ if 0 6∈ U , and 0
otherwise. Hence supp(H−1(A•)) = R \ 0, whose dimension is 1. Next, H0(A•)(U) = ker(d0)(U)/im(d−1)(U) =
ker(0 : F(U) → 0)/im(id : F(U) → F(U)) = F(U)/F(U) = 0, and so dim(supp(H0(A•))) = 0. Note that A• is
self-dual and constructible, as the cohomology sheaves are locally constant. Hence A• is a perverse sheaf.

References: Bredon (Sheaf theory, Chapter II.1), de Catalado and Migliorini (What is... a perverse sheaf?),
Stacks project (Articles “Supports of modules and sections” and “Complexes with constructible cohomology”)
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3 Differential geometry

3.1 Smooth projective varieties as Kähler manifolds

06-16-2016

Keywords: manifold, variety, complex, metric, structure, fundamental form, Riemannian, Hermitian, Kähler

Definition 3.1.1. Let k be a field and Pn projective n-space over k. An algebraic variety X ⊂ Pn is the zero locus
of a collection of homogeneous polynomials fi ∈ k[x0, . . . , xn].

Here we let k = C, the complex numbers. Complex projective space CPn may be described as a complex
manifold, with open sets Ui = {(x0 : · · · : xn) : xi 6= 0} and maps

ϕi : Ui → Cn,

(x0 : · · · : xn) 7→
(
x0

xi
, . . . , x̂ixi , . . . ,

xn
xi

)
,

which can be quickly checked to agree on overlaps. In this context we assume all varieties are smooth, so they are
submanifolds of CPn.

Definition 3.1.2. An almost complex manifold is a real manifold M together with a vector bundle endomorphism
J : TM → TM (called a complex structure) with J2 = −id.

Note that every complex manifold admits an almost complex structure on its underlying real manifold. Indeed,
given standard coordinates zi = xi + yi for i = 1, . . . , n on Cn, we get a basis ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn
on the underlying real tangent space TpU , for p ∈M and U 3 p a neighborhood. Then J is defined by

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi
.

Write TCM = TM ⊗R C for the complexification of the tangent bundle, which admits a canonical decomposition
TCM = T 1,0M ⊕ T 0,1M , where J |T 1,0 = i · id and J |T 0,1 = (−i) · id. We call T 1,0M the holomorphic tangent bundle
of M and T 0,1M the antiholomorphic tangent bundle of M , even though it is extraneous to consider any related
map here as holomorphic. Define vector bundles (or sheaves, to consider sections on open sets)

AkM =
∧k

(TCM)∗, Ap,qM =
∧p

(T 1,0M)∗ ⊗C

∧q
(T 0,1M)∗,

where we drop the subscript M when the context makes it clear. There is a canonical decomposition Ak =⊕
p+q=k A

p,q, which yields projection maps πp,q : Ak → Ap,q. The exterior differential d on T ∗M may be extended

C-linearly to (TCM)∗, and hence also to Ak. Define two new maps

∂ = πp+1,q ◦ d|Ap,q : Ap,q → Ap+1,q,

∂̄ = πp,q+1 ◦ d|Ap,q : Ap,q → Ap,q+1.

These satisfy the Leibniz rule and (under mild assumptions) ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.

From now on, the manifold M will be complex with the natural complex structure described above.

Definition 3.1.3. A Riemannian metric on M is a function g : TM ×TM → C∞(M) such that for all V,W ∈ TM ,
· g(V,W ) = g(W,V ), and
· gp(Vp, Vp) > 0 for all p ∈M , with equality iff V = 0.

A Riemannian manifold is a pair (M, g) where g is Riemannian.

Locally we write gp : TpM×TpM → R, defined as gp(Vp,Wp) = g(V,W )(p). If x1, . . . , xn are local coordinates on
some open set U ⊂ M , then g =

∑
i,j gijdxi ∧ dxj ∈ A2(M), for gij = g( ∂

∂xi
, ∂
∂xj

) ∈ C∞(U). Writing V =
∑
i fi

∂
∂xi

and W =
∑
j gj

∂
∂xj

, we get the local expression

gp(Vp,Wp) =
∑
i,j

gij(p)fi(p)gj(p).
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Definition 3.1.4. A Hermitian metric on a complex manifold M is a Riemannian metric g such that g(JV, JW ) =
g(V,W ) for all V,W ∈ TM . A Hermitian manifold is a pair (M, g) where g is Hermitian.

There is an induced form ω : TM × TM → C∞(M) given by ω(V,W ) = g(JV,W ), called the fundamental form.
From g being Hermitian it follows that ω ∈ A1,1(M) ⊂ A2(M). Note also that any two of the structures J, g, ω
determine the remaining one.

Definition 3.1.5. A Kähler metric on a complex manifold M is a Hermitian metric whose fundamental form is
closed (that is, dω = 0). A Kähler manifold is a pair (M, g) where g is Kähler.

Example 3.1.6. Recall the atlas given to CPn above. There is a metric (canonical in some sense) on each Uj given
by

ωj =
i

2π
(∂ ◦ ∂̄)

(
log

(
n∑
`=0

x`xj
2
))

,

called the Fubini–Study metric. Each ωj is a section of A1,1(Uj), and as a quick calculation shows that ωj |Uj∩Uk =
ωk|Uj∩Uk , there is a global metric ωFS ∈ A1,1(CPn) such that ωFS |Uj = ωj for all j.

Hence CPn is a Kähler manifold. If we have a smooth projective variety X ⊂ CPn, then it is a submanifold of
CPn, so by restricting ωFS to X, we get that X is also a Kähler manifold. Therefore all smooth projective varieties
are Kähler.

References: Huybrechts (Complex Geometry, Chapters 1.3, 2.6, 3.1), Lee (Riemannian manifolds, Chapter 3)

3.2 Connections, curvature, and Higgs bundles

07-25-2016

Keywords: manifold, connection, curvature, curvature tensor, holomorphic vector bundle, sheaf, differential forms,
cotangent sheaf, Higgs bundle, Higgs, Riemannian, Hermitian, Kähler, Ricci, Einstein

Recall (from a previous post) that a Kähler manifold M is a complex manifold (with natural complex structure
J) with a Hermitian metic g whose fundamental form ω is closed. In this context M is Kähler. Previously we used
upper-case letters V,W to denote vector fields on M , but here we use lower-case letters s, u, v and call them sections
(to consider vector bundles more generally as sheaves).

Definition 3.2.1. A connection on M is a C-linear homomorphism ∇ : A0
M → A1

M satisfying the Leibniz rule
∇(fs) = (df) ∧ s+ f∇(s), for s a section of TM and f ∈ C∞(M).

For ease of notation, we often write ∇us for ∇(s)(u), where s, u are sections of TM . On Kähler manifolds there
is a special connection that we will consider.

Proposition 3.2.2. On M there is a unique connection ∇ that is (for any u, v ∈ A0
M )

1. Hermitian (satisfies dg(u, v) = g(∇(u), v) + g(u,∇(v))),
2. torsion-free (satisfies ∇uv −∇vu− [u, v] = 0), and
3. compatible with the complex structure J (satisfies ∇uv = ∇Ju(Jv)).

If ∇ satisfies the first two conditions, it is called the Levi-Civita connection, and if it satisfies the first and third
conditions, it is called the Chern connection. If g is not necessarily Hermitian, ∇ is called metric if it satisfies the
first condition. From here on out ∇ denotes the unique tensor described in the proposition above.

Definition 3.2.3. The curvature tensor of M is defined by

R(u, v) = ∇u∇v −∇v∇u −∇[u,v].

It may be viewed as a map A2 → A1, or A3 → A0, or A0 → A0. The Ricci tensor of M is defined by

r(u, v) = trace(w 7→ R(u, v)w) =
∑
i

g(R(ai, u)v, ai),

for the ai a local orthonormal basis of A0 = TM . This is a map A2 → A0. The Ricci curvature of M is defined by

Ric(u, v) = r(Ju, v).

This is a map A2 → A0.



62

Definition 3.2.4. An Einstein manifold is a pair (M, g) that is Riemannian and for which the Ricci curvature is
directly proportional to the Riemannian metric. That is, there exists a constant λ ∈ R such that Ric(u, v) = λg(u, v)
for any u, v ∈ A1.

Recall that a holomorphic vector bundle π : E →M has complex fibers and holomorphic projection map π. Here
we consider two special vector bundles (as sheaves), defined on open sets U ⊂M by

End(E)(U) = {f : π−1(U)→ π−1(U) : f |π−1(x) is a homomorphism},

ΩM (U) =

{
n∑
i=0

fidz1 ∧ · · · ∧ dzi : fi ∈ C∞(U)

}
,

where z1, . . . , zn are local coordinates on U . The first is the endomorphism sheaf of E and the second is the sheaf
of differential forms of M , or the holomorphic cotangent sheaf. The cotangent sheaf as defined is a presheaf, so we
sheafify to get ΩM .

Definition 3.2.5. A Higgs vector bundle over a complex manifold M is a pair (E, θ), where π : E → M is a
holomorphic vector bundle and θ is a holomorphic section of End(E)⊗ ΩM with θ ∧ θ = 0, called the Higgs field.

References: Huybrechts (Complex Geometry, Chapters 4.2, 4.A), Kobayashi and Nomizu (Foundations of Differ-
ential Geometry, Volume 1, Chapter 6.5)

3.3 Higgs fields of principal bundles

2016-08-24

Keywords: principal bundle, fiber bundle, adjoint representation, associated bundle, Lie group, Lie algebra, differen-
tial forms, conjugate, Higgs field, Higgs

The goal here is to understand the setting of Higgs fields on Riemannian manifolds, in the manner of Hitchin.
First we consider general topological spaces X and groups G.

Definition 3.3.1. Let X be a topological space and G a group. A principal bundle (or principal G-bundle) P over
X is a fiber bundle π : P → X together with a continuous, free, and transitive right action P ×G→ P that preserves
the fibers. That is, if p ∈ π−1(x), then pg ∈ π−1(x) for all g ∈ G and x ∈ X.

Now suppose we have a principal bundle π : P → X, a representation ρ of G, and another space Y on which G
acts on the left. Define an equivalence relation (p, y) ∼ (p′, y′) on P × Y iff there is some g ∈ G for which p′ = pg
and y′ = ρ(g−1)y. This is an equivalence relation. We will be interested in the adjoint representation (induced by
conjugation).

Proposition 3.3.2. The projection map π′ : P ×ρ Y := (P × Y )/ ∼ → X, where π′([p, y]) = π(p), defines a vector
bundle over X, called the associated bundle of P .

Recall a Lie group G is a group that is also a topological space, in the sense that there is a continuous map
G × G → G, given by (g, h) 7→ gh−1. The Lie algebra g of the Lie group G is the tangent space TeG of G at the
identity e. We will be interested in principal G-bundles P → R2 and associated bundles P ×ad g→ R2, where ad is
the adjoint representation of G.

Next, recall we had the space AkM of k-differential forms on M (see post “Smooth projective varieties as Kähler
manifiolds,” 2016-06-16), defined in terms of wedge products of elements in the cotangent bundle (TM)∗ = T ∗M of
M . Now we generalize this to get differential forms over arbitrary vector bundles.

Definition 3.3.3. Let E →M be a vector bundle. Let

AkM (E) := Γ(E ⊗
∧k

T ∗M) = Γ(E)⊗A0
M
AkM ,

Ap,qM (E) := Γ(E ⊗
∧p

(T 1,0M)∗ ⊗
∧q

(T 0,1M)∗) = Γ(E)⊗A0
M
Ap,qM

be the spaces of k- and (p, q)-differential forms, respectively, over M with values in E.
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Equality above follows by functoriality. Now we are close to understanding where exactly the Higgs field lives, in
Hitchin’s context.

Definition 3.3.4. Given a function f : C→ C, the conjugate of f is f̄ , defined by f̄(z) = f(z̄).

Hitchin denotes this as f∗, but we will stick to f̄ . Finally, let P be a G-principal bundle over R2 and P ×ad g
the associated bundle of P . Given f ∈ A0

R2((P ×ad g)⊗C), set

θ = 1
2f(dx+ i dy) ∈ A1,0

R2((P ×ad g)⊗C),

θ∗ = 1
2 f̄(dx− i dy) ∈ A0,1

R2((P ×ad g)⊗C),

called a Higgs field over R2 and (presumably) a dual (or conjugate) Higgs field over R2. Note this agrees with the
definition in a previous post (“Connections, curvature, and Higgs bundles,” 2016-07-25).

References: Hitchin (Self-duality equations on a Riemann surface), Wikipedia (article on associated bundles,
article on vector-valued differential forms)

3.4 Equations on Riemann surfaces

2016-08-25

Keywords: Riemann surface, connection, curvature, Hodge star, Hitchin, Yang–Mills, Higgs, Higgs field, manifold

Recall that a Riemann surface is a complex 1-manifold M with a complex structure Σ (a class of analytically
equivalent atlases on X). Here we consider equations that relate connections and Higgs fields with solutions on Rie-
mann surfaces. Let G = SU(2) (complex 2-matrices with determinant 1) or SO(3) (real 3-matrices with determinant
1), θ a Higgs field over M , and P a principal G-bundle over M .

Definition 3.4.1. The curvature of a principal G-bundle P is the map

F∇ : A0
M (P ) → A2

M (P ),
ωs 7→ (d∇ ◦ ∇)(ωs),

where the extension d∇ : AkM (P )→ Ak+1
M (P ) is defined by the Leibniz rule, that is d∇(ω⊗s) = (dω)⊗s+(−1)kω∧∇s,

for ω a k-form and s a smooth section of P .

Since we may write A1 = A1,0⊕A0,1 as the sum of its holomorphic and anti-holomorphic parts, respectively (see
post “Smooth projective varieties as Kähler manifolds,” 2016-06-16), we may consider the restriction of d∇ to either
of these summands.

Definition 3.4.2. For a vector space V , define the Hodge star ∗ by

∗ :
∧k

(V ∗) →
∧n−k

(V ∗),
ei1 ∧ · · · ∧ eik 7→ ej1 ∧ · · · ∧ ejn−k ,

so that ei1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ejn−k = e1 ∧ · · · ∧ en. Extend by linearity from the chosen basis.

The dual of the generalized connection d∇ is written d∗∇ = (−1)m+mk+1 ∗ d∇∗, where dim(M) = m and the
argument of d∗∇ is in AkM (this holds for manifolds M that are not necessarily Riemann surfaces as well).

Now we may understand some equations on Riemann surfaces. They all deal with the connection ∇, its general-
ization d∇, its curvature F∇, and the Higgs field θ. Below we indicate their names and where they are mentioned
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(and described in further detail).

Hitchin equations d∇|A0,1 θ = 0 [2], Introduction

F∇ + [θ, θ∗] = 0

Yang–Mills equations d∗∇d∇θ + ∗[∗F∇, θ] = 0 [1], Section 4

d∗∇θ = 0

self-dual Yang–Mills equation F∇ − ∗F∇ = 0 [2], Section 1

Yang–Mills–Higgs equations d∇ ∗ F∇ + [θ, d∇θ] = 0 [4], equation (1)

d∇ ∗ d∇θ = 0

Recall the definitions of θ and θ∗ from a previous post (“Higgs fields of principal bundles,” 2016-08-24). Now
we look at these equations in more detail. The first of the Hitchin equations says that θ has no anti-holomorphic
component, or in other words, that θ is holomorphic. In the second equation, the Lie bracket [·, ·] of the two 1-forms
is

[θ, θ∗] =
[

1
2f(dz + i dy), 1

2 f̄(dz − i dy)
]

= − i
4ff̄ dx ∧ dy + i

4ff̄ dy ∧ dx−
i
4ff̄ dx ∧ dy + i

4ff̄ dy ∧ dx
= −i|f |2 dx ∧ dy.

In the Yang–Mills and Yang–Mills-Higgs equations, we can simplify some parts by noting that, for a section s of the
complexification of P ×ad g,

d∇(θ ⊗ s) = 1
2d∇(fdx⊗ s) + i

2d∇(fdy ⊗ s)
= 1

2 (df ∧ dx⊗ s− fdx ∧∇s) + i
2 (df ∧ dy − fdy ∧∇s)

=

(
i

2

∂f

∂x
− 1

2

∂f

∂y

)
dx ∧ dy ⊗ s− 1

2f(dx+ idy)︸ ︷︷ ︸
θ

∧∇s.

The Hodge star of θ is ∗θ = 1
2f(dy − idx), so

d∇ ∗ (θ ⊗ s) = 1
2d∇(fdy ⊗ s)− i

2d∇(fdx⊗ s)
= 1

2 (df ∧ dy ⊗ s− fdy ∧∇s)− i
2 (df ∧ dx− fdx ∧∇s)

=

(
1

2

∂f

∂x
+
i

2

∂f

∂y

)
dx ∧ dy ⊗ s+ 1

2f(idx− dy)︸ ︷︷ ︸
iθ

∧∇s.

We could express ∇s = (s1dx+ s2dy)⊗ s1, but that would not be too enlightening. Next, note the self-dual Yang–
Mills equation only makes sense over a (real) 4-dimensional space, since the degrees of the forms have to match up.
In that case, with a basis dz1 = dx1 + idy1, dz2 = dx2 + idy2 of A1, we have

F∇ = F12dx1 ∧ dy1 + F13dx1 ∧ dx2 + F14dx1 ∧ dy2 + F23dy1 ∧ dx2 + F24dy1 ∧ dy2 + F34dx2 ∧ dy2,

∗F∇ = F12dx2 ∧ dy2 − F13dy1 ∧ dy2 + F14dy1 ∧ dx2 + F23dx1 ∧ dy2 − F24dx1 ∧ dx2 + F34dx1 ∧ dy1.

Then the self-dual equation simply claims that

F12 = F34 , F13 = −F24 , F14 = F23.

Remark 3.4.3. This title of this post promises to talk about equations on Riemann surfaces, yet all the differential
forms are valued in a principal G-bundle over R2 (or R4). However, since the given equations are conformally
invariant (this is not obvious), and as a Riemann surface locally looks like R2, we may consider the solutions to the
equations as living on a Riemann surface.
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References:
[1] Atiyah and Bott (The Yang–Mills equations over Riemann surfaces)
[2] Hitchin (Self-duality equations on a Riemann surface)
[3] Huybrechts (Complex Geometry, Chapter 4.3)
[4] Taubes (On the Yang–Mills–Higgs equations)

3.5 The Grassmannian is a complex manifold

2016-09-22

Keywords: Grassmannian, manifold, complex

Let Gr(k,Cn) be the space of k-dimensional complex subspaces of Cn, also known as the complex Grassmannian.
We will show that it is a complex manifold of dimension k(n− k). Thanks to Jinhua Xu and professor Mihai Păun
for explaining the details.

To begin, take P ∈ Gr(k,Cn) and an n− k subspace Q of Cn, such that P ∩Q = {0}. Then P ⊕Q = Cn, so we
have natural projections

Cn

P Q.

πP πQ

A neighborhood of P , depending on Q may be described as UQ = {S ∈ Gr(k,Cn) : S ∩Q = {0}}. We claim that
UQ ∼= Hom(P,Q). The isomorphism is described by

Hom(P,Q) → UQ,
A 7→ {v +Av : v ∈ P},

(πQ|S) ◦ (πP |S)
−1 7→S.

The reverse map, call it ϕQ, is also the chart for the manifold structure. The idea of decomposing Cn into P and Q
and constructing a homomorphism from P to Q may be visualized in the following diagram.

P

Q

S
Cn x

πP (x)
πQ(x)

Then Hom(P,Q) ∼= Hom(Ck,Cn−k) ∼= Ck(n−k), so Gr(k,Cn) is locally of complex dimension k(n − k). To show
that there is a complex manifold structure, we need to show that the transition functions are holomorphic. Let
P, P ′ ∈ Gr(k,Cn) and Q,Q′ ∈ Gr(n − k,Cn) such that P ∩ Q = P ′ ∩ Q′ = {0}. Let X ∈ Hom(P,Q) such that
X ∈ ϕQ(UQ ∩ UQ′), with ϕQ(S) = X and ϕQ′(S) = X ′ for some S ∈ UQ ∩ UQ′ . Define IX(v) = v + Xv, and note
the transition map takes X to

X ′ = ϕQ′ ◦ ϕ−1
Q (X) (definition)

= ϕQ′(S) (assumption)

= (πQ′ |S) ◦ (πP ′ |S)
−1

(definition)

= (πQ′ |S) ◦ IX ◦ I−1
X ◦ (πP ′ |S)

−1
(creative identity)

= (πQ′ |S ◦ IX) ◦ (πP ′ |S ◦ IX)
−1

(redistribution)

= (πQ′ |P + πQ′ |Q ◦X) ◦ (πP ′ |P + πP ′ |Q ◦X) . (definition)
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At this last step we have compositions and sums of homomorphisms and linear maps, which are all holomorphic.
Hence the transition functions of Gr(k,Cn) are holomorphic, so it is a complex manifold.
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Part III

Topological data analysis

0.0 New directions in TDA

2017-08-03

Keywords: informal, TDA, persistence, functor, interleaving

This post is informal, meant as a collection of (personally) new things from the workshop “Topological data
analysis: Developing abstract foundations” at the Banff International Research Station, July 31 - August 4, 2017.
New actual questions:

1. Does there exist a constructible sheaf valued in persistence modules over Ran6n(M)?

• On the stalks it should be the persistence module of P ∈ Ran6n(M). What about arbitrary open sets?

• Is there such a thing as a colimit of persistence modules?

• Uli Bauer suggested something to do with ordering the elements of the sample and taking small open sets.

2. Can framed vector spaces be used to make the TDA pipeline functorial? Does Ezra Miller’s work help?

• Should be a functor from (R,6), the reals as a poset, to Vect or Vectfr, the category of (framed) vector
spaces. Filtration function f : Rn → R is assumed to be given.

• Framed perspective should not be too difficult, just need to find right definitions.

• Does this give an equivalence of categories (category of persistence modules and category of matchings)?
Is that what we want? Do we want to keep only specific properties?

• Ezra’s work is very dense and unpublished. But it seems to have a very precise functoriality (which is not
the main thrust of the work, however).

3. Can the Bubenik–de Silva–Scott interleaving categorification be viewed as a (co)limit? Diagrams are suggestive.

• Reference is 1707.06288 on the arXiv.

• Probably not a colimit, because that would be very large, though the arrows suggest a colimit.

• Have to be careful, because the (co)limit should be in the category of posets, not just interleavings.

New things to learn about:

1. Algebraic geometry / homotopy theory: the etale space of a sheaf, Kan extensions, model categories, symmetric
monoidal categories.

2. TDA related: Gromov–Hausdorff distance, the universal distance (Michael Lesnick’s thesis and papers), merge
trees, Reeb graphs, Mapper (the program).

1 Sampling and statistics

1.1 Reconstructing a manifold from sample data, with noise

2016-05-26

Keywords: TDA, manifold, sampling, statistics, probability, measure, normal distribution, multivariable, nerve

We follow the article [3] and add more background and clarifications. Some assumptions are made that are not
explicitly mentioned in the article, to make calculations easier.
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Background in probability, measure theory, topology

Let X be a random variable over a space A. Recall that the expression P (X) is a number in [0, 1] describing the
probability of the event X happening. This is called a probability distribution. Here we will consider continuous
random variables, so P (X = x) = 0 for any single element x ∈ A.

Definition 1.1.1. The probability density function of X is the function f : A→ R satisfying
· f(x) > 0 for all x ∈ A, and
·
∫
B
f(x) dx = P (X ∈ B) for any B ⊆ A.

The second condition implies
∫
A
f(x) dx = 1.

Often authors use just P instead of f , and write P (x) instead of P (X = x).

Definition 1.1.2. Let Y = g(X) be another random variable. The expected value of Y is

E[Y ] = E[g(X)] =

∫
A

g(x)f(x) dx.

The mean of X is µ := E[X], and the variance of X is σ2 := E[(X − µ)2]. If ~X = (X1 · · · Xn)T is a multivariate

random variable, then ~µ = E[ ~X] is an n-vector, and the variance is an (n× n)-matrix given as

Σ = E[( ~X − E[ ~X])( ~X − E[ ~X])T ] or Σij = E[(Xi − E[Xi])(Xj − E[Xj ])].

The covariance of X and Y is E[(X −E[X])(Y −E[Y ])]. Note that the covariance of X with itself is just the usual
variance of X.

Example 1.1.3. One example of a probability distribution is the normal (or Gaussian) distribution, and we say a
random variable with the normal distribution is normally distributed. If a random variable X is normally distributed
with mean µ and variance σ2, then the probability density function of X is

f(x) =
exp

(
− (x−µ)2

2σ2

)
σ
√

2π
.

If ~X = (X1 · · · Xn)T is a normally distributed multivariate random variable, then ~µ = (E[X1] · · · E[Xn])T and the

probability density function of ~X is

f(~x) =
exp

(
− 1

2 (~x− ~µ)TΣ−1(~x− ~µ)
)√

(2π)n det(Σ)
.

Definition 1.1.4. A measure on RD is a function m : {subsets of RD} → [0,∞] such that m(∅) = 0 and
m(
⋃
i∈I Ei) =

∑
i∈I m(Ei) for {Ei}i∈I a countable sequence of disjoint subsets of RD. A probability measure

on RD is a measure m on RD with the added condition that m(RD) = 1.

A probability distribution is an example of a probability measure.

Definition 1.1.5. Let U = {Ui}i∈I be a covering of a topological space M . The nerve of the covering U is a set N
of subsets of I given by

N =

J ⊂ I :
⋂
j∈J

Uj 6= ∅

 .

Note that this makes N into an abstract simplicial complex, as J ∈ N implies J ′ ∈ N for all J ′ ⊆ J .

Let M be a smooth compact submanifold of RD. By the tubular neighborhood theorem (see Theorem 2.11.4 in
[3]), every smooth compact submanifold M of RD has a tubular neighborhood for some ε > 0.

Definition 1.1.6. For a particular embedding of M , let the condition number of M be τ = sup{ε : M has an
ε−tubular neighborhood}.
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Distributions on a manifold

Let M be a d-dimensional manifold embedded in RD, with D > d. Recall that every element in NM ⊆ RD, the
normal bundle of M , may be represented as a pair (~x, ~y), where ~x ∈ M and ~y ∈ T⊥ (since M is a manifold, all

the normal spaces are isomorphic). Hence we may consider a probability distribution P on NM , with ~X the d-

multivariate random variable representing points on M and ~Y the (D−d)-multivariate random variable representing

points on the space normal to M at a point on M . We make the assumption that ~X and ~Y are independent, or that

P ( ~X, ~Y ) = PM ( ~X)PT⊥(~Y ).

That is, PT⊥ is a probability distribution that is the same at any point on the manifold.

Definition 1.1.7. Let P be a probability distribution on NM and fM the probability density function of PM . In
the context described above, P satisfies the strong variance condition if
· there exist a, b > 0 such that fM (~x) ∈ [a, b] for all ~x ∈M , and

· PT⊥(~Y ) is normally distributed with ~µ = 0 and Σ = σ2I.

The second condition implies that the covariance of Yi with Yj is trivial iff i 6= j, and that the vairance of all the
Yis is the same. From the normally distributed multivariate example above, this also tells us that the probability
density function f⊥ of ~Y is

f⊥(~y) =

exp

(
−σ

2

2

D−d∑
i=1

y2
i

)
σD−d

√
(2π)D−d

.

Theorem 1.1.8. In the context described above, let P be a probability distribution on NM satisfying the strong
variance condition, and let δ > 0. If there is c > 1 such that

σ <
cτ(
√

9−
√

8)

9
√

8(D − d)
,

then there is an algorithm that computes the homology of M from a random sample of n points, with probability
1− δ. The number n depends on τ, δ, c, d,D, and the diameter of M .

The homology computing algorithm

Below is a broad view of the algorithm described in sections 3, 4, and 5 of [1]. Let M be a d-manifold embedded in
RD, and P a probability measure on NM satisfying the strong variance condition.

1. Calculate the following numbers:

τ = condition number of M

vol(M) = volume of M

σ2 = variance of P

2. Define (or choose) the following numbers:

δ ∈ (0, 1)

r ∈
(

2
√

2(D − d)σ, τ9 (3− 2
√

2)
)

n > function(a, r, τ, d, δ, vol(M)) (max(A,B) in Proposition 9 of [1])

s = 4r

deg > 3a
4

(
1−

(
r

2τ

)2)d/2
vol
(
Bd(r, 0)

)
R = (9r + τ)/2

3. Choose n points randomly from NM according to P .
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4. From these n points, construct the nearest neighbor graph G with distance s.
5. Remove from G all the vertices of degree < deg to get a refined graph G′.
6. Set U =

⋃
~x∈V (G′)B

D(R, ~x) and construct the simplicial complex K of its nerve.
7. Compute the homology of K, which is the homology of M , with probability 1− δ.

References:
[1] Niyogi, Smale, and Weinberger (A topological view of unsupervised learning from noisy data)
[2] Folland (Real analysis, Chapter 10.1)
[3] Bredon (Topology and Geometry, Chapter 2.11)

1.2 On the separation of nearest neighbors

2016-07-02

Keywords: sampling, probability, cleaning, Chernoff bound, Hoeffding inequality, Lambert W

We work through Lemma 3 (called the “A − B Lemma” or the “cleaning procedure”) of [2], adopting a cleaner
and more thorough approach.

Necessary tools

Definition 1.2.1. The inverse of the complex-valued function f(z) = zez is called the Lambert W -function and
denoted by W = f−1. When restricted to the real numbers, it is multi-valued on part of its domain, so it is split up
into two branches W0 (for positive values) and W−1 (for negative values).

Hoeffding’s inequality gives an upper bound on how much we should expect a sum of random variables to deviate
from their combined mean. The authors of [2] use a similar inequality called the Chernoff bound, but Hoeffding gives
a tighter bound on the desired event.

Proposition 1.2.2. (Hoeffding - Theorem 2 and Equation (1.4) of [1])
Let X1, . . . , Xn be independent random variables, with Xi bounded on the interval [ai, bi]. Then

P

( 1

n

n∑
i=1

Xi −
1

n

n∑
i=1

E[Xi]

 > t
)
6 2 exp

(
−2t2n2∑n

i=1(bi − ai)2

)
.

The union bound (or Boole’s inequality) says that the probability of one of a collection of events happening is no
larger than the sum of the probabilities of each of the events happening.

Proposition 1.2.3. Let A1, A2, . . . be a countable collection of events. Then P (
⋃
iAi) 6

∑
i P (Ai).

The setup

Let P be a probability distribution P on Rn and X = {x1, . . . , xk} ⊆ Rn a finite set of points drawn according to
P . These points may be considered as random variables X1, X2, . . . , Xk on the sample space Rn, with Xi evaluating
to 1 only on xi, and 0 otherwise. Choose s > 0 and construct the nearest neighbor graph G on X, with parameter
s. Write X = A ∪B and set

η := inf
a∈A,b∈B

{‖a− b‖} , αs := inf
a∈A
{P (Bn(s, a))} , βs := sup

b∈B
{P (Bn(s, b))} ,

with h = (αs − βs)/2. We assume that
· η > 0, so A and B are disjoint;
· s < η/2, so A and B are in separate components of G; and
· αs > βs, so any point in A is more likely to be chosen than every point in B.

Proposition 1.2.4. Choose δ ∈ (0, 1). If |X| > −W−1(−δh2e−2h2

)/(2h2), then for all a ∈ A and b ∈ B, with
probability 1− δ,

degG(a)

k − 1
>
αs + βs

2
and

degG(b)

k − 1
<
αs + βs

2
.

The statement holds also for α, β instead of αs, βs, such that αs > α > β > βs, which may be useful to bound
the degree of vertices in G.
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The proof

For each i = 1, . . . , k, define new random variables Yij on the sample space X, with Yij evaluating to 1 on xj iff
xj ∈ Bn(s, xi), and evaluating to 0 otherwise. The mean of Yij is P (Bn(s, xi)). Since the Yij are independent with
the same mean, Hoeffding’s inequality gives that the probability that the sampled xj

have clustered around a point more than
a distance h away from Bn(s, xi)

 = P

( 1

k − 1

∑
j 6=i

Yij − P (Bn(s, xi))

 > h︸ ︷︷ ︸
event Ai

)
6 2e−2h2(k−1).

The union bound gives that(
the probability that at

least one Ai occurs

)
= P

(
k⋃
i=1

Ai

)
<

k∑
i=1

P (Ai) 6 2ke−2h2(k−1).

Note that
∑
j 6=i Yij = degG(xi) for every i, so whenever δ > 2ke−2h2(k−1), with probability 1− δdegG(xi)

k − 1
− P (Bn(s, xi))

 < h or P (Bn(s, xi))− h <
degG(xi)

k − 1
< P (Bn(s, xi)) + h.

When xi ∈ A (xi ∈ B) we have a lower (upper) bound of αs (βs) on P (Bn(s, xi)). Indeed:

degG(a)

k − 1
> αs − h =

αs + βs
2

and
degG(b)

k − 1
< βs + h =

αs + βs
2

.

To find how many points we need to sample, we solve for k in the inequality δ > 2ke−2h2(k−1). With the aid of a
computer algebra system, we find that

k >
−1

2h2
W−1

(
−δh2e−2h2

)
,

completing the proof.

References:
[1] Hoeffding (Probability inequalities for sums of bounded random variables)
[2] Niyogi, Smale, and Weinberger (A topological view of unsupervised learning from noisy data)

1.3 Sampling points uniformly on parametrized manifolds

2016-12-22

Keywords: sampling, probability, statistics, measure, uniform, Jacobian, code

Here I’ll describe how to sample points uniformly on a (parametrized) manifold, along with an actual implemen-
tation in Python. Let M be a m-dimensional manifold embedded in Rn via f : Rm → Rn. Moreover, assume that
f is Lipschitz (true if M is compact), injective (true if M is embedded), and is a parameterization, in the sense that
there is an m-rectangle A = [a1, b1] × · · · × [am, bm] such that f(A) = M (the intervals need not be closed). Set

(J̃f)2 = det(Df ·DfT ) to be the m-dimensional Jacobian, and calculate

c =

∫ bm

am

· · ·
∫ b1

a1

J̃f dx1 · · · dxm.

Recall the brief statistical background presented in a previous blog post (“Reconstructing a manifold from sample
data, with noise,” 2016-05-26). A uniform or constant probability density function is valued the same at every point
on its domain.

Proposition 1.3.1. In the setting above:
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1. (completely separable) Let g1, . . . , gm be probability density functions on [a1, b1], . . . , [am, bm], respectively. If

g1 · · · gm = J̃f/c, then the joint probability density function of g1, . . . , gm is uniform on M with respect to the
metric induced from Rn.

2. (non-separable) Let g be a probability density function on [a1, b1] × · · · × [am, bm]. If g = J̃f/c, then g is
uniform on M with respect to the metric induced from Rn.

A much more abstract statement and proof are given in [2], Section 3.2.5, but assuming f is injective and M is
in Rn, we evade the worst notation. Section 2.2 of [1] gives a brief explanation of how the given statement follows,
while Section 2 of [3] goes into more detail of why the above is true.

Example 1.3.2. Let M = S2, the sphere of radius r, and f : [0, 2π)× [0, π)→ R3 the natural embedding given by

(θ, ϕ) 7→ (r cos(θ) sin(ϕ), r sin(θ) sin(ϕ), r cos(ϕ)),

with

Df =

[
−r sin(ϕ) sin(θ) r cos(θ) sin(ϕ) 0
r cos(ϕ) cos(θ) r cos(ϕ) sin(θ) −r sin(ϕ)

]
, J̃f = r2 sin(ϕ),

Df ·DfT =

[
r2 sin2(ϕ) 0

0 r2

]
, c = 4πr2.

Let g1(θ) = 1/2π be the uniform distribution over [0, 2π), meaning that g2(ϕ) = sin(ϕ)/2 over [0, π). Sampling
points randomly from these two distributions and applying f will give uniformly sampled points on S2.

Example 1.3.3. Let M = T 2, the torus of major radius R and minor radius r, and f : [0, 2π) × [0, 2π) → R3 the
natural embedding given by

(θ, ϕ) 7→ ((R+ r cos(θ)) cos(ϕ), (R+ r cos(θ)) sin(ϕ), r sin(θ)),

with

Df =

[
−r cos(ϕ) sin(θ) −r sin(ϕ) sin(θ) r cos(θ)

−(R+ r cos(θ)) sin(ϕ) cos(ϕ)(R+ r cos(θ)) 0

]
, J̃f = r(R+ r cos(θ)),

Df ·DfT =

[
r2 0
0 (R+ r cos(θ))2

]
, c = 4π2rR.

Let g2(ϕ) = 1/2π be the uniform distribution over [0Usingthemainpropositionfrom, 2π), meaning that g1(θ) =
(1 + r cos(θ)/R)/(2π) over [0, 2π). Sampling points randomly from these two distributions and applying f will give
uniformly sampled points on T 2.

Below I give a simple implementation of how to actually sample points, in Python using the SciPy package. The
functions f, g1, . . . , gm are all assumed to be given.

import scipy.stats as st

class var_g1(st.rv_continuous):

’Uniform variable 1’

def _pdf(self, x):

return g1(x)

...

class var_gm(st.rv_continuous):

’Uniform variable m’Using the main proposition from

def _pdf(self, x):

return gm(x)

dist_g1 = var_g1(a=a1, b=b1, name=’Uniform distribution 1’)

...

dist_gm = var_gm(a=am, b=bm, name=’Uniform distribution m’)

def mfld_sample():

return f(dist_g1.rvs(),...,dist_gm.rvs())
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A further application for this would be to understand how to sample points uniformly on projective manifolds,
with a leading example the Grassmannian, embedded via Plücker coordinates.

References:
[1] Diaconis, Holmes, and Shahshahani (Sampling from a manifold, Section 2.2)
[2] Federer (Geometric measure theory, Section 3.2.5)
[3] Rhee, Zhou, and Qiu (An iterative algorithm for sampling from manifolds, Section 2)

1.4 Defining and implementing spheres from sampled points

2017-01-24

Keywords: sphere, geometry, code

Let p1, . . . , pn+1 ∈ Rn be points with coordinates pi = (pi,1, . . . , pi,n), and Rn with coordinates x1, . . . , xn. It is
clear that if theses n + 1 points are in general position, then they define a unique (n − 1)-sphere in Rn, on which
they all lie.

Guess 1.4.1. Every point (x1, . . . , xn) on the unique (n− 1)-sphere in Rn defined by p1, . . . , pn+1 satisfies

det



∑n
i=1 x

2
i x1 x2 · · · xn 1∑n

i=1 p
2
1,i p1,1 p1,2 · · · p1,n 1∑n

i=1 p
2
2,i p2,1 p2,2 · · · p2,n 1

...
...

...
. . .

...
...∑n

i=1 p
2
n+1,i pn+1,1 pn+1,2 · · · pn+1,n 1

 = 0. (6)

This guess is made based on the 2-sphere version presented in Zwillinger. It is immediate that every point pi
satisfies this equation, as then the matrix has two rows with identical entries. From this guess, we may conclude the
following.

Proposition 1.4.2. The radius of the (n− 1)-sphere defined by p1, . . . , pn+1 in Rn is√√√√n+1∑
j=2

A2
1,j

4A2
1,1

+ (−1)n
A1,n+2

A1,1
, (7)

for Ai,j the (i, j)-minor of the matrix in equation (6).

Proof: This follows by comparing two equations. Assume that these points define a sphere of radius r centered at
(a1, . . . , an). Then points on it satisfy

r2 = (x1 − a1)2 + · · ·+ (xn − an)2 = x2
1 − 2a1x1 + a2

1 + · · ·+ x2
n − 2anxn + a2

n.

Equation (6) may be expanded out along the first row as

n∑
i=1

x2
iA1,1 − x1A1,2 + · · ·+ (−1)nxnA1,n+1 + (−1)n+1A1,n+2 = 0,

where none of the Ai,j are in any of the xi. Dividing by the leading factor and comparing coefficients of these two
equations, we find

A1,1 = 1,

−A1,2/A1,1 = −2a1,

...

(−1)nA1,n+1/A1,1 = −2an,

(−1)n+1A1,n+2/A1,1 = a2
1 + · · ·+ an2 − r2.
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The given expression follows by solving for r. �

Since any collection of k + 1 points in general position in Rn define a k-plane, it is natural to ask what would
be the radius of the (k − 1)-sphere in that k-plane defined by those k + 1 points. One approach to answer this is
to define a new coordinate system on Rn with the first k vectors spanning the given k-plane, restrict to the first
k-coordinates, and apply the proposition above. More precisely, subtract the first vector from the other k vectors to
define a new “origin,” preform the Gram–Schmidt orthogonalization process on these shifted vectors, then take the
QR-decomposition of this matrix of vectors whose inverse is the map from the standard basis to the new basis. In
Sage code, this may be implemented as below.

# Returns the (i,j)-minor (determinant when ith row, jth col removed) of input matrix mat

def minor(mat,i,j):

return mat.delete_rows([i]).delete_columns([j]).det()

# Returns the radius of an (n-1)-sphere defined by n+1 points in R^n

def sphere_radius(L,field=CDF):

n = len(L)-1

M1 = [[0]*(n+2)]

for pt in L:

tempL = [pt*pt]

for pos in range(n):

tempL.append(pt[pos])

tempL.append(1)

M1.append(tempL)

M2 = matrix(field,n+2,n+2,M1)

return sqrt(reduce(lambda x,y: x+y, map(lambda z: minor(M2,0,z-1)**2/(4*minor(M2,0,0)**2),

range(1,n+2)))+(-1)**n*minor(M2,0,n+1)/minor(M2,0,0))

# Returns the radius of a (k-1)-sphere defined by k+1 points in R^n

def sphere_radius_general(L,field=CDF):

k = len(L)-1

n = len(L[0])

L1 = []

for vec in L[1:]:

L1.append(vec-L[0])

M = matrix(field,k,n,L1)

Q,R = M.transpose().QR()

L2 = [vector(field,[0]*k)]

Qinv = Q.inverse()

for vec in L1:

L2.append((Qinv*vec)[:k-n])

return sphere_radius(L2)

Now in Mathematica.

(*Returns the (i,j)-minor of a an input matrix mat*)

minor[mat_,i_,j_] := Map[Reverse,Minors[mat],{0,1}][[i]][[j]]

(*Returns the radius of an (n-1)-sphere defined by n+1 points in R^n*)

SphereRadius[L_] := Module[{n, M},

n = Length[L]-1;

M = Join[{Array[0#&,n+2]},Table[Join[{Sum[L[[j]][[l]]^2,{l,1,n}]},L[[j]],{1}],{j,1,n+1}]];

Sqrt[Sum[minor[M,1,j]^2/(4*minor[M,1,1]^2),{j,2,n+1}]+(-1)^n*minor[M,1,n+2]/minor[M,1,1]]]

(*Returns the radius of a (k-1)-sphere defined by k+1 points in R^n*)

SphereRadiusGeneral[L_] := Module[{n,k,Lv,L1,q,qq,qinv},

n = Length[L[[1]]];

k = Length[L]-1;

Lv = Table[Unique["q"],{n}];
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L1 = L[[2;;]]-Table[L[[1]],{l,1,k}];

q = QRDecomposition[Transpose[L1]][[1]];

qq = Join[q,{Lv}]/.Solve[{q.Lv==0,Total[#^2&/@Lv]==1},Lv][[1]];

qinv = Inverse[Transpose[qq]];

SphereRadius[Join[{Array[0#&,k]},#[[;;-(n-k)-1]]&/@(qinv.#&/@L1)]]]

The variable L is a list of (n + 1)-dimensional vectors of appropriate length. Both methods skip creating the first
line of the matrix in (6), since it does not appear in the expression (7). The method in Sage is probably faster in
practice, but less accurate. For example:

command result time (s)

sphere radius general([vector([3,2,1]),vector([0,-1,3]),vector([5,6,-9])]) 10.979572093 0.00522

SphereRadiusGeneral[{{3,2,1},{0,-1,3},{5,6,-9}}]
√

35970
299 0.062

Note that the exact square root result is approximately 10.9682, off by around 0.01 from the Sage result.

References: Zwillinger (CRC Standard Mathematical Tables and Formulae, Section 4.8.1)

1.5 Generalizing planar detection to k-plane detection

2017-02-12

Keywords: TDA, algorithm, grid, probability, distribution, Radon transform, sphere, Grassmannian, flag

In this post the planar detection algorithm in R3 of Bauer and Polthier in Detection of Planar Regions in Volume
Data for Topology Optimization is generalized to detect k-planes with largest density in Rn. Let Ω ⊂ Rn be the
compact support of a piecewise-constant probability density function ρ : Rn → R>0.

Definition 1.5.1. Let (G, ρ) be a grid, where G ⊂ λZn + c ⊂ Rn is a lattice in Ω. A cell x of the grid is
B∞(x, λ/2) = {y ∈ Rn : ‖x− y‖∞ 6 λ/2}, for x ∈ G. Every cell is assigned a value∫

B∞(x,λ/2)

ρ dx,

called the mass of the cell, which may be though of as a type of Radon transform of ρ.

Assuming that k is a global variable, running Recursive(G,w, k) will give the desired result. This algorithm
is the naive generalization of Bauer and Polthier, and suffers from calculating mass along the same k-plane several
times, whenever k < n− 1 (as any k-plane does not lie in a unique (k + 1)-plane).

Measuring along connected components of a k-plane works the same way as in the original version, as the gird
on Rn similarly induces a connectivity graph.

Remark 1.5.2. Bauer and Polthier cite Kantaforoush and Shahshahani in evenly sampling points on the unit 2-
sphere, but it is not clear how their method (using the inscribed icosahedron) generalizes. Another method would
be uniformly sampling random points on Sk−1 and take all on one hemisphere. A Hamiltonian path could then
be taken from an arbitrary point and then using the greedy algorithm (with respect to Euclidean distance) to find
consecutive vertices (to keep down the time of consecutive sorting operations).

Recall the Grassmannian Gr(n, k) of all k-planes in Rn through the origin, a compact manifold of dimension
k(n − k). Note that any k-plane P ⊂ Rn is a translation of an element Q ∈ Gr(n, k) by an element of Q⊥ (we
conflate notation for Q and its natural embedding in Rn).

Remark 1.5.3. Gr(n, k) is parametrizable, so by choosing directions in the unit (n− k)-hemisphere, the process of
choosing k-planes in the algorithm may be completely parametrized. The quick sorting of points that was available
in Bauer and Polthier’s n = 3, k = 2 case may be replaced by an iterated restriction of the original data set through
a complete flag P ⊂ · · · ⊂ Rn.

References: Bauer and Polthier (Detection of Planar Regions in Volume Data for Topology Optimization), Katan-
foroush and Shahshahani (Distributing points on the Sphere 1)



76

Algorithm 1: kPlaneFinder

Function Recursive(G,w, k′)
input : A grid (G, ρ)

A width w of fattened k-planes
The current plane dimension k 6 k′ < n

output: A k-planar connected component covering most mass in G

discretize the unit (k′ − 1)-hemisphere in an appropriate manner
order the vertices by a Hamiltonian path

for each vertex n do
sort the grid cells in direction n
discretize the range in direction n equidistantly
for each k′-plane (n, d) do

collect the cells closer than w to the k′-plane into a graph G′

if k′ 6= k then
run Recursive(G′, w, k′ − 1)

else
compute the connected component having the most mass in G′

end

end

end
return the connected k-component having most mass (and the corresponding k-plane)

1.6 Optimal sampling and arrangement on an n-sphere

2017-03-12

Keywords: topological data analysis, sphere, distribution, paths, probability, algorithm, distance, sampling

The goal of this post is to create a “good” algorithm for sampling and arranging points on the n-sphere. We find
the ε-covering number of the n-sphere and arrange the points in a Hamiltonian path of small pairwise consecutive
distance. This post relates to several previous posts:

2017-02-12: Generalizing planar detection to k-plane detection
2016-12-22: Sampling points uniformly on parametrized manifolds
2016-05-26: Reconstructing a manifold from sample data, with noise

Thanks to Professor Cheng Ouyang for a helpful discussion.

Although rejection sampling is a standard method to sample points uniformly on the n-sphere (sample points
uniformly on the (n+1)-cube, check if the norm is less than or equal to 1, if it is, normalize the point to the n-sphere),
this is not best for our scenario (the arranging part). A better suited approach is to take a parametrization f from
an n-cube into Rn+1 of the unit n-sphere. We use

f : [0, 2π]n−1 × [0, π) → Rn+1,
(α1, . . . , αn) 7→

(
cos(α1),

sin(α1) cos(α2),
...
sin(α1) · · · sin(αn−1) cos(αn),
sin(α1) · · · sin(αn−1) sin(αn)

)
.

Adapting Proposition 1.3.1 from the “Sampling points” post, we have following proposition.

Proposition 1.6.1. The probability density function gn : [0, 2π]n−1 × [0, π]→ R>0, defined as

gn(α1, . . . , αn) =

∏n−1
k=1 | sin

n−k(αk)|
2n−1π

∏n−1
k=1

∫ π
0

sinn−k(αk) dαk
,

is uniform on the natural embedding of the unit n-sphere Sn in Rn+1.
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The denominator of gn does not seem to have closed form, though the ratios between consecutive terms are given
by the denominators of Γ( `+3

2 )/Γ( `+2
2 ) and `!!/(` + 1)!!, with appropriate powers of π. The first few terms of this

sequence are

4π, 4π2,
32

3
π2, 8π3,

256

15
π3,

32

3
π4,

2048

105
π4, . . . .

Next, recall the n-surface of an n-sphere and k-volume of a k-ball are

surf(n, r) =
2π(n+1)/2rn

Γ((n+ 1)/2)
, vol(k, r) =

πk/2rk

Γ((k + 2)/2)
.

Adapting Proposition 3.2 of Niyogi, Smale and Weinberger, similarly to the “Reconstructing a manifold” post, we
have the following proposition.

Proposition 1.6.2. A collection of N points sampled uniformly from Sn is ε-dense in Sn with certainty 1− δ, given

N >
surf(n, 1)

(1− ε2

16 )n/2vol(n, ε2 )
log

(
surf(n, 1)

δ(1− ε2

64 )n/2vol(n, ε4 )

)
.

Bauer and Polthier sample points “evenly” on the 2-hemisphere and then connect them with a winding path,
which winds around the hemisphere 6 times. Generalizing this approach, suppose we wanted to have a path that
wind around the n-sphere ` times and has a small distance between consecutive vertices of the path. The following
algorithm describes one way of doing this.

Algorithm 2: SpherePathFinder

input : Positive integers n, `
Real numbers ε, δ ∈ (0, 1)

output: A path on Sn that winds around ` times, whose vertices are ε-dense on Sn with certainty 1− δ
Sample dNe points on [0, 2π]n−1 × [0, π] according to gn in a set X
Initiate an empty path P = ()

for kn ∈ {1, . . . , `} do
for kn−1 ∈ {1, . . . , 2`} do

...
for k2 ∈ {1, . . . , 2`} do

Set L = {α ∈ X : αn ∈ [(kn − 1)π` , kn
π
` ], αn−t ∈ [(kn−t − 1) 2π

2` , kn−t
2π
2` ], 1 < t < n− 1}

Order L by increasing values of α1

Append L to the end of P and set X = X \ L
end

end

end
return P

Since the sample space is [0, 2π]n−1× [0, π], finding the appropriate points in the nested for loop is very easy. We
conclude with an experimental example with n = 2, ` = 12, ε = .1, and δ = .01. We must sample at least 87 points,
and we do so below.

Example 1.6.3. To demonstrate the results of the SpherePathFinder algorithm, we sample 100, 300, and 600
points on the 2-sphere. Only the paths are shown, which wind around 12 times. The range of distances d between
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consecutive ordered points is also given, with an average d̃.

N = 100

d ∈ [0.4067, 1.5143]

d̃ = 0.4700

N = 300

d ∈ [0.0084, 0.6815]

d̃ = 0.2015

N = 1200

d ∈ [0.0028, 0.4533]

d̃ = 0.1045

As N increases and the winding number stays the same, the path gets more and more jagged. To make the path
smoother, we would need to increase the number of times the path winds around the sphere.

References: Bauer and Polthier (Detection of Planar Regions in Volume Data for Topology Optimization), Niyogi,
Smale, and Weinberger (Finding the homology of submanifolds with high confidence from random samples), Sloane
(OEIS A036069, A004731), Wikipedia (article “N-sphere”)
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2 Geometry

2.1 The conditioning number of a projective curve

2016-06-28

Keywords: projective, curve, variety, conditioning number, Jacobian, code

Let C be a smooth algebraic curve in P2. That is, for some homogeneous f ∈ C[x0, x1, x2] we let C = {x ∈ P2 :
f(x) = 0}. Describe C as a manifold via the usual open sets Ui = {x ∈ P2 : xi 6= 0} and charts

ϕ0 : U0 → C2,
[x0 : x1 : x2] 7→ (x1

x0
, x2

x0
),

ϕ1 : U1 → C2,
[x0 : x1 : x2] 7→ (x0

x1
, x2

x1
),

ϕ2 : U2 → C2,
[x0 : x1 : x2] 7→ (x0

x2
, x1

x2
).

Let w = [w0 : w1 : w2] ∈ P2 for which f(w) = 0. The Jacobian of C at w is then

Jw =

[
∂f

∂x0


w

:
∂f

∂x1


w

:
∂f

∂x2


w

]
∈ P2.

Assume that ∂f
∂x0


w
6= 0 and pass to ϕ0(U0) to get the Jacobian to be

J0
w =

(
∂f/∂x1|w
∂f/∂x0|w

,
∂f/∂x2|w
∂f/∂x0|w

)
∈ C2.

Assume that w0 6= 0, so the tangent line to ϕ0(C) ⊂ C2 at ϕ0(w) = (w1/w0, w2/w0) is

Tϕ0(w) = {ϕ0(w) + tJ0
w : t ∈ C} ⊂ C2.

A vector orthogonal to the Jacobian J0
w is

J̄0
w =

(
−∂f/∂x2|w
∂f/∂x0|w

,
∂f/∂x1|w
∂f/∂x0|w

)
∈ C2,

so the space space normal to Tϕ0(w) is given by

T⊥ϕ0(w) = {ϕ0(w) + tJ̄0
w : t ∈ C} ⊂ C2.

Example: Let C ⊂ P2 be the zero locus of f(x0, x1, x2) = x2
0 + x1x2 − x1x0. The Jacobian is J = [2x0 − x1 :

x2 − x0 : x1], and as J = 0 implies x0 = x1 = x2 = 0, but 0 6∈ P2, the curve C is smooth. Consider two points
w = [1 : 1 : 0], z = [2 : 1 : −2] ∈ C, at which the Jacobian is

Jw = [1 : −1 : 1] , Jz = [3 : −4 : 1].

Both w0 and z0 are non-zero, with ϕ0(w) = (1, 0) and ϕ0(z) = (1/2,−1), giving the tangent and normal spaces to be

T(1,0) = {(1, 0) + t(−1, 1) : t ∈ C}, T(1/2,−1) = {(1/2,−1) + s(−4/3, 1/3) : s ∈ C},
T⊥(1,0) = {(1, 0) + t(−1,−1) : t ∈ C}, T⊥(1/2,−1) = {(1/2,−1) + s(−1/3,−4/3) : s ∈ C}.

The two normal spaces intersect at (t, s) = (1/3,−1/2) at distances of 1/3 · ‖(−1,−1)‖ =
√

2/3 ≈ 0.471 and
1/2 · ‖(−1/3,−4/3)‖ =

√
17/3 ≈ 1.374 from the points ϕ0(w), ϕ0(z), respectively. Hence the conditioning number of

C is at most
√

2/3.

Given a smooth projective curve and a finite set of points, this Sage code will calculate the conditioning number
from that collection of points.

http://jlazovskis.com/scripts/blag/2016-06-28-curve-conditioning-number.sagews
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2.2 The conditioning number of a helix, part 1

2016-10-31

Keywords: conditioning number

Definition 2.2.1. Let M be a smooth d-manifold embedded in Rn and N ε
pM = NpM∩B(p, ε) the natural embedding

of the ε-normal plane at p ∈M . The pairwise conditioning number of p and q is

τp,q = sup{ε : N ε
pM ∪N ε

qM embeds in Rn}.

The condition on ε is the same as saying i(N ε
pM) ∩ i(N ε

qM) = ∅, where i is induced by the embedding of M . It
is immediate that τ = infp,q{τp,q}, so we will try to find τp,q first. Recall that a helix of radius r and vertical period
2πc is a 1-dimensional manifold

r

2πc

embedded in R3 as the zero locus of

f(x, y, z) = x− r cos(z/c), g(x, y, z) = y − r sin(z/c).

We first find the normal plane at two arbitrary points p1, p2 on the helix, then their intersection (which is a line),
and then the distance from p1 and p2 to that line. The smallest of these two distances bounds τp1,p2 from below
(and the bound is achieved on pairs of points defining the medial axis). Then take the infimum of this value over all
points on the helix. However, this excludes the case when the normal planes are parallel (for instance when the two
points have the same x- and y-values).

Moreover, even just calculating the infimum for points whose normal planes are not parallel yields a result of
zero. We describe the process nonetheless. For the first step, we need the equations of the normal planes. Let

Df =
[
1 0 r sin(z/c)/c

]
, Dg =

[
0 1 −r cos(z/c)/c

]
.

be the Jacobians of f and g. The points p1, p2 are completely described by the z-coordinate, so we have two values
z1, z2 for p1, p2, respectively. The normal plane at pi is the zero locus of

det

x− r cos(zi/c) y − r sin(zi/c) z − zi
1 0 r sin(zi/c)/c
0 1 −r cos(zi/c)/c

 = z − zi −
xr

c
sin(zi/c) +

yr

c
cos(zi/c).

We have two equations and three unknowns, so one independent variable. Solving for x and y gives us

x =
(z − z1) cos(z2/c)− (z − z2) cos(z1/c)

r sin( z1−z2c )/c
, y =

(z − z1) sin(z2/c)− (z − z2) sin(z1/c)

r sin( z1−z2c )/c
.

These are functions of z, giving us two new functions

hi(z) = (x(z)− r cos(zi/c))
2 + (y(z)− r sin(zi/c))

2 + (z − zi)2,

for i = 1, 2, which, when minimized, give a lower bound for the pairwise conditioning number of p1 and p2. Indeed,
by slowly increasing the ε until the ε-normal planes at p1 and p2 intersect, the first point of intersection will happen
on the intersection Np1M ∩ Np2M . Hence finding the shortest distance from p1 and p2 to this line gives a definite
lower bound. The functions hi are quadratic in z, and we know the function az2 + bz + c, for a > 0, has minimum
at −b/2a. The values of h1 and h2 at their minima are the same and equal to

hm := hi

(
−b
2a

)
=

2(c2 + r2) cos2
(
z1−z2

2c

) (
r2 + c(z1 − z2) csc

(
z1−z2
c

))2
2c2r2 + r4 + r4 cos

(
z1−z2
c

) .
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A natural limit of hm to consider is z2 → z1. If any of the factors in the numerator are zero, we also get a minimum,
so another limit to look for is z2 → cz1, which makes the cosine factor zero. These are

lim
z2→z1

[hm] =
(c2 + r2)2

r2
, lim

z2→z1+cπ
[hm] =

c2π2(c2 + r2)

4r2
,

which are finite nonzero for positive values of c and r. For the last factor, fix z1 = 0. Then finding when the factor
vanishes is equivalent to finding when sin(z2/c) and −z2c/r

2 intersect. There are values for which this happens, and
the other factors in hm are all finite at these values, so infz∈R[hi(z)] = 0. Visual confirmation is given by the cases
below.

c = 0.5, r = 1.5 c = 1, r = 2.5 c = 2, r = 4.5

Hence this is not the best approach to calculate the conditioning number of a curve. The next attempt will be to
calculate the actual pairwise conditioning number, rather than trying to bound it from below.

2.3 The conditioning number of a helix, part 2

2016-12-08

Keywords: conditioning number

Recall the previous attempt to find the conditioning number of a helix (see post “The conditioning number of a
helix, part 1,” 2016-10-31). Here we complete the approach and although exact solutions are hard to find, we give
close approximations.

The setting was a helix C of radius r and stretch c, so given as the zero locus of x− r cos(z/c) and y− r sin(z/c),
and we wanted to find where the normal plane at a point p ∈ C intersects C again. It may intersect C several times,
but we are only interested in the shortest distances. Without loss of generality, assume that p = (r, 0, 0). The normal
plane at p is then given by

0 = det

x− r cos(pz/c) y − r sin(pz/c) z − pz
1 0 r sin(pz/c)/c
0 1 −r cos(pz/c)/c

 = det

x− r y z
1 0 0
0 1 −r/c

 =
r

c
y + z.

Since the cylinder on which the helix C lies is x2 + y2 = r2, the curve C ′ representing the intersection of the plane
with the cylinder is given by the zero locus of ±r

√
x2 − r2 +cz. This allows us to find the intersection with the helix.

However, since C is parametrized with z the free variable and C ′ with x free, its is easier to switch to cylindrical
coordinates (

r =
√
x2 + y2, θ = arctan(y/x), z = z

)
.

Doing so gives a nice description of C and C ′ as below.

C : (r cos(z/c), r sin(z/c), z) = (r, θ, θc)

C ′ : (x,−
√
r2 − x2, r

√
r2 − x2/c) = (r.θ, r2 sin(θ)/c)

The switch in coordinates is represented by the diagram below, where we have only used the top half of C ′.
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2πc

πrπrp p

a

b

Finding C ∩ C ′ is equivalent to solving c2

r2 = sin(θ)
θ for θ, a task that can not be solved exactly. Instead we take the

tangent lines to C ′ on the unrolled cylinder at its base, and see where those intersect the line θc. Inspecting the
areas of the tangent lines closer and calculating the euclidean distances in R3 from p to a and b, which is, I can’t
believe I’m saying this, a great exercise for the reader, we get the distances to be

d(p, a) =

√
2r2

(
1 + cos

(
πc2

r2 − c2

))
+

(
πcr2

r2 − c2

)2

, d(p, b) =

√
2r2

(
1− cos

(
2πc2

r2 + c2

))
+

(
2πcr2

r2 + c2

)2

.

Truthfully, the diagrams are tricky to draw in TikZ and I don’t want to simply have a scan of some rough work.
More importantly, d(p, a) = d(p, b) implies c = r/

√
3, meaning that when the stretch c is larger than r/

√
3, the

normal planes certainly do not intersect the helix again.

2.4 Integral transforms

2018-06-04

Keywords: integral, integral transform, constructible set, constructible function, persistence diagram, Euler integral,
Radon transform, persistent homology transform

Let X,Y be topological spaces.

Definition 2.4.1. A set U ⊆ X is constructible if it is a finite union of locally closed sets. A function f : X → Y is
constructible if f−1(y) ⊆ X is constructible for all y ∈ Y .

Write CF (X) for the set of constructible functions f : X → Z. Recall if U ⊆ X is constructible, it is triangulable.

Definition 2.4.2. Let X ⊆ RN be constructible and {Xr}r∈R a filtration of X by constructible sets Xr. The kth
persistence diagram of X is the set PD(Xr, k) = {(a, b) ⊆ (R∪ {±∞})2 : a < b}, where each element represents the
longest sequence of identity morphisms in the decomposition of the image of the kth persistent homology functor
PH(Xr, k) : (R,6)→ V ect to each component.

Write D for the set of all persistence diagrams.

Definition 2.4.3. Let X,Y ⊆ RN be constructible, S ⊆ X×Y also constructible with π1, π2 the natural projections,
and σ a simplex in a triangulation of X. The Euler integral of elements of CF (X) is the assignment∫

X

· dχ : CF (X) → Z,

1σ 7→ (−1)dim(σ).

The Radon transform of elements of CF (X) is the assignment

RS : CF (X) → CF (Y ),

(x 7→ h(x)) 7→

(
y 7→

∫
π−1
2 (y)

π∗1h dχ

)
.

The persistent homology transform of X is the assignment

PHTX : SN−1 → DN ,
v 7→ {PD({x ∈ X : x · v 6 r}, 0), . . . , PD({x ∈ X : x · v 6 r}, N − 1)}
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The Euler integral is also called the Euler transform, or the Euler charateristic transform. The Radon transform
has a weighted version, where every simplex in S is assigned a weight.

References: Schapira (Tomography of constructible functions), Baryhsnikov, Ghrist, Lipsky (Inversion of Euler inte-
gral transforms), Turner, Mukherjee, Boyer (Persistent homology transform).
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3 Algebra

3.1 Persistent homology (an example)

2016-05-19

Keywords: homology, persistence, persistent homology, sphere, filtration, example, Morse theory

Here we follow the article ”Persistent homology—a Survey,” by Herbert Edelsbrunner and John Harer, published
in 2008 in ”Surveys on discrete and computational geometry,” Volume 453.

Consider the sphere, which has known homology groups. Consider a slightly bent embedding of the sphere in
R3, call it M , as in the diagram below (imagine it as a hollow blob, whose outline is drawn below). Let f : M → R
be the height function, measuring the distance from a point in M to a plane just below M , coming out of the page.
Then we have some critical values t0, t1, t2, t3, as indicated below. Note we have embedded the shape so that no two
critical points of f have the same value.

0

t0

t1

t2

t3

1

M R
f

This is remniscent of Morse theory. Set Mi = f−1[0, ti] and bi = dim(Hi) the ith Betti number. Then we may easily
calculate the Betti numbers of the Mj , as in the table below.

M0 M1 M2 M3 M

b0 1 2 1 1 1

b1 0 0 0 0 0

b2 0 0 0 1 1

Definition 3.1.1. In the context above, suppose that there is some p and j > i such that:
· bp(Mi) = bp(Mi−1) + 1,
· bp(Mj) = bp(Mj−1)− 1, and
· the generator of Hp introduced at ti is the same generator of Hp that disappears at tj .

Then (i, j) (or (ti, tj)) is called a persistence pair and the persistence of (i, j) is j − i (or f(j)− f(i)).

For i not in a persistence pair, we say that i represents an essential cycle, or that the persistence of i is infinite.
In the example considered, the only persistence pair is (1, 2). This may be presented in a persistence diagram, with
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the indices of critical points on both axes, and the persistence measured as a vertical distance.

0

0

1

1

2

2

3

3

If we put a simplicial complex structure on M , we may also calculate the homology (and persistence pairs, although
they may be different than the ones found above). To make calculations easier, we instead describe a CW structure
on our embedded sphere M (with Xi the i-skeleton, and the ordering of the i-cells as indicated). The results will be
the same as for a simplicial complex structure.

X0 =
1

X1 =

1 2

X2 =

1
2

3

This gives one 0-cell, two 1-cells, and three 2-cells (with the obvious gluings), allowing us to construct the chain
groups Cp as well as maps between them. The map dp : Cp → Cp−1 as a matrix has size dim(Cp−1)× dim(Cp), and
has entry (i, j) equal to the number of times, counting multiplicity, that the ith (p− 1)-cell is a face of the jth p-cell.
Calculations are done in Z/2Z.

d2 : C2 → C1 is

[
1 0 1
0 1 1

]
d1 : C1 → C0 is

[
0 0

]
The Betti numbers are then bp = dim(Cp) − rk(dp) − rk(dp+1). From above, it is immediate that rk(d1) = 0,
rk(d2) = 2, and rk(dp) = 0 for all other p. This tells us that

b0 = dim(C0)− rk(d0)− rk(d1) = 1− 0− 0 = 1,

b1 = dim(C1)− rk(d1)− rk(d2) = 2− 0− 2 = 0,

b2 = dim(C2)− rk(d2)− rk(d3) = 3− 2− 0 = 1,

as expected. To find the persistence pairs, we introduce a filtration on the simplices (equivalently, on the cells) by
always having the faces of a cell precede the cell, as well as lower-dimensional cells preceding higher-dimensional
cells. Using the same ordering as described above, consider the following filtration:

K0 = {},
K1 = {e0

1},
K2 = {e0

1, e
1
1, e

1
2},

K3 = {e0
1, e

1
1, e

1
2, e

2
1, e

2
2, e

2
3},

so ∅ = K0 ⊂ K1 ⊂ K2 ⊂ K3 = M . This gives an ordering on all the cells of M , namely

σ1 = e0
1, σ2 = e1

1, σ3 = e1
2, σ4 = e2

1, σ5 = e2
2, σ6 = e2

3.
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Construct the boundary matrix D, with the (i, j) entry of D equal to the number of times, counting multiplicity,
modulo 2, that σi is a codimension 1 face of σj . In the case of our example sphere, we get the matrix

D =


0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ∼


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


in its reduced form (call it D̃). With respect to the matrix D̃, define the following numbers:

low(j) = the row number of the lowest non-zero entry in column j,

zero(p) = the number of zero columns that correspond to p-simplices,

one(p) = the number of 1s in rows that correspond to p-simplices.

We calculate all the relevant values of these expressions to be as below.

low(1) = 0 zero(0) = 1 one(0) = 0

low(2) = 0 zero(1) = 2 one(1) = 2

low(3) = 0 zero(2) = 1 one(2) = 0

low(4) = 2

low(5) = 3

low(6) = 0

For persistence, we have
· if low(j) = i 6= 0, then (i, j) is a persistence pair,
· if low(j) = 0 and there is no k such that low(k) = j, then j is an essential cycle.

For our sphere example, we get two persistence pairs (2, 4) and (3, 5), and two essential cycles 1 and 6. Note that
this is different from the persistence pairs found by the height function f : M → R earlier (but there are still two
essential cycles), because there we were comparing the homologies Hp(Mj), but here we are comparing Hp(K`). The
persistence diagram is as below.

1

1

2

2

3

3

4

4

5

5

6

6

As an added feature, from the numbers above we may calculate the homology and relative homology groups. Con-
struct the relative chain groups Cp(M,K`) = Cp(M)/Cp(K`) and set zero(p, `) to be zero(p) for the lower right

submatrix of D̃ corresponding to the cells in M −K` (and similarly for one(p, `)). We find these numbers for the
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bent sphere to be as below.

zero(0, 0) = 1 zero(0, 1) = 0 zero(0, 2) = 0 zero(0, 3) = 0

zero(1, 0) = 2 zero(1, 1) = 2 zero(1, 2) = 0 zero(1, 3) = 0

zero(2, 0) = 1 zero(2, 1) = 1 zero(2, 2) = 1 zero(2, 3) = 0

one(0, 0) = 0 one(0, 1) = 0 one(0, 2) = 0 one(0, 3) = 0

one(1, 0) = 2 one(1, 1) = 2 one(1, 2) = 0 one(1, 3) = 0

one(2, 0) = 0 one(2, 1) = 0 one(2, 2) = 0 one(2, 3) = 0

Note that zero(p, 0) = zero(p) and one(p, 0) = one(p), as well as zero(p, 3) = one(p, 3) = 0. The above numbers are
useful in calculating

dim(Hp(M)) = zero(p)− one(p),
dim(Hp(M,K`)) = zero(p, `)− one(p, `).

References: Edelsbrunner and Harer (Persistent homology - a Survey)

3.2 Revisiting persistent homology

2017-03-27

Keywords: persistent homology, filtration, persistence module, extended persistence, zigzag persistence, categorifica-
tion, multidimensional persistence, barcode

Here we revisit and expand on persistent homology, previously in the post “Persistent homology (an example),”
2016-05-19. All homology, except where noted, will be over a field k, and X will be a topological space. Often a
Morse-type function f : X → R is introduced along with X, but we will try to take a more abstract view.

Definition 3.2.1. The space X may be described as a filtered space with a filtration of sublevel sets

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xm = X,

whose kth persistence module is the (not necessarily exact) sequence

0 = Hk(X0)→ Hk(X1)→ · · · → Hk(Xm) = Hk(X)

of homology groups of the filtration.

Remark 3.2.2. Every persistence module may be uniquely decomposed as a direct sum of sequences 0 → k →
· · · → k → 0, where every map is id, except the first and last. The indices at which each sequence in the summand
has its first and last non-zero map are called the birth and death of the homology class represented by the sequence.

In some cases a homology class may not die, so we consider the extended persistence module to make everything
finite. We introduce the superlevel sets Xi = X \Xi. If f was our Morse-type function for X, with critical points
p1 < · · · < pm, then for t0 < p1 < t1 < · · · < pm < tm, we set Xi = f−1(−∞, ti] and Xi = f−1[ti,∞). The extended
persistence module of X is

0 = Hk(X0)→ Hk(X1)→ · · · → Hk(Xm)→ Hk(X,Xm)→ Hk(X,Xm−1)→ · · · → Hk(X,X0) = 0.

Definition 3.2.3. The persistence of a homology class in a persistence module conveys the idea of how long it is
alive, presented by a persistence pair.

first alive at last alive at persistence pair
Xi Xj (i, j + 1)
Xi (X,Xj) (i, j)

(X,Xi) (X,Xj) (i+ 1, j)
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The persistence of all homology classes in a persistence module is often presented in a persistence diagram, the
collection of persistence pairs (i, j), or (pi, pj) or (f(pi), f(pj)), as desired; or a linear barcode, the collection of
persistence pairs (i, j) as intervals [i, j], ordered vertically.

Example 3.2.4. Let X = Tn = (S1)n be the n-torus. One filtration of X is X0 = ∅ and Xi = T i for 1 6 i 6 n. Note
that Hk(Tn, Tn \Xn) = Hk(Tn) and Hk(Tn, Tn \X0) = Hk(∅). The first n+ 1 modules of the extended persistence

module at level k split into
(
n
k

)
sequences, as Hk(Tn) = Z(nk). Geometric considerations allow Xi = Tn \ T i to be

simplified in some cases. For instance, when n = 3 and k = 0, 1 we have that H̃k(T 3, T 3 \ T 2) ∼= H̃k(T 3, T 2) ∼=
H̃k(T 3/T 2), and knowing that X1 = T 3 \ T 1 ' (S1 ∨ S1) × S1, the relevant part of the long exact sequence for
relative homology is

H̃1(X1) H̃1(T 3) H̃1(T 3, X1) H̃0(X1).

Z3 Z3 A 0

f g
= = = =

The two 1-cycles from S1 ∨ S1 ⊂ X1 map via f to the same 1-cycle in T 3, hence im(g) = Z2. By exactness,
ker(g) = Z2, and as g is surjective, A = Z. Hence the extended persistence k-modules decompose as

Hk(∅) Hk(T 1) Hk(T 2) Hk(T 3) Hk(T 3) H̃k(T 3, X2) H̃k(T 3, X1) Hk(∅)

Z Z Z Z,

Z Z Z Z

Z Z Z

Z Z Z Z.

k = 0:

k = 1:

⊕

⊕

The persistence pairs are (1, 3) with multiplicity 2 and (2, 3), (3, 1) with multiplicity 1. The persistence diagrams
and barcodes of the degree 0 and 1 homology classes are given below.

0, 1 1 1

1

2

3

∞

1 2 3

persistence diagram

0, 1 1

1
1

2

3

1 2 3

extended persistence diagram

1 2 3

0
1
1
1

barcode

The diagonal y = x is often given to indicate how short a lifespan a class has. Barcodes are usually not given for
extended persistence diagrams, as length of a class (birth to death) is less important than position (above or below
the diagonal).

Now we consider some generalizations of the ideas presented above.

Remark 3.2.5. A filtration can also be viewed as a diagram X0 → X1 → · · · → Xm, where each arrow is the
inclusion map. We could generalize and consider a zigzag diagram, a sequence X0 ↔ X1 ↔ · · · ↔ Xm, where ↔
represents either → or →. Homology can be applied and the resulting seuquence can also be uniquely decomposed
into summands k ↔ · · · ↔ k where every arrow is the identity, giving zigzag persistent homology.

Remark 3.2.6. A filtration could also be viewed as a functor F : {0, . . . ,m} → Top, where F (i) = Xi and F (i→ j),
for j > i, is the composition of maps Xi → · · · → Xj . Hence the degree-k persistent homology of Xi can be defined
as the image of the maps HkF (i→ j), for all j > i, and the functor HkF : {0, . . . ,m} → Vec may be viewed as the
kth persistence module. This is a categorification of persistent homology.



89

Remark 3.2.7. A space X can be filtered in several different ways. A multifiltration Xα, for α a multi-index, is a
collection of filtrations such that fixing all but one of the indices in α gives a (one-dimensional) filtration of X. The
multidimensional persistence of Xα is a |α|-dimensional grid of homology groups, with the barcode generalizing to
the rank invariant, a map on the grid.

Another generalization, viewing filtrations as quivers, will not be discussed here, but rather presented as a sepa-
rate post later.

References: Edelsbrunner and Morozov (Persistent homology: theory and practice), Carlsson, de Silva, and
Morozov (Zigzag persistent homology and real-valued functions), Bubenik and Scott (Categorification of persistent
homology), Carlsson and Zomorodian (The theory of multidimensional persistence)

3.3 Distance and persistence diagrams

2017-04-09

Keywords: persistent homology, extended persistence, persistence diagram, Wasserstein distance, bottleneck distance

We assume we have a Morse-type function f : X → R, whose associated persistence diagram is D(f) =
{f1, . . . , fn}, which we will think of as a collection of persistence birth-death pairs fi in the extended real plane
(R∗)2. If the topological space X was filtered without such a function, define one by x 7→ i where i is the smallest
index such that x ∈ Xi.

Definition 3.3.1. Let f, g : X → R be two Morse-type functions with associated persistence diagrams D(f), D(g).
The (Wasserstein) q-distance between f and g is defined as

Wq(f, g) := inf
σ∈Sn

(
n∑
i=1

||fi − gσ(i)||q∞

)1/q

.

The bottleneck distance between f and g is

W∞(f, g) := lim
q→∞

{Wq(f, g)} (limit of q-distances)

= max
i

{
||fi − gσ(i)||∞ : σ = argWq(f, g)

}
. (length of longest edge in best matching)

Example 3.3.2. Consider the torus of inner and outer radius 1 embedded in the natural way. Left f, g : T 2 → R
be height functions of the torus, but projecting to the planes z = −2 and z = x − 4, respectively. Note all critical
points occur on the plane y = 0. Below, the slice at this plane is given (distances along planes from the first critical
point are shown), as well as D(f), D(g) on the same diagram (degrees of homology classes are shown).

2
√

2 + 2

2
√

2

2

0

0 2 4 6

∞

0 2 4 62 √
2

2
+

2 √
2

0,0 1,1 1 1 2 2



90

For D(f) = {(0,∞), (2,∞), (4,∞), (6,∞)} and D(g) = {(0,∞), (2,∞), (2
√

2,∞), (2 + 2
√

2,∞)}, it is clear that
σ = id will be the best matching. The q-distance between f and g is then given by

Wq(f, g) =
(
||(4,∞)− (2

√
2,∞)||q∞ + ||(6,∞)− (2 + 2

√
2,∞)||q∞

)1/q

= 21/q(4− 2
√

2),

with bottleneck distance 4 − 2
√

2. However, we would like to say that these two functions are the same in some
way, as no critical points are switched, and extended persistence allows us to do that. The decomposed extended
persistence module is given below.

∅
∼ ∼ ∼

∅

Hk(X0) Hk(X1) Hk(X2) Hk(X3) Hk(X4) Hk(X4) H̃k(X,X3) H̃k(X,X2) H̃k(X,X1) Hk(∅)

Z

Z

Z

Z

Z

Z

Z

Z

0-class:

1-class:

1–class:

2-class:

The extended persistence classes have length 3 ((1, 4) for the 0-class, (4, 1) for the 2-class) and 1 ((2, 3) and (3, 2) for
the 1-classes), no matter if we use f or g to define the Xi and Xj .

Remark 3.3.3. An interesting question to ask is how long does it take for an essential homology class to be built?
Some things to keep in mind while resolving this question:

- The 0-class case should be treated spearately because of reduced homology
- A class may be encountered several times (like the first 1-class in the example above)
- What does it mean for a class to be “begin being built” (this is probably the key)
- A class is certainly “done being built” (the first time) when it first appears in the persistence module

It seems that the extended persistence pair gives the length between when the class is “done being built” the first
time f encounters it fully and when it “begins to be built” the last time f encounters it.

The bottleneck distance satisfies a nice stability condition for tame functions f : X → R, which have finite
dimensional homology groups Hk(f−1(−∞, a]) for all a ∈ R.

Theorem 3.3.4. [Cohen-Steiner, Edelsbrunner, Harer 2007]
Let f, g : X → R be tame. Then W∞(f, g) 6 ||f − g||∞.

This bound is reached when g = f + c for some constant c, and the Wasserstein distance is 0 when g(pi) = f(pi)
for all critical values. Hence it seems without stronger assumptions about f and g, this bound is as good as we can
get.

References: Edelsbrunner and Morozov (Persistent homology: theory and practice), Cohen-Steiner, Edelsbrunner
and Harer (Stability of persistence diagrams)

3.4 Categories and the TDA pipeline

2017-05-21

Keywords: persistent homology, TDA, categories, functor, filtration, frame, barcode

This post contains topics and ideas from ACAT at HIM, April 2017, as presented by Professor Ulrich Bauer (see
slide 11 of his presentation, online at ulrich-bauer.org/persistence-bonn-talk.pdf). The central theme is to
assign categories and functors to analyze the process

filtration −→ (co)homology −→ barcode. (pipe)

ulrich-bauer.org/persistence-bonn-talk.pdf
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Remark 3.4.1. The categories we will use are below. For filtrations, we have the ordered reals (though any poset
P would work) and topological spaces:

R : Obj(R) = R, Top : Obj(Top) = {topological spaces},

Hom(r, s) =

{
{r 7→ s}, if r 6 s,

∅, else,
Hom(X,Y ) = {functions f : X → Y }.

For (co)homology groups, we have the category of (framed) vector spaces. We write V n for V ⊕n = V ⊕ V ⊕ · · · ⊕ V ,
and en for a frame of V n (see below).

Vect : Obj(Vect) = {V ⊕n : 0 6 n <∞},
Hom(V n, V m) = {homomorphisms f : V n → V m},

Vectfr : Obj(Vectfr) = {V n × en : 0 6 n <∞},
Hom(V n × en, V m × em) = {hom. f : V n → V m, g : en → em, g ∈ Mat(n,m)}.

Finally for barcodes, we have ∆, the category of finite ordered sets, and its variants. A partial injective function, or
matching f : A9 B is a bijection A′ → B′ for some A′ ⊆ A, B′ ⊆ B.

∆ : Obj(∆) = {[n] = (0, 1, . . . , n) : 0 6 n <∞},
Hom([n], [m]) = {order-preserving functions f : [n]→ [m]},

∆′ : Obj(∆′) = {a = (a0 < a1 < · · · < an) : ai ∈ Z>0, 0 6 n <∞},
Hom(a, b) = {order-preserving functions f : a→ b},

∆′′ : Obj(∆′′) = {a = (a0 < a1 < · · · < an) : ai ∈ Z>0, 0 6 n <∞},
Hom(a, b) = {order-preserving partial injective functions f : a9 b}.

Definition 3.4.2. A frame e of a vector space V n is equivalently:
- an ordered basis of V n,
- a linear isomorphism V n → V n, or
- an element in the fiber of the principal rank n frame bundle over a point.

Frames (of possibly different sizes) are related by full rank elements of Mat(n,m), which contains all n × m
matrices over a given field.

Definition 3.4.3. Let (P,6) be a poset. A (indexed topological) filtration is a functor F : P → Top, with

Hom(F (r), F (s)) =

{
{ι : F (r) ↪→ F (s)}, if r 6 s,

∅, else,

where ι is the inclusion map. That is, we require F (r) ⊆ F (s) whenever r 6 s.

Definition 3.4.4. A persistence module is the composition of functors Mi : P
F−−→ Top

Hi−−−→ Vect.

Homology will be taken over some field k. A framed persistence module is the same composition as above, but
mapping into Vectfr instead. The framing is chosen to describe how many different vector spaces have already been
encountered in the filtration.

Definition 3.4.5. A barcode is a collection of intervals of R. It may also be viewed as the composition of functors

Bi : P
F−−→ Top

Hi−−−→ Vect
dim−−−→ ∆.

Similarly as above, we may talk about a framed barcode by instead mapping into Vectfr and then to ∆′′, keeping
track of which vector spaces we have already encountered. This allows us to interpret the process (pipe) in two
different ways. First we have the unframed approach

Top → Vect → ∆,
Xt 7→ Hi(Xt; k) 7→ [dim(Hi(Xt; k))].
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The problem here is interpreting the inclusion Xt ↪→ Xs as a map in ∆, for instance, in the case when Hi(Xt; k) ∼=
Hi(Xs; k), but Hi(Xt ↪→ Xs) 6= id. To fix this, we have the framed interpretation of (pipe)

Top → Vectfr → ∆′′,
Xt 7→ Hi(Xt; k)× e 7→ [e].

The first map produces a frame e of size n, where n is the total number of different vector spaces encountered over
all t′ 6 t, by setting the first dim(Hi(Xt; k)) coordinates to be the appropriate ones, and then the rest. This is done
with the second map to ∆′′ in mind, as the size of [e] is dim(Hi(Xt; k)), with only the first dim(Hi(Xt; k)) basis
vectors taken from e. As usual, these maps are best understood by example.

Example 3.4.6. Given the closed curve X in R2 below, let ϕ : X → R be the height map from the line 0, with
Xi = ϕ−1(−∞, i], for i = r, s, t, u, v. Let ei be the standard ith basis vector in RN .

0 r s t u v

Xr 7→ k × (e1) 7→ (1)

Xs 7→ k2 × (e1, e2) 7→ (1 < 2)

Xt 7→ k × (e1, e2) 7→ (1)

Xu 7→ k2 × (e1, e3, e2) 7→ (1 < 3)

Xv 7→ k × (e1, e2, e3) 7→ (1)

Remark 3.4.7. This seems to make (pipe) functorial, as the maps Xt ↪→ Xt′ may be naturally viewed as partial
injective functions in ∆′′, to account for the problem mentioned with the unframed interpretation. However, we have
traded locality for functoriality, as the image of Xt in ∆′′ can not be calculated without having calculated Xt′ for
all t′ < t.

References: Bauer (Algebraic perspectives of persistence), Bauer and Lesnick (Induced matchings and the alge-
braic stability of persistence barcodes)
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4 The Ran space - stratifications

4.1 Constructible sheaves

2017-06-13

Keywords: sheaf, constructible sheaf, derived category, Ran space, distance, filtration

Let X be a topological space with an open cover U = {Ui}, and category Op(X) of open sets of X. The goal is to
define constructible sheaves and consider some applications. Thanks to Joe Berner for helpful pointers in this area.

Definition 4.1.1. Constructible subsets of X are the smallest family F of subsets of X such that
- Op(X) ⊂ F ,
- F is closed under finite intersections, and
- F is closed under complements.

This idea can be applied to sheaves. Recall that a locally closed subset of X is the intersection of an open set and
a closed set.

Definition 4.1.2. A sheaf F over X is constructible if there exists, equivalently,
- a filtration ∅ = U0 ⊂ · · · ⊂ Un = X of X by opens such that F|Ui+1\Ui is constant for all i, or
- a cover {Vi} of locally closed subsets of X such that F|Vi is constant for all i.

Since the category of abelian sheaves over a topological space has enough injectives, we may consider an injective
resolution of a sheaf F rather than the sheaf itself. The resolution may be considered as living inside the derived
category of sheaves on X.

Definition 4.1.3. Let A be an abelian category.
- C(A) is the category of cochain complexes of A,
- K(A) = C(A) modulo cochain homotopy, and
- D(A) = K(A) modulo F ∈ K(A) such that Hn(F ) = 0 for all n, called the derived category of A.

Next we consider an example. Recall the Ran space Ran(M) = {X ⊂ M : 0 < |X| < ∞} of non-empty finite
subsets of a manifold M and the Čech complex of radius t > 0 of P ∈ Ran(M), a simplicial complex with n-cells for
every P ′ ⊂ P of size n+ 1 such that d(P ′1, P

′
2) < t for all P ′1, P

′
2 ∈ P ′.

Example 4.1.4. Consider the subset Ran62(M) = {X ⊂ M : 1 6 |X| 6 2} of the Ran space. Decompose
X = Ran62(M)×R+ into disjoint sets Uα ∪ Uβ , where

Uα =
(
Ran1(M)×R+

)︸ ︷︷ ︸
Uα,1

∪
⋃

P∈Ran2(M)

{P} × (dM (P1, P2),∞)

︸ ︷︷ ︸
Uα,2

, Uβ =
⋃

P∈Ran2(M)

{P} × (0, dM (P1, P2)],

with dM the distance on the manifold M . The idea is that for every (P, t) ∈ Uα, the Čech complex of radius t on P
has the homotopy type of a point, whereas on Uβ has the homotopy type of two points. With this in mind, define a

constructible sheaf F ∈ Shv(Ran62(M)×R+) valued in simplicial complexes, with F |Uα and F |Uβ constant sheaves.
Set

F(P,t)∈Uα = F (Uα) = (0→ {∗} → 0) , F(P,t)∈Uβ = F (Uβ) = (0→ {∗, ∗} → 0) .

Note that the chain complex F (Uα) is chain homotopic to 0 → {−} → {∗, ∗} → 0, where − is a single 1-cell with
endpoints ∗, ∗. To show that this is a constructible sheaf, we need to filter Ran62(M)×R+ into an increasing sequence
of opens. For this we use a distance on Ran62(M) × R+, given by d((P, t), (P ′, t′)) = dRan(M)(P, P

′) + dR(t, t′),
where dR(t, t′) = |t− t′| and

dRan(M)(P, P
′) = max

p∈P

{
min
p′∈P ′

{dM (p, p′)}
}

+ max
p′∈P ′

{
min
p∈P
{dM (p, p′)}

}
.

Note that Uα is open. Indeed, for (P, t) ∈ Uα,1, every other P ′ ∈ Ran1(M) close to P is also in Uα,1, and if
P ′ ∈ Ran2(M) is close to P , then the non-zero component t ∈ R+ still guarantees the same homotopy type. The set
Uα,2 is open as well, so Uα is open. The whole space is open, so a filtration ∅ ⊂ Uα ⊂ X works for us.
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References: Hartshorne (Algebraic geometry, Section II.3), Hartshorne (Residues and Duality, Chapter IV.1),
Kashiwara and Schapira (Sheaves on manifolds, Chapters 2 and 8), Lurie (Higher algebra, Section 5.5.1)

4.2 A constructible sheaf over the Ran space

2017-06-24

Keywords: constructible sheaf, Ran space, simplicial complex

Let M be a manifold. The goal of this post is to show that the sheaf F(P,t) = Rips(P, t) valued in simplicial

complexes over Ran6n(M) × R>0 is constructible, a goal not quite achieved (see “A naive constructible sheaf,”
2017-12-19 for a solution to the problems encountered here). This space will be described using filtered diagram of
open sets, with the sheaf on consecutive differences of the diagram giving simplicial complexes of the same homotopy
type.

Definition 4.2.1. Let P = {P1, . . . , Pn} ∈ Ran(M). For every collection of open neighborhoods {Ui 3 Pi}ni=1 of
the Pi in M , there is an open neighborhood of P in Ran(M) given by

Ran({Ui}ni=1) =

{
Q ∈ Ran(M) : Q ⊂

n⋃
i=1

Ui, Q ∩ Ui 6= ∅

}
.

Moreover, these are a basis for any open neighborhood of P in Ran(M).

Sets

We begin with a few facts about sets. Let X be a topological space.

Lemma 4.2.2. Let A,B ⊂ X. Then:
(a) If A ⊂ B is open and B ⊂ X is open, then A ⊂ X is open.
(b) If A ⊂ B is closed and B ⊂ X is open, then A ⊂ X is locally closed.
(c) If A ⊂ B is open and B ⊂ X is locally closed, then A ⊂ X is locally closed.
(d) If A ⊂ B is locally closed and B ⊂ X is locally closed, then A ⊂ X is locally closed.

Proof: For part (a), first recall that open sets in B are given by intersections of B with open sets of A. Hence there
is some W ⊂ X open such that A = B ∩W . Since both B and W are open in X, the set A is open in X.

For part (b), since A ⊂ B is closed, there is some Z ⊂ X closed such that A = B ∩ Z. Since B is open in X, A
is locally closed in X.

For parts (c) and (d), let B = W1 ∩W2, for W1 ⊂ X open and W2 ⊂ X closed. For part (c), again there is some
W ⊂ X open such that A = B ∩W . Then A = (W1 ∩W2) ∩W = (W ∩W1) ∩W2, and since W ∩W1 is open in X,
the set A is locally closed in X.

For part (d), let A = Z1 ∩ Z2, where Z1 ⊂ B is open and Z2 ⊂ B is closed. Then there exists Y1 ⊂ X open such
that Z1 = B ∩ Y1 and Y2 ⊂ X closed such that Z2 = B ∩ Y2. So A = Z1 ∩Z2 = (B ∩ Y1)∩ (B ∩ Y2) = (B ∩ Y1)∩ Y2,
where (B ∩ Y1) ⊂ X is open and Y2 ⊂ X is closed. Hence A ⊂ X is locally closed. �

Lemma 4.2.3. Let U ⊂ X be open and f : X → R continuous. Then
⋃
x∈U{x} × (f(x),∞) is open in X ×R.

Proof: Consider the function
g : X ×R → X ×R,

(x, t) 7→ (x, t− f(x)).

Since f is continuous and subtraction is continuous, g is continuous (in the product topology). Since U × (0,∞) is
open in X ×R, the set g−1(U × (0,∞)) is open in X ×R. This is exactly the desired set. �

Filtered diagrams

Definition 4.2.4. A filtered diagram is a directed graph such that
- for every pair of nodes u, v there is a node w such that there exist paths u→ w and v → w, and

- for every multi-edge u
1,2→ v, there is a node w such that u

1→ v → w is the same as u
2→ v → w.
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For our purposes, the nodes of a filtered diagram will be subsets of Rann(M)×R>0 and a directed edge will be
open inclusion of one set into another set (that is, the first is open inside the second). Although we require below
that loops u→ u be removed, we consider the first condition above to be satisfied if there exists a path u→ v or a
path v → u.

Remark 4.2.5. In the context given,
- edge loops U → U and path loops U → · · · → U may be replaced by a single node U (U ⊆ U is the identity),
- multi-edges U→→V may be replaced by a single edge U → V (inclusions are unique), and
- multi-edges U←→V may be replaced by a single node U (if U ⊆ V and V ⊆ U , then U = V ).

A diagram with all possible replacements of the types above is called a reduced diagram.

Lemma 4.2.6. In the context above, a reduced filtered diagram D of open sets of any topological space X gives an
increasing sequence of open subsets of X, with the same number of nodes.

Proof: Order the nodes of D so that if U → V is a path, then U has a lower index than V (this is always possible in
a reduced diagram). Let U1, U2, . . . , UN be the order of nodes of D (we assume we have finitely many nodes). For
every pair of indices i, j, set

δij =

{
∅ if Ui → Uj is a path in D,

Ui if Ui → Uj is not a path in D.

Then the following sequence is an increasing sequence of nested open subsets of X:

U1 → δ12 ∪ U2 → δ13 ∪ δ23 ∪ U3 → · · · →

(
j−1⋃
i=1

δij

)
∪ Uj︸ ︷︷ ︸

Vj

→ · · · → UN .

Indeed, if Ui → Uj is a path in D, then Ui is open in Vj , as Ui ⊂ Vj . If Ui → Uj is not a path in D, then Ui is still
open in Vj , as Ui ⊂ Vj . As unions of opens are open, and by Lemma 4.2.2(a), Vj−1 is open in Vj for all 1 < j < N .
�

Remark 4.2.7. Note that every consecutive difference Vj \ Vj−1 is a (not necessarily proper) subset of Uj .

Definition 4.2.8. For k ∈ Z>0, define a filtered diagram Dk over Rank(M) ×R>0 by assigning a subset to every
corner of the unit N -hypercube in the following way: for the ordered set S = {(i, j) : 1 6 i < j 6 k} (with
|S| = N = k(k − 1)/2), write P = {P1, . . . , Pk} ∈ Rank(M), and assign

(δ1, . . . , δk) 7→
{

(P, t) ∈ Rank(M)×R>0 : t > d(P(S`)1 , P(S`)2) whenever δ` = 0, ∀ 1 6 ` 6 k
}
,

where δ` ∈ {0, 1} for all `, and d(x, y) is the distance on the manifold M between x, y ∈M . The edges are directed
from smaller to larger sets.

Remark 4.2.9. This diagram has 2k(k−1)/2 nodes, as k(k − 1)/2 is the number of pairwise distances to consider.
Moreover, the difference between the head and tail of every directed edge is elements (P, t) for which Rips(P, t) is
constant.

Example 4.2.10. For example, if k = 3, then 23·2/2 = 8, and D3 is the diagram below. For ease of notation, we
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write {t > · · · } to mean {(P, t) : P = {P1, P2, P3} ∈ Ran3(M), t > · · · }.

 t > d(P1, P2)
t > d(P1, P3)
t > d(P2, P3)



{
t > d(P1, P3)
t > d(P2, P3)

}

{
t > d(P1, P2)
t > d(P2, P3)

}

{
t > d(P1, P2)
t > d(P1, P3)

}

{t > d(P2, P3)}

{t > d(P1, P3)}

{t > d(P1, P2)}

Ran3(M)×R>0

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

The diagram of corresponding Vietoris–Rips complexes introduced at each node is below. Note that each node
contains elements (P, t) whose Vietoris–Rips complex may be of type encountered in any paths leading to the node.

Lemma 4.2.11. In the filtered diagram Dk, every node is open inside every node following it.

Proof: The left-most node of Dk may be expressed as

{(P, t) : P = {P1, . . . , Pk} ∈ Rank(M), t > d(Pi, Pj) ∀ Pi, Pj ∈ P} =
⋃

P∈Rank(M)

{P} ×
(

max
Pi,Pj∈P

{d(Pi, Pj)},∞
)
.

Applying a slight variant of Lemma 4.2.3 (replacing R by an open ray that is bounded below), with the max function
continuous, we get that the left-most node is open in the nodes one directed edge away from it. Repeating this
argument, we get that every node is open inside every node following it. �
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The constructible sheaf

Recall that a constructible sheaf can be given in terms of a nested cover of opens or a cover of locally closed sets
(see post “Constructible sheaves,” 2017-06-13). The approach we take is more the latter, and illustrates the relation
between the two. Let n ∈ Z>0 be fixed.

Definition 4.2.12. Define a sheaf F over X = Ran6n(M) ×R>0 valued in simplicial complexes, where the stalk
F(P,t) is the Vietoris–Rips complex of radius t on the set P . For any subset U ⊂ X such that F(P,t) is constant for
all (P, t) ∈ U , let F(U) = F(P,t).

Note that we have not described what F(U) is when U contains stalks with different homotopy types. Omitting
this (admittedly large) detail, we have the following:

Theorem 4.2.13. The sheaf F is constructible.

Proof: First, by Remark 5.5.1.10 in Lurie, we have that Rann(M) is open in Ran6n(M). Hence Ran6n−1(M) is
closed in Ran6n(M). Similarly, Ran6n−2(M) is closed in Ran6n−1(M), and so closed in Ran6n(M), meaning that
Ran6k(M) is closed in Ran6n(M) for all 1 6 k 6 n. This implies that Ran>k(M) is open in Ran6n(M) for all
1 6 k 6 n, meaning that Rank(M) is locally closed in Ran6n(M), for all 1 6 k 6 n.

Next, for every 1 6 k 6 n, let Vk,1 → · · · → Vk,Nk be a sequence of nested opens covering Rank(M) × R>0,
as given in Definition 4.2.8 and flattened by Lemma 4.2.6. The sets are open by Lemma 4.2.11. This gives a cover
Vk = {Vk,1, Vk,2, \Vk,1, . . . , Vk,Nk \ Vk,Nk−1} of Rank(M) ×R>0 = Vk,Nk by consecutive differences, with Vk,1 open
in Vk,Nk and all other elements of Vk locally closed in Vk,Nk , by Lemma 4.2.2(b). By Lemma 4.2.2 parts (c) and (d),

every element of Vk is locally closed in Ran6n(M)×R>0, and so V =
⋃n
k=1 Vk covers Ran6n(M)×R>0 by locally

closed subsets.
Finally, by Remarks 4.2.7 and 4.2.9, over every V ∈ V the function Rips(P, t) is constant. Hence F|V is a locally

constant sheaf, for every V ∈ V. As the V are locally closed and cover X, F is constructible. �

References: Lurie (Higher algebra, Section 5.5.1)

4.3 The Ran space and singularity sets

2017-08-11

Keywords: Ran space, singularity, dense set, triangle inequality, base of topology

Fix a manifold M along with an embedding of M into RN and set X = Ran(M)×R>0. The goal of this post is
to show that every (P, t) ∈ X has an open neighborhood that contains no points of the type (Q, d(Qi, Qj)), for some
i 6= j. The collection of all such elements of X is called the singularity set of X, as the Vietoris–Rips complex at Q
with such a radius changes at such elements.

Following Lurie, given a collection of open sets {Ui}ki=1 in M , set

Ran({Ui}ki=1) =

{
P ∈ Ran(M) : P ⊂

k⋃
i=1

Ui, P ∩ Ui 6= ∅ ∀ i

}
.

The topology on Ran(M) is the smallest topology for which every Ran({Ui}ki=1) is open, for any {Ui}ki=1, for any k.
The topology on the product X is the product topology.

Remark 4.3.1. Note that the Ran space Ran(M) by itself can be split up into the pieces Rank(M), with “singulari-
ties” viewed as when a point splits into two (or more) points, or two (or more) combine into one. Then every element
of Ran(M) is on the edge of the singularity set, as any neighborhood of a single point on the manifold contains two
points on the manifold.

Fix (P, t) ∈ X not in the singularity set of X, with P = (P1, . . . , Pk), for 1 6 k 6 n. Set

µ = min

{
t, min

16i<j6k
{|t− d(Pi, Pj)|}

}
,

with distance d being Euclidean distance in RN . The quantity µ should be thought of as the upper bound on how
“far” we may move from (P, t) without hitting the singularity set.
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Proposition 4.3.2. Let (P, t) be as above and t, α, β > 0 such that α+ β = µ. Then

U = Ran
(
{B(Pi, α/2)}ki=1

)
× (t− β, t+ β)

is an open neighborhood of (P, t) in X and does not contain any points of the singularity set of X.

If t = 0, then having [0, β) as the second component of U , with α+β = mini,j d(Pi, Pj) works as the open neighbor-

hood of (P, t). The balls B(x, r) are N -dimensional in RN . The proof is mostly applications of the triangle inequality.

Proof: By construction we have that U is open in X and that it contains (P, t). For (Q, s) ∈ U any other element,
we have three cases. We will show that the distance between any two Qa, Qb ∈ Q is never s. Fix distinct indices
`,m ∈ {1, . . . , k}.

Case 1: Qa, Qb ∈ B(P`, α/2). The situation looks as in the diagram below.

P`

Qa

Qb B(P`, α/2)

Observe that d(Qa, Qb) 6 d((Qa, P`) + d(Qb, P`) < α = µ− β 6 t− β. Hence d(Qa, Qb) < s.
Case 2: Qa ∈ B(P`, α/2), Qb ∈ B(Pm, α/2), d(P`, Pm) > t. The situation looks as in the diagram below.

P` Pm

Qa Qb

B(Pm, α/2)B(P`, α/2)

Observe that d(P`, Pm) 6 d(P`, Qb) + d(Pm, Qb) 6 d(P`, Qa) + d(Qa, Qb) + d(Pm, Qb) < α + d(Qa, Qb). Since
d(P`, Pm) > t, the definition of µ gives us that µ 6 d(P`, Pm)− t, so combining this with the previous inequality, we
get d(Qa, Qb) > d(P`, Pm)− α > µ+ t− (µ− β) = t+ β. Hence d(Qa, Qb) > s.

Case 3: Qa ∈ B(P`, α/2), Qb ∈ B(Pm, α/2), d(P`, Pm) < t. The situation looks as in the diagram below.

P`

Pm

Qa

Qb

B(P`, α/2)

B(Pm, α/2)

Observe that d(Qa, Qb) 6 d(Pm, Qb) + d(Pm, Qa) 6 d(P`, Qa) + d(P`, Pm) + d(Pm, Qa) < α + d(P`, Pm). Since
d(P`, Pm) < t, the definition of µ gives us that µ 6 t− d(P`, Pm), so combining this with the previous inequality, we
get d(Qa, Qb) < µ− β + t− µ = t− β. Hence d(Qa, Qb) < s. �

As an extension, it would be nice to show that the Vietoris–Rips complex of every element in U is homotopy
equivalent. This seems to be intuitively true, but a similar case analysis as above seems daunting.

References: Lurie (Higher Algebra, Section 5.5.1)

4.4 Exit paths, part 1

2017-08-31

Keywords: equalizer, fibration, simplicial set, nerve, horn, Kan complex, Kan fibration, Kan extension, infinity cat-
egory, upset, stratification, exit path

This post is meant to set up all the necessary ideas to define the category of exit paths.
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Preliminaries

Let X be a topological space and C a category. Recall the following terms:

• ∆: The category whose objects are finite ordered sets [n] = (1, . . . , n) and whose morphisms are non-decreasing
maps. It has several full subcategories, including

– ∆s, comprising the same objects of ∆ and only injective morphisms, and

– ∆6n, comprising only the objects [0], . . . , [n] with the same morphisms.

• equalizer: An object E and a universal map e : E → X, with respect to two maps f, g : X → Y . It is universal
in the sense that all maps into X whose compositions with f, g are equal factor through e. Equalizers and
coequalizers are described by the diagram below, with universality given by existence of the dotted maps.

A

E X Y C

B

e cf

g

• fibered product or pullback: The universal object X×Z Y with maps to X and Y , with respect to maps X → Z
and Y → Z.

• fully faithful: A functor F whose morphism restriction Hom(X,Y ) → Hom(F (X), F (Y )) is surjective (full)
and injective (faithful).

• locally constant sheaf: A sheaf F over X for which every x ∈ X has a neighborhood U such that F|U is a
constant sheaf. For example, constructible sheaves are locally constant on every stratum.

• simplicial object: A contravariant functor from ∆ to any other category. When the target category is Set, it is
called a simplicial set. They may also be viewed as a collection S = {Sn}>0 for Sn = S([n]) the value of the
functor on each [n]. Simplicial sets come with two natural maps:

– face maps di : Sn → Sn−1 induced by the map [n− 1]→ [n] which skips the ith piece, and

– degeneracy maps si : Sn → Sn+1 induced by the map [n+ 1]→ [n] which repeats the ith piece.

• stratification: A property of a cover {Ui} of X for which consecutive differences Ui+1\Ui have “nicer” properties
than all of X. For example, Ei → Ui+1 \ Ui is a rank i vector bundle, but there is no vector bundle E → X
that restricts to every Ei.

Now we get into new territory.

Definition 4.4.1. The nerve of a category C is the collection N(C) = {N(C)n = Fun([n], C)}n>0, where [n] is
considered as a category with objects 0, . . . , n and a single morphism in Hom[n](s, t) iff s 6 t.

Note that the nerve of C is a simplicial set, as it is a functor from ∆op → Fun(∆, C). Moreover, the pieces
N(C)0 are the objects of C and N(C)1 are the morphisms of C, so all the information about C is contained in its
nerve. There is more in the higher pieces N(C)n, so the nerve (and simplicial sets in general) may be viewed as a
generalization of a category.

Kan structures

Let sSet be the category of simplicial sets. We may consider ∆n = Hom∆(−, [n]) as a contravariant functor ∆→ Set,
so it is an object of sSet.

Definition 4.4.2. Fix n > 0 and choose 0 6 i 6 n. Then the ith n-horn of a simplicial set is the functor Λni ⊂ ∆n

generated by all the faces ∆n(dj), for j 6= i.
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We purposefully do not describe what “⊂” or “generated by” mean for functors, hoping that intuition fills in the
gaps. In some sense the horn feels like a partially defined functor (though it is a true simplicial set), well described
by diagrams, for instance with n = 2 and i = 1 we have

0

1

2︸ ︷︷ ︸
Λ2

1

⊂
0

1

2︸ ︷︷ ︸
∆2

.

Definition 4.4.3. A simplicial set S is a Kan complex whenever every map f : Λni → S factors through ∆n. That
is, when there exists a map f ′ : ∆n → S such that the diagram below commutes.

∆n

Λni S
f

ι
f ′

The map ι is the inclusion. Moreover, S is an ∞-category, or quasi-category, if the extending map f ′ is unique.

Example 4.4.4. Some basic examples of ∞-categories, for X a topological space, are
- Sing(X), made up of pieces Sing(X)n = Hom(∆n, X), and
- LCS(X), the category of locally constant sheaves over X. Here LCS(X)n over an object A, whose objects are

B → A and morphisms are the appropriate commutative diagrams

Definition 4.4.5. A morphism p ∈ HomsSet(S, T ) is a Kan fibration if for every commutative diagram (of solid
arrows)

∆n

Λni S

T

ι p

the dotted arrow exists, making the new diagram commute.

Definition 4.4.6. Let C,D,A be categories with functors F : C → D and G : C → A.

- The left Kan extension of F along G is a functor A
L−→ D and a universal natural transformation F

λ
 L ◦G.

- The right Kan extension of F along G is a functor A
R−→ D and a universal natural transformation R ◦G ρ

 F .

C D

A

F

G L

R=
⇒

=⇒

λ ρ

Exit paths

The setting for this section is constructible sheaves over a topological space X. We begin with a slightly more
technical definition of a stratification.

Definition 4.4.7. Let (A,6) be a partially ordered set with the upset topology. That is, if x ∈ U is open and x 6 y,
then y ∈ A. An A-stratification of X is a continuous function f : X → A.

We now begin with a Treumann’s definition of an exit path, combined with Lurie’s stratified setting.

Definition 4.4.8. An exit path in an A-stratified space X is a continuous map γ : [0, 1]→ X for which there exists
a pair of chains a1 6 · · · 6 an in A and 0 = t0 6 · · · 6 tn = 1 in [0, 1] such that f(γ(t)) = ai whenever t ∈ (ti−1, ti].



101

This really is a path, and so gives good intuition for what is happening. Recall that the geometric realization of
the functor ∆n is |∆n| = {(t0, . . . , tn) ∈ Rn+1 : t0 + · · ·+ tn = 1}. Oserving that [0, 1] ∼= |∆1|, Lurie’s definition of
an exit path is more general by instead considering maps from |∆n|.

Definition 4.4.9. The category of exit paths in an A-stratified space X is the simplicial subset SingA(X) ⊂
Sing(X) consisting of those simplices γ : |∆n| → X for which there exists a chain a0 6 · · · 6 an in A such that
f(γ(t0, . . . , ti, 0, . . . , 0)) = ai for ti 6= 0.

Example 4.4.10. As with all new ideas, it is useful to have an example. Consider the space X = Ran62(M)×R>0

of a closed manifold M (see post “A constructible sheaf over the Ran space” 2017-06-24 for more). With the poset
(A,6) being (a 6 b 6 c) and stratifying map

f : X → A,

(P, t) 7→


a if P ∈ Ran1(M),

b if P ∈ Ran2(M), t 6 d(P1, P2),

c else,

we can make a continuous map γ : ∆3 → X by

(1, 0, 0) 7→ (P ∈ Ran1(M), 0),
(t0, t1 6= 0, 0) 7→ (P ∈ Ran2(M), d(P1, P2)),

(t0, t1, t2 6= 0) 7→ (P ∈ Ran2(M), t > d(P1, P2)).

Then f(γ(t0 6= 0, 0, 0)) = a, and f(γ(t0, t1 6= 0, 0)) = b, and f(γ(t0, t1, t2 6= 0)) = c, as desired. The embedding of
such a simplex γ is described by the diagram below.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

γ
γ

γ

γ

Both the image of (1, 0, 0) and the 1-simplex from (1, 0, 0) to (0, 1, 0) lie in the singularity set of Ran62(M)×R>0,
which is pairs (P, t) where t = d(Pi, Pj) for some i, j. The idea that the simplex “exits” a stratum is hopefully made
clear by this image.

References: Lurie (Higher algebra, Appendix A), Lurie (What is... an ∞-category?), Groth (A short course on
∞-categories, Section 1), Joyal (Quasi-categories and Kan complexes), Goerss and Jardine (Simplicial homotopy
theory, Chapter 1), Treumann (Exit paths and constructible stacks)

4.5 Stratifying correctly

2017-09-17

Keywords: stratification, upset, poset, group action, continuity

In a previous blog post (“A constructible sheaf over the Ran space,” 2017-06-24) it was claimed that there was a
particular constructible sheaf over Ran6n(M)×R>0. However, the proof actually uses finite ordered subsets of M to
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make the stratification, rather than finite unordered subsets. This means that the sheaf is actually over M×n×R>0,
and in this post we try to fix that problem.

Let ∆n be the “fat diagonal” of M×n, that is, the collection of P ∈M×n for which at least two coordinates are
the same. For every k > 0, there is an Sk action on M×k \∆k, quotienting by which we get a map

M×k \∆k
qk−−→ Rank(M)

to the Ran space of degree k. The stratification of M×k ×R>0 given in the previous post will be pushed forward to

a stratification of Rank(M)×R>0, for all 0 < k 6 n. A large part of the work already has been done, it remains to
put everything in the right order and check openness. The process is given as follows:

1. Stratify Ran6n(M)×R>0 into n pieces, each being Rank(M)×R>0.

2. Stratify (M×k \∆k)×R>0 as in the previous post.

3. Quotient by Sk-action to get stratification of Rank(M)×R>0.

Step 1

As stated in the proof of Theorem 4.2.13, Ran>k(M)×R>0 is open inside Ran6n(M)×R>0, allowing us to make

a stratification f : Ran6n(M)×R>0 → A, where A is the poset

a1 a2 a3 an−1 an
· · · ,

where the tail of an arrow is ordered lower than the head. The map f sends Rank(M) × R>0 to ak, which is a
continuous map in the upset topology on A.

Step 2

As stated in Definition 4.2.8, we have a stratification gk : (M×k \∆k) ×R>0 → Bk, where Bk may be viewed as a
directed graph Bk = (Vk, Ek). The vertex set is Vk = {0, 1}k(k+1)/2, whose elements are strings of 1 and 0, and the
edge set Ek contains v → v′ iff dH(v, v′) = 1 and dH(v, 0) < dH(v′, 0), for dH the Hamming distance. Let Uv ⊂ Bk
denote the upset based at v, that is, all elements v′ ∈ Bk with v 6 v′.

Order all distinct pairs (i, j) ∈ {1, . . . , k}2, of which there are k(k + 1)/2. Under the stratifying map gk, each
upset Uv based at the vertex v ∈ {0, 1}k(k+1)/2 receives elements (P, t) ∈ (M×k \∆k)×R>0 satisfying t > d(Pi, Pj)
whenever the position representing (i, j) in v is 1. For example, when k = 3,

000

100

010

001

110

101

011

111

U110

U001

{(P, t) : d(P1, P2) > t, d(P1, P3) > t} 7→ U110,

{(P, t) : d(P2, P3) > t} 7→ U001.

To check that gk is continuous in the upset topology, we restate Lemma 4.2.3 in a clearer way.

Lemma 4.5.1. Let U ⊂ X be open and ϕ : X → A ⊂ R>0 continuous, with |A| <∞. Then⋃
x∈U
{x} × (ϕ(x),∞) ⊆ X × (z′,∞)

is open, for any z′ 6 z := minx∈U{ϕ(x)}.
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Proof: Consider the function
ψ : X × (z′,∞) → X × (−∞, z),

(x, t) 7→ (x, ϕ(x)− t).

Since ϕ is continuous and subtraction is continuous, ψ is continuous (in the product topology). Since U × (−∞, 0)
is open in X × (−∞, z), the set ψ−1(U × (−∞, 0)) is open in X × (z′,∞). For any x ∈ U and t = ϕ(x), we have
ϕ(x)− t = 0. For any x ∈ U and t→∞, we have ϕ(x)− t→ −∞. It is immediate that all other t ∈ (ϕ(x),∞) give
ϕ(x)− t ∈ (−∞, 0). Hence ψ−1(U × (−∞, 0)) is the collection of points (x, t) with t ∈ (ϕ(x),∞), which is then open
in X × [0, z′). �

Applying Lemma 4.5.1 to U = X = M×k \∆k and ϕ(P ) = maxi 6=j{d(Pi, Pj)}, which is continuous, gives that
g−1
k (U11···1) ⊆ M×k \ ∆k is open. This also works to show that g−1

k (Uv) ⊆ g−1
k (Uv′) is open, for any v′ 6 v, by

limiting the pairs of indices iterated over by the function ϕ. Hence gk is continuous.

Step 3

The symmetric group Sk acts on (M×k \∆k)×R>0 by permuting the order of elements in the first factor. That is,
for σ ∈ Sk, we have

σ(P = {P1, . . . , Pk}, t) = ({Pσ(1), . . . , Pσ(k)}, t).

Note that ((M×k \∆k)×R>0)/Sk = Rank(M)×R>0.

Remark 4.5.2. Graph isomorphism for two graphs with k vertices may also be viewed as the equivalence relation
induced by Sk acting on Γk = {simple vertex-labeled graphs with k vertices}. First, let Gv be the (unique) graph
first introduced at element v ∈ Bk by gk. That is, we have Gv = V R(P, t)1 (the ordered 1-skeleton of the Vietoris–
Rips complex on the set P with radius t) whenever gk((P, t)) ∈ Uv and gk((P, t)) 6∈ Uv′ for any v′ 6 v, v′ 6= v.
Then the elements of Bk are in bijection with the elements of Γk (given by v ↔ Gv), so we have Bk/Sk = B′k.
Recall that v 6 v′ in Bk iff adding an edge to Gv gives Gv′ . In Bk′ , this becomes a partial order on equivalence
classes [w] = {v ∈ Bk : σGv = Gw for some σ ∈ Sk}. We write [w] 6 [w′] iff there is a collection of pairs
{(v1, v

′
1), . . . , (v`, v

′
`)} such that vi 6 v′i for all i, and {v1, . . . , v`} = [w] and {v′1, . . . , v′`} = [w′] (there may be

repetition among the vi or v′i).

By the universal property of the quotient, there is a unique map hk : Rank(M) × R>0 → B′k that makes the
following diagram commute.

Rank(M)×R>0

(M×k \∆k)×R>0 Bk B′k
gk π

Sk y hk

This will be our stratifying map. To check that hk is continuous take U ⊆ B′k open. As π is the projection under a
group action, it is an open map, so π−1(U) ⊆ Bk is open. Since gk is continuous in the upset topology, g−1

k (π−1(U))
is open. Again, Sk y is the projection under a group action, so (Sk y)(g−1

k (π−1(U))) is open, giving continuity of hk.

4.6 Ordering simplicial complexes

2017-09-26

Keywords: informal, simplicial complex, simple graph, graph, Ran space, ordering

In the context of trying to make a constructible sheaf over the Ran space, we have made several attempts to
stratify X = Ran6n(M)×R>0 correctly, the hope being for each stratum to have a unique simplicial complex (the
Vietoris–Rips complex of the elements of X). In this post we make some observations and examine what it means
to move around in X.
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We use the convention that a Vietoris–Rips complex V R(P, t) of an element (P, t) ∈ X contains an edge (Pi, Pj)
iff d(Pi, Pj) > t (as opposed to d(Pi, Pj) > t).

Observation 1: The VR complex V R(P, t) is completely described by its 1-skeleton sk1(V R(P, t)), as having a
complete subgraph K` ⊆ sk1(V R(P, t)) is equivalent to V R(P, t) having an (`− 1)-cell spanning that subgraph. The
1-skeleton is a simple graph G = (V,E) on k vertices, so if we can order simple graphs with 6 n vertices, we can
order VR complexes of 6 n vertices.

Let Γk be the collection of simple gaphs on k vertices. From now on we talk about an element (P = {P1, . . . , Pk}, t) ∈
X, a k-vertex VR complex S = V R(P, t), and its 1-skeleton G = sk1(V R(P, t)) ∈ Γk interchangeably. Consider the
following informal defintion of how the stratification of X should work.

Definition 4.6.1. A VR complex S is ordered lower than another VR complex T if there is a path from the
stratum of type S to the stratum of type T that does not pass through strata of type R with |V (R)| < |V (S)| or
|E(R)| < |E(S)|. If S is ordered lower than T and we can move from the stratum of type S to the stratum of type
T without passing through another stratum, then we say that S is directly below T .

To gain intuition of what this ordering means, consider the ordering on the posets B′k, as defined in a previous post
(“Stratifying correctly,” 2017-09-17) and the 1-skeleta of the VR-complexes mapped to their elements. A complete
description for k = 1, 2, 3, 4 and partially for k = 5 is given below, with arrows S → T indicating the minimal number
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of directly below relationships. That is, if S → R but also S → T and T → R, then S → R is not drawn.

B′5

B′4

B′3

B′2

B′1

The orderings on each B′k are clear and can be found in an algorithmic manner. However, it is more difficult to
see which S at level k are directly below which T at level k + 1. The green arrows follow no clear pattern.

Observation 2: If G ∈ Γk has an isolated vertex and t > 0, then it can be directly below H ∈ Γk+1 only if
|E(H)| = |E(G)|+ 1. In general, if the smallest degree of a vertex of G ∈ Γk is d and t > 0, then G can be directly
below H ∈ Γk+1 only if |E(H)| = |E(G)|+ d+ 1.

Recall the posets B′k are made by quotienting the nodes of the hypercube Bk = {0, 1}k(k−1)/2 by the action of
Sk, where an element of Bk is viewed as a graph G ∈ Γk having an edge (i, j) if the coordinate corresponding to the
edge (i, j) is 1 (there are k(k − 1)/2 pairs (i, j) of a k-element set).

Observation 3: It is not clear that G not being ordered lower than H in the hypercube context (order increases
when increasing in any coordinate) implies that the VR complex of G is not ordered lower than the VR complex of
H in X. No counterexample exists in the example given above, but this does not seem to exclude the possibility.



106

If any conclusion can be made from this, it is that this may not be the best approach to take when stratifying X.

4.7 Refining stratifications

2018-03-11

Keywords: stratification, conical stratification, partial order, ordering

The goal of this post is to describe a natural stratification associated to any stratification, with hopes of it being
conical. Let X be a topological space, (A,6A) a finite partially ordered set, and f : X → A a stratifying map.
For every x ∈ X, write A>f(x) = {a ∈ A : a > f(x)} ⊆ A, and analogously for A>f(x). For every a ∈ A, write
Xa = {x ∈ X : f(x) = a}.

Definition 4.7.1. For any other stratified space g : Y → B, a stratified map ϕ : (X → A) → (Y → B) is a pair of
maps ϕXY ∈ HomTop(X,Y ) and ϕAB ∈ HomSet(A,B) such that the diagram

A B

X Y

ϕAB

ϕXY

f g

commutes. A stratified map ϕ is an open embedding if both ϕXY and ϕXY |Xa : Xa → YϕAB(a) are open embeddings.

Recall the cone C(Y ) of a space Y is defined as Y × [0, 1)/Y × {0}.

Definition 4.7.2. A stratification f : X → A is conical at x ∈ X if there exist

• a stratified space fx : Y → A>f(x),

• a topological space Z, and

• an open embedding Z × C(Y ) ↪→ X of stratified spaces whose image contains x.

The cone C(Y ) has a natural stratification f ′x : C(Y )→ A>f(x), as does the product Z × C(Y ). The space X itself
is conically stratified if it is conically stratfied at every x ∈ X.

The image to have in mind is that Z is a neighborhood of x in its stratum Xf(x), and C(Y ) is an upwards-directed
neighborhood of f(x) in A. Now we describe how to refine the stratification of an arbitrary stratified space to make
it conical.

Definition 4.7.3. Let 6P(A) be the partial order on P(A) defined in the following way:

• For every x, y ∈ A, set x 6P(A) y whenever x 6A y, and

• for every C ∈ P(A), set C 6P(A) C
′ for all C ′ ∈ P(C).

Note that (A,6A) is open in (P(A),6P(A)) in the upset topology. Hence for i : A ↪→ P(A) the inclusion map,
i ◦ f : X → A ↪→ P(A) is also a stratifying map for X. We now define another P(A)-stratification for X.

Definition 4.7.4. Let fP : X → P(A) be defined by fP(x) = min
(P(A),6P(A))

{
C : x ∈ cl(f−1(C ′)) ∀ C ′ ∈ C

}
.

This map is well defined because for each x ∈ X there are finitely many strata f−1(a) which contain x in their
closure. The element C ∈ P(A) containing all such a is the C to which x gets mapped. We now claim this is a
stratifying map for X.

Proposition 4.7.5. The map fP : X → P(A) is continuous.
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Proof: Let C ∈ P(A). We will show that the preimage via fP of the open set UC = P(C) ⊆ P(A) is open in X (and
such sets UC are a basis of topology for P(A)). By definition of the map fP, we have

f−1
P (UC) = f−1(Umin{C′∈C}) \

 ⋃
(D,E)∈A×(A\C)

cl(f−1(D)) ∩ cl(f−1(E))

 .

By continuity of f , the set f−1(Umin{C′∈C}) is open in X, and the sets we are subtracting from this open set are all

closed. Hence f−1
P (UC) is open in X. �

Unfortunately, this stratification is difficult to work with. Recall the space Ran6n(M) × R+ for a very nice
(smooth, compact, connected, embedded) manifold M , along with the map

f : Ran6n(M)×R>0 → SC,
(P, t) 7→ V R(P, t),

for V R the Vietoris–Rips complex on P with radius t. To put a partial order on SC, we first say that S 6 T in SC
whenever there is a path γ : I → X satisfying

• f̃(γ(0)) = S and f̃(γ(1)) = T ,

• f̃(γ(t)) = f̃(γ(1)) for all t > 1.

Let (SC,6p) denote the partial order on SC generated by all relations of this type. We would like to prove some
results about fP induced by this f , and by any stratifying f in general, but the results seem difficult to prove. We
give a list, in order of (percieved) increasing difficulty.

• The stratification fP : Ran6n(M)×R+ → P(SC) is conical.

• The stratification fP : X → P(A) is conical for any stratified space f : X → A.

• If f : X → A is already conical, the map j : A → P(A) given by j(a) = {b ∈ A : f−1(a) ⊆ cl(f−1(b))} is an
isomorphism onto its image, and fP = j ◦ f .

References: Ayala, Francis, Tanaka (Local structure on stratified spaces)

4.8 Conical stratifications via semialgebraic sets

2018-04-16

Keywords: stratification, conical stratification, partial order, simplicial complex, semialgebraic, triangulation, com-
patible, piecewise linear

The goal of this post is to describe a conical stratification of Ran6n(M) × R>0 that refines the stratification
previously seen (in “Exit paths, part 2,” 2017-09-28, and “Refining stratifiations,” 2018-03-11). Thanks to Shmuel
Weinberger for the key observation that the strata under consideration are nothing more than semialgebraic sets,
which are triangulable, and so admit a conical stratification via this triangulation.

Remark 4.8.1. Fix n ∈ Z>0, let M be a smooth, compact, connected, embedded submanifold in RN , and let Mn

have the Hausdorff topology. We will be interested in Mn × R>0, though this will be viewed as the compact set
Mn × [0,K] ⊆ RnN+1 for some K large enough (for instance, larger than the diameter of M) when necessary. The
point 0 is added for compactness.

Stratification of the Ran space by semialgebraic sets

We begin by stratifying Mn ×R>0 by a poset A, creating strata based on the pairwise distance between points in
each M component. Then we take that to a stratification of the quotient Ran6n(M) ×R>0 via the action of the
symmetric group Sn and overcounting of points.
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Definition 4.8.2. Define a partial order 6 on the set A =
{

partitions of ({1, . . . , n}2 \ ∆)/S2 into 4 parts
}

of
ordered 4-tuples of sets by

(Q,R, S, T ) 6 (Q \Q′, R ∪Q′ ∪ S′, S \ (S′ ∪ S′′), T ∪ S′′) ,

for all Q′ ⊆ Q and S′, S′′ ⊆ S, with S′ ∩ S′′ = ∅.

The diagram to keep in mind is the one below, with arrows pointing from lower-ordered elements to higher-ordered
elements. Once we pass to valuing the 4-tuple in simplicial complexes, moving between Q and R will not change the
simplicial complex type (this comes from the definition of the Vietoris–Rips complex).

S
representing

pairwise
distance = t

Q
representing

pairwise
distance = 0

R
representing

pairwise
distance < t

T
representing

pairwise
distance > t

Lemma 4.8.3. The map f : Mn ×R>0 → (A,6) defined by

({P1, . . . , Pn}, t) 7→
(
{(i, j > i) : Pi = Pj}, {(i, j > i) : dM (Pi, Pj) < t},

{(i, j > i) : dM (Pi, Pj) = t}, {(i, j > i) : dM (Pi, Pj) > t}
)

is continuous in the upset topology on (A,6).

Proof: Choose (Q,R, S, T ) ∈ A and consider the open set U = U(Q,R,S,T ) based at (Q,R, S, T ). Take (P, t) ∈ f−1(U),
which we claim has a small neighborhood still contained within f−1(U). If we move a point Pi slightly that
was exactly distance t away from Pj , then the pair (i, j) was in S, but is now in either R or T , and both
(Q,R∪{(i, j)}, S\{(i, j)}, T ) and (Q,R, S\{(i, j)}, T ∪{(i, j)}) are ordered higher than (Q,R, S, T ), so the perturbed
point is still in f−1(U). If Pi = Pj in P and we move them apart slightly, since t ∈ R>0, the pair (i, j) will move
from Q to R, and (Q,R, S, T ) 6 (Q \ {(i, j)}, R ∪ {(i, j)}, S, T ), so the perturbed point is still in f−1(U). For all
pairs (i, j) in R or T , the distances can be changed slightly so that the pair still stays in R or T , respectively. Hence
f is continuous. �

This shows that Mn ×R>0 is stratified by (A,6), using Lurie’s definition of a (poset) stratification, which just
needs a continuous map to a poset. Our goal is to work with the Ran space of M , instead of the n-fold product of M ,
which are related by the natural projection map π : Mn → Ran6n(M), taking P = {P1, . . . , Pn} to the unordered
set of distinct elements in P . We also would like to stratify Ran6n(M) × R>0 by simplicial complex type, so we
need the following map.

Definition 4.8.4. Let g : (A,6) → SC be the map into simplicial complexes that takes (Q,R, S, T ) to the clique
complex of the simple graph C on n− k vertices, for |Q| = k(k + 1)/2, defined as follows:

• V (C) = {[i] : i = 1, . . . , n, [j] = [i] iff (i, j) ∈ Q},

• E(C) = {([i], [j]) : (i, j) ∈ R ∪ S}.

We require C to be simple, so if (i, j) ∈ Q and (i, `), (j, `) ∈ R ∪ S, we only add one edge ([i], [`]) = ([j], [`]) to C.
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The map g induces a partial order 6 on SC from the partial order on A, with C 6 C ′ in SC whenever there is
(Q,R, S, T ) ∈ g−1(C) and (Q′, R′, S′, T ′) ∈ g−1(C ′) such that (Q,R, S, T ) 6 (Q′, R′, S′, T ′) inA. Note that if C ∈ SC
is not in the image of g, then it is not related to any other element of SC. By the universal property of the quotient
and continuity of f and g (as A and SC are discrete), there is a continuous map h : Ran6n(M) ×R>0 → (SC,6)
such that the diagram

Ran6n(M)×R>0

Mn ×R>0 (A,6) (SC,6)
f g

π × id
h (8)

commutes. Hence Ran6n(M)×R>0 is stratified by (SC,6).

Remark 4.8.5. The map π can be thought of as a quotient by the action of the symmetric group Sn, followed by
the quotient of the equivalence relation

{P 1
1 , . . . , P

`1
1 , P 1

2 , . . . , P
`2
2 , P 1

3 , . . . , P
`k
k } ∼ {P 1

1 , . . . , P
`1−1
1 , P 1

2 , . . . , P
`2+1
2 , P 1

3 , . . . , P
`k
k }

on Mn, for all possible combinations `1 + · · ·+ `k = n and 1 6 k 6 n− 1, where P im = P jm for all 1 6 i < j 6 `m.

Semialgebraic geometry

Next we move into the world of semialgebraic sets and triangulations, following Shiota. Here we come across a more
restrictive notion of stratification of a manifold X, which requires a partition of X into submanifolds {Xi}. If Lurie’s
stratification f : X → A gives back submanifolds {f−1(a)}a∈A, then we have Shiota’s stratification. Conversely, the
poset ({Xi},6), for Xi 6 Xj iff Xi ⊆ cl(Xj) is always a stratification in the sense of Lurie.

Definition 4.8.6. A semialgebraic set in RN is a set of the form⋃
finite

{x ∈ RN : f1(x) = 0, f2(x) > 0, . . . , fm(x) > 0},

for polynomial functions f1, . . . , fm on RN . A semialgebraic stratification of a space X ⊆ RN is a partition {Xi} of
X into submanifolds that are semialgebraic sets.

Next we observe that the strata of Mn ×R>0 are semialgebraic sets, with the preimage theorem and I.2.9.1 of
Shiota, which says that the intersection of semialgebraic sets is semialgebraic. Take (Q,R, S, T ) ∈ A and note that

f−1(Q,R, S, T ) =

({P1, . . . , Pn}, t) ∈Mn ×R>0 :

d(Pi, Pj) = 0 ∀(i, j) ∈ Q,
t− d(Pi, Pj) = 0 ∀(i, j) ∈ S,
t− d(Pi, Pj) > 0 ∀(i, j) ∈ R,
d(Pi, Pj)− t > 0 ∀(i, j) ∈ T.


Here d means distance on the manifold, and we assume the metric to be analytic. Alternatively, d could be Euclidean
distance between points on the embedding of Mn ×R>0, induced by the assumed embedding of M .

For his main Theorem II.4.2, Shiota uses cells, but we opt for simplices instead, and for cell complexes we use
simplicial complexes. Every cell and cell complex admits a decomposition into simplicial complexes, even without
introducing new 0-cells (by Lemma I.3.12), so we do not lose any generality.

Definition 4.8.7. Let X,Y be semialgebraic sets.

• A map f : X → Y is semialgebraic if the graph of f is semialgebraic.

• A semialgebraic cell triangulation of a semialgebraic set X is a pair (C, π), where C is a simplicial complex and
π : |C| → X is a semialgebraic homeomorphism for which π|int(σ) is a diffeomorphism onto its image.

• A semialgebraic cell triangulation (C, π) is compatible with a family {Xi} of semialgebraic sets if π(int(σ)) ⊆ Xi

or π(int(σ)) ∩Xi = ∅ for all σ ∈ C and all Xi.

A semialgebraic cell triangulation (C, π) of X induces a stratification X → (C0 ∪ {π(int(σ))},6), where the
order is the one mentioned just before Definition 4.8.6. We use the induced stratification and the cell triangulation
interchangeably, specifically in Proposition 4.8.8.
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A compatible conical stratification

Finally we put everything together to get a conical stratification of Ran6n(M) × R>0. Unfortunately we have
to restrict ourselves to piecewise linear manifolds, or PL manifolds, which are homeomorphic images of geometric
realizations of simplicial complexes, as otherwise we cannot claim M is a semialgebraic set. We can also just let
M = Rk, as the point samples we are given could be coming from an unknown space.

Proposition 4.8.8. Let M be a PL manifold embedded in RN . There is a conical stratification h̃ : Ran6n(M) ×
R>0 → (B,6) compatible with the stratification h : Ran6n(M)×R>0 → (SC,6).

Proof: (Sketch) The main lifting is done by Theorem II.4.2 of Shiota. Since M is PL, it is semialgebraic, and so
Mn ×R>0 ⊆ RnN+1 is semialgebraic, by I.2.9.1 of Shiota. Since the quotient π of diagram (8) is semialgebraic, the
space Ran6n(M) × R>0 is semialgebraic, by Scheiderer. Similarly, {f−1(a)}a∈A is a family of semialgebraic sets,
where f is the map from Lemma 4.8.3. Theorem II.4.2 gives that Ran6n(M) × R>0 admits a cell triangulation
(K, τ) compatible with {h−1(S)}S∈SC . By the comment after Definition 4.8.7, this means we have a stratification
Ran6n(M)×R>0 → (K0∪{τ(int(σ))}σ∈K ,6). Further, by Proposition A.6.8 of Lurie, we have a conical stratification
|K| → (B,6). This is all described by the solid arrow diagram below.

|K| (B,6)

Ran6n(M)×R>0 (K0 ∪ {τ(int(σ))}σ∈K ,6)
(
{h−1(S)}S∈SC ,6

)
(SC,6)

=

conical strat.

Lurie A.6.8

semialg. homeo.

Shiota II.4.2

strat. cont.

induced

induced
conical

strat.

The vertical induced map comes as the poset B has the exact same structure as the abstract suimplicial complex
K. The diagonal induced map comes as the map |K| → Ran6n(M) × R>0 is a homeomorphism, and so has a
continuous inverse. Composing the inverse with the conical sratification of Lurie, we get a conical stratification of
Ran6n(M) × R>0. Composing the vertical induced arrow and the maps to (SC,6) show that there is a conical
stratification of Ran6n ×R>0 compatible with its simplicial complex stratification from diagram 8. �

Shiota actually requires that the space that admits a triangulation be closed semialgebraic, and having R>0

violates that condition. Replacing this piece with R>0, then applying Shiota, and afterwards removing the t = 0
piece we get the same result.

Remark 4.8.9. Every (sufficiently nice) manifold admits a triangulation, so it may be possible to extend this result
to a larger class of manifolds, but it seems more sophisticated technology is needed.

References: Shiota (Geometry of subanalytic and semialgebraic sets, Chapters I.2, I.3, II.4), Scheiderer (Quotients
of semi-algebraic spaces), Lurie (Higher algebra, Appendix A.6)

4.9 Visualizing paths in configuration space

2018-11-25

Keywords: configuration space, persistent homology, simplicial complex, visualization, code

The goal of this post is to visualize how point configurations induce persistent homology, and how paths between
point samples induce changes in the simplicial complexes producing the homology. We use the Čech simplicial
complex construction of a finite subset of RN .

Definition 4.9.1. For M a Riemannian mandifold, Confn(M) := {P ⊆ M : |P | = n} is the configuration space of
n points on M .

The space Confn(M) is itself a topological space, with topology induced by the Hausdorff distance of subsets.
Let SC be the set of abstract simplicial complexes (V, S), where V is a set and S ⊆ P (V ) closed under subsets. Let
uSC be the set of unlabeled abstract simplicial complexes, with the natural projection map SC→ uSC.
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Definition 4.9.2. The Čech map is the function Č : Confn(M) × R>0 → SC given by V (Č(P, r)) = P and P ′ ∈
S(Č(P, r)) whenever

⋂
p∈P ′ B(p, r) 6= ∅, for every P ′ ⊆ P . The unlabeled Čech map is the composition of Č with the

projection to uSC.

We will consider the case M = R2 and n = 4. To describe an implementation of the Čech map, we only
need to consider double and triple intersections. Finding if B(P1, r) ∩B(P2, r) is empty or not is easy, but to deter-
mine if B(P1, r)∩B(P2, r)∩B(P3, r) is empty or not requires more care. Below is an implementation in Mathematica.

(* CechPt : Finds the coordinate where balls of the same radii around three points a,b,c will

first intersect *)

(* Input : 3 coordinates {x, y}. Output : 1 coordinate {x, y} *)

CechPt[a_,b_,c_] := Module[{

cenx = Det[{{Norm[a]^2, a[[2]], 1}, {Norm[b]^2, b[[2]], 1}, {Norm[c]^2, c[[2]], 1}}],

ceny = Det[{{a[[1]], Norm[a]^2, 1}, {b[[1]], Norm[b]^2, 1}, {c[[1]], Norm[c]^2, 1}}],

scal = 2*Det[{{a[[1]], a[[2]], 1}, {b[[1]], b[[2]], 1}, {c[[1]], c[[2]], 1}}]},

cen = {cenx/scal, ceny/scal};

If[Max[ArcCos[(b-a).(c-a)/(Norm[b-a]*Norm[c-a])],

ArcCos[(a-b).(c-b)/(Norm[a-b]*Norm[c-b])],

ArcCos[(a-c).(b-c)/(Norm[a-c]*Norm[b-c])]] < Pi/2, cen,

If[Norm[cen-(a+b)/2] < Norm[cen-(a+c)/2],

If[Norm[cen-(a+b)/2] < Norm[cen-(b+c)/2], (a+b)/2, (b+c)/2],

If[Norm[cen-(a+c)/2] < Norm[cen-(b+c)/2], (a+c)/2, (b+c)/2]]]];

Here cen is the circumcenter of the input points, which corresponds to our desired point only if it lies within the
convex hull of the points. Now B(P1, r) ∩ B(P2, r) ∩ B(P3, r) is non-empty if and only if the distance from each of
P1, P2, P3 to CechPt[P1,P2,P3] is less than or equal to r.

Let γ : I → Conf4(R2) be a path, and γ(0) = {P1, P2, P3, P4}. At each t ∈ I and for every pair and triple
P ′ ⊆ γ(t), we can find the smallest r such that

⋂
p∈P ′ B(P, r) 6= ∅. This gives 6 curves for the pairs P ′, and 4 curves

for the triples P ′, which we can plot all together in Mathematica.

PList[t_] := {P1[t],P2[t],P3[t],P4[t]};

(* Graphs of pairwise distances *)

DistGraph1 = Plot[Table[Norm[pair[[1]]-pair[[2]]]/2, {pair,Subsets[PList[t],{2}]}], {t, 0, 1},

PlotRange -> {{0,1},{0,1.5}}, PlotStyle -> {Gray}, AspectRatio -> 1];

(* Graphs of minimum distance from every triple to its CechPt*)

DistGraph2 = Plot[Table[Max[Table[Norm[triple[[k]]-CechPt@@triple],{k,1,3}]],

{triple,Subsets[PList[t],{3}]}], {t, 0, 1}, PlotRange -> {{0,1},{0,1.5}}, PlotStyle ->

{Orange}, AspectRatio -> 1];

The code is given so that it may be easily generalized to more than 4 points. Next, use the Manipulate command
to add interactivity to the graphs.

Manipulate[{

Show[DistGraph2, DistGraph1],

Show[

ParametricPlot[PList[t],{t,0,X[[1]]},PlotRange -> {{-2,2},{-2,2}},PlotStyle -> {Black}],

Graphics[Join[

{Opacity[.2],Red}, Table[Disk[point,X[[2]]],{point,PList[X[[1]]]}],

{Opacity[1],Red}, Table[Circle[point,X[[2]]],{point,PList[X[[1]]]}],

{Red,Disk[P1[X[[1]]],.05]},

{Blue,Disk[P2[X[[1]]],.05]},

{Darker[Green],Disk[P3[X[[1]]],.05]},

{Yellow,Disk[P4[X[[1]]],.05]}]]],

Graphics[Join[

{Black, Thick},
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Flatten[Table[{{Opacity[0], Opacity[.3]}[[Boole[X[[2]] >= Norm[pair[[1]][[1]][X[[1]]] -

pair[[2]][[1]][X[[1]]]]/2] + 1]], Line[#[[2]]&/@pair]},

{pair,Subsets[{{P1,{0,0}},{P2,{2,0}},{P3,{0,2}},{P4,{2,2}}},{2}]}]],

Flatten[Table[{{Opacity[0], Opacity[.3]}[[Boole[X[[2]] >=

Max[Table[Norm[triple[[k]][[1]][X[[1]]] - CechPt@@(#[[1]][X[[1]]]&/@triple)],

{k,1,3}]]] + 1]], Polygon[#[[2]]&/@triple]},

{triple,Subsets[{{P1,{0,0}},{P2,{2,0}},{P3,{0,2}},{P4,{2,2}}},{3}]}]],

{Opacity[1], Red, Disk[{0,0},.07], Blue, Disk[{2,0},.07], Darker[Green], Disk[{0,2},.07],

Yellow, Disk[{2,2},.07]}]]

}, {{X, {.1, .1}}, Locator}]

This produces the interactive visualization below, allowing the user to drag the crosshairs on the graph on the
left (graphs of when double and triple intersections are reached). The paths of the individual points P1, P2, P3, P4

are in the middle and the image of the unlabeled Čech map is on the right.

The graphs on the left stratify the strip I ×R>0, so that the unlabeled Čech map is constant on each stratum.
Computing the Betti numbers of each simplicial complex gives the CROCKER plot (see TZH) of the stratified space.
We use the Čech instead of the Rips complex, so perhaps this should be called the CROCKEČ plot. The stratified
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space, 0-dimensional, and 1-dimensional plots are given below.

4

3

2

1

0

1

stratified space I ×R>0 Betti numbers b0 Betti numbers b1

Here the Betti numbers were computed by inspection, since the complexes are so small. An extension would be
to make this computation automatic once the input path γ is given.

The Mathematica code for this post is available online.

References: Topaz, Ziegelmeier, Halverson (Topological Data Analysis of Biological Aggregation Models)

http://www.jlazovskis.com/scripts/blag/2018-11-25-configuration-space-path.nb
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5 The Ran space - constructibility

5.1 Exit paths, part 2

2017-09-28

Keywords: exit path, universality, stratification, conical stratification, constructible sheaf

In this post we continue on a previous topic (“Exit paths, part 1,” 2017-08-31) and try to define a constructible
sheaf via universality. Let X be an A-stratified space, that is, a topological space X and a poset (A,6) with
a continuous map f : X → A, where A is given the upset topology relative to its ordering 6. Recall the full
subcategory SingA(X) ⊆ Sing(X) of exit paths on an A-stratified space X.

Proposition 5.1.1. If X → A is conically stratified, SingA(X) is an ∞-category.

Briefly, a stratification f : X → A is conical if for every stratum there exists a particular embedding from a
stratified cone into X (see Lurie for “conical stratification” and Ayala, Francis, Tanaka for “conically smooth strati-
fied space,” which seem to be the same). We will leave confirming the described stratification as conical to a later post.

This proposition, given as part of Theorem A.6.4 in Lurie, has a very long proof, so is not repeated here. Lurie
actually proves that the natural functor SingA(X) → N(A) described below is a (inner) fibration, which implies
the unique lifting property of SingA(X) via the unique lifting property of N(A) (and we already know nerves are
∞-categories).

Example 5.1.2. The nerve of a poset is an∞-category. Being a nerve, it is already immediate, but it is worthwhile
to consider the actual construction. For example, if A = {a 6 b 6 c 6 d} is the poset with the ordering 6, then the
pieces N(A)i are as below.

N(A)0 =

{
a b c d

, , ,
}

N(A)1 =

{
a b a c a d b c b d c d

, , , , ,
}

N(A)2 =


a c a d a d b d

b b c c

, , ,



N(A)3 =

 a c

b

d


It is immediate that every 3-horn can only be filled in one unique way (as there is only one element of N(A)3), as

well as that every 2-horn can be filled in one unique way (as every sequence of two composable morphisms appears
as a horn of exactly one element of N(A)2).

In Appendix A.9 of Higher Algebra, Lurie says that there is an equivalence of categories

(A-constructible sheaves on X) ∼= [(A-exit paths on X),S] ,

given that X is conically stratified, and for S the ∞-category of spaces (equivalently N(Kan), the nerve of all
the simplicial sets that are Kan complexes). So, instead of trying to define a particular constructible sheaf on
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X = Ran6n(M)×R>0, (as in previous posts “Stratifying correctly,” 2017-09-17 and “A constructible sheaf over the
Ran space,” 2017-06-24) we will try to make a functor that takes an exit path of X and gives back a space.

Fix n ∈ Z>0 and set X = Ran6n ×R>0. Let SC be the category of simplicial complexes and simplicial maps,
with SCn the full subcategory of simplicial complexes with at most n vertices. There is a map

g : X → SCn
(P, t) 7→ V R(P, t),

allowing us to say

X =
⋃

S∈SCn

g−1(S).

Here we consider that two elements Pi, Pj ∈ P give an edge of V R(P, t) whenever t > d(Pi, Pj) (this is chosen
instead of t > d(Pi, Pj) so that the boundaries of the strata “facing downward,” with respect to the poset ordering,
are open). Now we define a stratifying poset A for X.

Definition 5.1.3. Let A = {aS : S ∈ SCn} and define a relation 6 on A by

(aS 6 aT ) ⇐=

(
∃ σ ∈ Sing(X)1 such that

g(σ(0)) = S, g(σ(t > 0)) = T.

)
Let (A,6) be the poset generated by relations of the type given above.

We claim that f : X → A given by f(P, t) = ag(P,t) is a stratifying map, that is, continuous in the upset topology
on A. To see this, take the open set US = {aT ∈ A : aS 6 aT } in the basis of the upset topology of A, for any
S ∈ SCn, and consider x ∈ f−1(US). If for all ε > 0 we have BX(x, ε) ∩ f−1(US)C 6= ∅, then there exists Tε ∈ SCn
with BX(x, ε) ∩ f−1(aTε) 6= ∅, for S 66 Tε (as Tε 6∈ US). This means there exists σ ∈ Sing(X)1 with σ(0) = x and
σ(t > 0) ∈ f−1(aTε), which in turn implies S 6 Tε, a contradiction. Hence f is continuous, so f : X → A is a
stratification.

As all morphisms in Sing(X) are compsitions of the face maps si and degeneracy maps di, so are all morphisms
in SingA(X). There is a natural functor F : SingA(X)→ N(A) defined in the following way:

objects

 σ : |∆k| → X
a0 6 · · · 6 ak ⊆ A

f(σ(t0, . . . , ti 6= 0, 0, . . . , 0)) = ai

 7→ (a0 → · · · → ak ∈ N(A)k)

face maps



(
σ : |∆k| → X

a0 6 · · · 6 ak ⊆ A

)
↓(

τ : |∆k+1| → X
a0 6 · · · 6 ai 6 ai 6 · · · ak ⊆ A

)

 7→


(a0 → · · · → ak)

↓(
a0 → · · · → ai

id−→ ai → · · · → ak

)


degeneracy maps



(
σ : |∆k| → X

a0 6 · · · 6 ak ⊆ A

)
↓(

τ : |∆k−1| → X
a0 6 · · · 6 ai−1 6 ai+1 6 · · · ak ⊆ A

)

 7→


(a0 → · · · → ak)

↓(
a0 → · · · → ai−1

◦−→ ai+1 → · · · → ak

)


As all maps in SingA(X) are generated by compositions of face and degeneracy maps, this completely defines F .
Naturality of F follows precisely because of this.

A poset (which can be viewed as a directed simple graph) may be naturally viewed as a 1-dimensional simplicial
set, moreover an ∞-category (by virtue of being a simple graph, with no multi-edges or loops). Hence there is a
natural map, the inclusion, that takes N(A) into N(Kan) = S. Finally, Construction A.9.2 of Lurie describes a map
that takes a functor from A-exit paths into spaces and gives back an A-constructible sheaf over X, which Theorem
A.9.3 shows to be an equivalence, given the following conditions:
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• X is paracompact,

• X is locally of singular shape,

• the A-stratification of X is conical, and

• A satisfies the ascending chain condition.

The first condition is satisfied as both Ran6n(M) and R>0 are locally compact and second countable. The last
condition is satisfied because A is a finite poset. We already mentioned that the conical property will be checked
later, as will the singular shape property. Unfortunately, Lurie gives a definition of singular shape only for ∞-topoi,
so some work must be done to translate this into our simpler setting. However, in the introduction to Appendix
A, Lurie says that if X is “sufficiently nice” and we assume some “mild assumptions” about A, then the described
categorical equivalence follows, so it seems there is hope that everything will work out well in the end.

References: Lurie (Higher algebra, Appendix A), Ayala, Francis and Tanaka (Local structures on stratified spaces,
Sections 2 and 3)

5.2 The Ran space is locally conical

2017-10-22

Keywords: cone, Ran space, ordering, stratification

In this post we show that every point in the Ran space Ran6n(M), for M a compact, smooth embedded manifold,
is the base of a cone in Ran6n(M). Let dim(M) = m and let P = {P1, . . . , Pk} ∈ Rank(M) ⊆ Ran6n(M). We
write d(x, y) for distance in Euclidean space RN where M is embedded, and dM (x, y) for distance on the embedded
manifold M (note d 6 dM ). Define the following objects:

Nε(x) = {z ∈M : dM (x, z) < ε},
En = {distinct partitions of an unlabeled set of n elements},

T (e) = {distinct total orderings of e ∈ En}.

We write τ = (τ1 < · · · < τ|τ |) for an element τ ∈ T (e).

Example 5.2.1. Let n = 4, so then

E4 =
{
{{∗}, {∗}, {∗}, {∗}}, {{∗, ∗}, {∗}, {∗}}, {{∗, ∗}, {∗, ∗}}, {{∗, ∗, ∗}, {∗}}, {{∗, ∗, ∗, ∗}}

}
.

By stacking the ∗ on top of one another to indicate containment in a single set, and for order increasing from left to
right, we have the following distinct total orderings for every element of E4.

T ({{∗}, {∗}, {∗}, {∗}}) = ∗∗∗∗ T ({{∗, ∗}, {∗}, {∗}}) = ∗∗∗∗ ∗∗∗∗ ∗∗∗∗, ,

T ({{∗, ∗}, {∗, ∗}}) = ∗∗∗∗ T ({{∗, ∗, ∗}, {∗}}) =
∗∗∗∗ ∗∗∗∗,

T ({{∗, ∗, ∗, ∗}}) =
∗∗∗∗

Set ε = min16i<j6k{d(Pi, Pj)}, t0 ∈ (0, ε/2), and tj>0 ∈ (0, tj−1). By construction, the object

CP = {P} ∪
∐

∑
`i=n−k
`i∈Z>0

k∏
i=1

∐
τ∈T (e)
e∈E`i

|τ |∏
j=1

Ran|τj |
(
∂Ntj (Pi)

)
× (0, tj−1)

=
∐

∑
`i=n−k
`i∈Z>0

k∏
i=1

∐
τ∈T (e)
e∈E`i

Ran|τ1|(∂Nt0(Pi))×
|τ |∏
j=2

Ran|τj |
(
∂Ntj (Pi)

)
× (0, tj−1)

× [0, ε/2)

/
∼
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is an open cone based at P sitting inside Ran6n(M). Here ∼ is the equivalence relation of all elements with t0 = 0,
with [0, ε/2) 3 t0 representing the unit interval in the usual cone construction. Moreover, given the point-counting
stratification f : Ran6n(M) → A, there is a natural stratification g : Cp → A>f(P ), with P ∈ CP the only element
mapping to f(P ) under g.

The next step is to show that P has an open neighborhood in Ran6n(M) that is the image of an open embedding

Z × CP , for some topological space Z. The obvious choice Z =
∏k
i=1Nε/2(Pi) does not work, because we double

count points in higher strata, so we do not have an embedding.

5.3 Attempts at proving conical stratification

2017-10-27

Keywords: cone, Ran space, stratification, conical stratification, informal

This post chronicles several attempts and failures to show that X = Ran6n(M) is conically stratified. Here M
will be a smooth, compact manifold of dimension m, embedded in RN for N � 0. Recall that a stratified space
f : X → A is conically stratitifed at x ∈ X if there exist:

- a stratified space g : Y → A>f(x),
- a topological space Z, and
- an open embedding Z × C(Y ) ↪→ X of stratified spaces whose image contains x.

The cone C(Y ) has a natural stratification g′ : C(Y )→ A>f(x), as does the product Z × C(Y ). The space X itself
is conically stratified if it is conically stratfied at every x ∈ X.

Let P = {P1, . . . , Pk} ∈ Rank(M) ⊆ Ran6n(M) = X, and 2ε = min16i<j6k{d(Pi, Pj)}.

Observations

Observation 1: When M = I = (0, 1), the interval, we can visualize what Ran63(M) looks like via the construction
Ran63(M) = (M3 \∆3)/S3, to gain some intuition about what the Ran space looks like in general.

0

1

0 1 0

1

M3 (1 2) yM3 (2 3) yM3 (1 3) yM3

Ran63(M)

Ran1(M)

Ran2(M)

Ran2(M)

A drawback is that dim(M) = 1, which masks the problems in higher dimensions.

Observation 2: An open neighborhood of P ∈ X looks like

∐
∑
`i=n

`i∈Z>0

k∏
i=1

Ran6`i(BMε (Pi)) = BXε/2(P )×
∐

∑
`i=n

`i∈Z>0

k∏
i=1

Ran6`i(BMε/2(Pi)), (9)

for BMε (x) = {y ∈ M : dM (x, y) < ε} the open ball of radius ε around x ∈ M , and similarly for P ∈ X. Most
attempts to prove conical stratification are based around expressing these as Z × C(Y ), usually for Z = BXε/2(P ).

Observation 3: When k < n, the “steepest” direction from Pi into the highest stratum of X is given by Pi splitting
into n−k+1 points uniformly distributed on ∂BMt (Pi). Hence the [0, 1) part of the cone (recall C(Y ) = Y ×[0, 1)/ ∼)
should be along t ∈ [0, 1).
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Attempts

Attempt 1: Use more resrictive (but better described) AFT definition.
Ayala–Francis–Tanaka describe C0 stratified spaces, a special type of stratified space. Any space that has a cover
by topological manifolds is a C0 stratified space, however it seems that X cannot be covered by topological
manifolds. Even further, each element in the cover must have the trivial stratification, and since we must have
overlaps, f : X → A will have A = {∗}, which is not what we want.

Attempt 2: Stratify Ran6n(M)×R>0 instead.
This is more difficult, but was the original impetus, with strata defined by collecting the Vietoris–Rips complexes
V R(P, t) of the same type. The problem is that this space has strata next to each other of the same dimen-
sion, which does not conform to a standard definition of stratification, and so doesn’t admit a conical stratification.
Dimension counting and requiring an open embedding Z × C(Y ) ↪→ X shows this is impossible at the boundary
point between two such strata.

Weinberger gives some standard stratifed space types, among them a manifold stratified space, a manifold strati-
fied space with boundary, and a PL stratified space, but X ×R>0 is none of these.

Attempt 3: Naively describe the neighborhood of P as a cone.
This is the most direct attempt to write (9) as Z × C(Y ). If we say

C(Y ) =
∐

∑
`i=n

`i∈Z>0

k∏
i=1

Ran6`i(∂BMt (Pi))

︸ ︷︷ ︸
Y

×[0, ε/2)

/
∼,

then we miss points splitting off at different “speeds”. That is, in this presentation Pi can only split into
points that are all the same distance away from it. Between such a collection of points and Pi are points that are
some closer, some the same distance away, and those are not accounted for.

Moreover, using Z = BXε/2(P ), leads to overcounting, and the map into X would not be injective.

Attempt 4: Iterate over different number of points at common radius.
This came out of an attempt to fix the previous attempt. As in a previous post (“The Ran space is locally conical,”
2017-10-22), let E` be the collection of distinct partitions of ` elements, and for e ∈ E`, let T (e) be the collection of
distinct total orderings of e. A candidate for Z × C(Y ) would then be

k∏
i=1

BMε (Pi)︸ ︷︷ ︸
Z

×

C(Y )︷ ︸︸ ︷
{P} ∪

∐
∑
`i6n−k
`i∈Z>0

k∏
i=1

∐
τi∈T (ei)
ei∈E`i

|τi|∏
j=1

Ran|τ
j
i |
(
∂BMti,j (Pi)

)
× (0, ti,j−1),

take all Ran spaces for each element in total ordering

choose a total ordering of a partition of `i

take all points Pi ∈ P

choose a partition of n− k

with ti,0 = ε and ti,j>0 the chosen element of (0, ti,j−1). The open embedding Z×C(Y )→ X would be the inclusion
on the C(Y ) component, and would scale every factor in the Z component to a neighborhood of Pi of radius ti,|τi|.

However, this embedding is not continuous, because a point in Rank(M) is next to a point in Rann(M), where
Pi has split off into n − k points, but the radius of BMε (Pi) in Rank(M) is ε, while in Rann(M) it is the shortest
distance from one of the new points to Pi.
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Attempt 5: Iterate over common radii, but only “antipodal” points.
This was an attempt to fix the previous attempt and combine it with the naive description. In fact, this approach
works when k = 1 and n = 2. Then P = {P1}, and

BMε (P1)×
(
P∂BMt (P1)× [0, 1)

)/
∼

maps into BXε (P1) by first scaling [0, 1) down to [0, ε − dM (P, P1)), where P ∈ BMε (P1) is the chosen point. The
object P∂BMt (P1) is the projectivization of the boundary of the open dim(M)-ball of radius t around P1 on M . That
is, every element in it is a pair of antipodal points on the boundary of this ball that are exactly t ∈ [0, ε−dM (P, P1))
away from P1.

This works because every pair of points in a contractible neighborhood of P1 is described uniquely by a pair (P, v),
for P the midpoint of the two points and v the dim(M)-vector giving the direction of the points from P (this may
rely on working in charts, which is fine, as M is a manifold). However, trying to generalize to more than two points
fails because ` > 2 points in general are not equally distributed on a sphere. If instead of using the “antipodal”
property we take a point from which all ` points are equidistant, this point may not be in the ε-neighborhood of P1.

Possible solutions

Solution 1: Instead of a smooth manifold, let M be a simplicial complex. Then Ran6n(M) should also be a sim-
plicial complex. Then it may be possible to apply a general theorem to find appropriate cones.

Solution 2: Extend the only partially successful attempt, Attempt 5. Extend by describing a point splitting off
into ` pieces as a sequence of points splitting into 2 pieces. Or, extend by using the centroid of ` points instead of
the midpoint.

Solution 3: Weaken definition of “conically stratifed” to exclude either open embedding condition or A>f(x) strat-
ification of Y , though this would involve following out Lurie’s proof to see what can not be concluded.

References: Lurie (Higher algebra, Appendix A), Ayala, Francis and Tanaka (Local structures on stratified spaces,
Sections 2 and 3), Weinberger (The classification of topologically stratified spaces)

5.4 Splitting points in two

2017-11-02

Keywords: stratification, cone, conical stratification, shape, singular shape, locally singular shape

The goal of this post is to expand upon some final ideas in a previous post (“Atempts at proving conical stratifica-
tion,” 2017-10-27). Let M be a compact smooth m-manifold embedded in RN , and fix n ∈ Z>0. Let X = Ran6n(M)
and f : X → A = {1, . . . , n} the usual point-counting stratification. Let

BXε (P ) =

{
Q ∈ X : 2dM (P,Q) = sup

p∈P
inf
q∈Q

dM (p, q) + sup
q∈Q

inf
p∈P

dM (p, q) < 2ε

}
,

BMε (p) = {q ∈M : dM (p, q) < ε} ,
BRm

ε (0) = {x ∈ Rm : d(0, x) < ε}

be open balls in their respective spaces. We use dM for distance on M and d for distance in RN . Since M is an
m-manifold, we will work in charts in Rm when necessary.

Proposition 5.4.1. The stratification f : X → A is conical in the top two strata Rann(M) and Rann−1(M).

Proof: Let P = {P1, . . . , Pn} ∈ Rann(M) and 2ε = min16i<j6n d(Pi, Pj). Let Y = ∅ which has a natural (A>n = ∅)-
stratification with C(Y ) = {∗} having a natural (A>n = {n})-stratification. Let Z = BXε (P ) =

∏n
i=1B

M
ε (Pi), for

which the identity map Z × {∗} ∼= Z ↪→ X is an open embedding. Hence X is stratified at every P ∈ Rann(M).
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Let P = {P1, . . . , Pn−1} ∈ Rann−1(M) and 2ε = min16i<j6n−1 d(Pi, Pj). Let

Y =

n−1∐
i=1

P∂BRm

ε/2 (0), Z = BRm

ε/2 (0),

where P∂B is the projectivization of the sphere, so may be viewed as a collection of unique pairs {~v,−~v}. Then
the cone C(Y ) may be viewed as a collection of pairs {~v, t > 0} along with the singleton {0}, with the usual cone
topology. Define a map

ϕ : Z × C(Y ) → X,
(x,~v, t) 7→ {x+ t~v, x− t~v},

(x, 0) 7→ {x}.

Note that BXε/2(P ) ⊆ im(ϕ) ⊆ BXε (P ). This map is injective as every pair of points on M within an ε/2-radius of

Pi is uniquely defined by their midpoint (the element of Z), a direction from that midpoint (the element of Y ) and
a distance from that midpoint (the cone component t ∈ [0, 1)). By construction ϕ is continuous and an embedding.
The map takes open sets to open sets, so we have an open embedding into X. Hence X is conically stratified at
every P ∈ Rann−1(M). �

The problem with generalizing this to P ∈ Rank(M) for all other k is that an (n− k + 1)-tuple of points has no
unique midpoint. It does have a unique centroid, but it is not clear what the [0, 1) component of the cone should
then be.

Proposition 5.4.2. The space X is of locally singular shape.

Proof: First note that every P ∈ X has an open neighborhood that is homemorphic to an open ball of dimension mn
(see Equation (9) of previous post “Attempts at proving conical stratification,” 2017-10-27). Hence we may cover X
by contractible sets. By Remark A.4.16 of Lurie, X will be of locally singular shape if every element of the cover is
of singular shape. Since all elements of the cover are contractible, by Remark A.4.11 of Lurie we only need to check
if the topological space ∗ is of singular shape. Finally, Example A.4.12 of Lurie gives that ∗ has singular shape. �

References: Lurie (Higher algebra, Appendix A)

5.5 The point-counting stratification of the Ran space is conical

2017-11-06

Keywords: stratification, cone, conical stratification, centroid, Ran space

This post completes the effort of several previous posts to show that f : Ran6n(M) → A = {1, . . . , n} is a
conically stratified space, where f is the point-counting map, for M a compact smooth m-manifold embedded in RN .

Remark 5.5.1. Since M is a manifold, we will work on M or through charts in Rm, as necessary, without explicitly
mentioning the charts or domains. Balls BMλ , B

Rm

λ of radius λ will be closed and BRm

λ ,BXλ will be open. We write
d for distance between points of M (or Rm) and d for distance between finite subsets of Rm. This is essentially the
definition given by Remark 5.5.1.5 of Lurie:

d(P,Q) =
1

2

(
sup
p∈P

inf
q∈Q

d(p, q) + sup
q∈Q

inf
p∈P

d(p, q)

)
.

We add the 1
2 so that d({p}, {q}) = d(p, q). Note also sup, inf may be replaced by max,min in the finite case.

Remark 5.5.2. In our context, given P ∈ X, d may be thought of as how far away have new points split off from
the Pi. That is, if Q ∈ X is close to P representing the Pi splitting up, then d(P,Q) is (half) the sum of the distance
to the farthest point splitting off from the Pi and to the farthest point among every Pi’s closest point. The diagram
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below gives the idea.

P1

P2

a
Q1

b

Q2

cQ3
d

Q4
e

Q5

f

Q6

g
Q7

Then the distance between P and Q is given by

d(P,Q) =
1

2

(
sup
Pi

{
inf
Qj
{d(Pi, Qj)}

}
+ sup

Qj

{
inf
Pi
{d(Pi, Qj)}

})

=
1

2
(sup {inf {a, b, c} , inf {d, e, f, g}}+ sup {a, b, c, d, e, f, g})

=
1

2
(sup {a, g}+ c)

=
1

2
(a+ c).

Now we move on to the main result.

Proposition 5.5.3. The point-counting stratification f : X → A is conical.

Proof: Fix P = {P1, . . . , Pk} ∈ Rank(M) ⊆ Ran6n(M) and set 2ε = mini<j d(Pi, Pj). Set

Z =

k∏
i=1

BR
m

ε (0), Y =
∐

∑
`i=n∑
ti=ε

k∏
i=1

{
Q ∈ Ran`i(BRm

ti (0)) : d(0, Q) = ti,
∑
Qj = 0

}
,

both of which are topological spaces. The first condition on elements of Y is the cone condition, which ensures the
right topology at the cone point in C(Y ). The second condition on Y is the centroid condition, which ensures that
the point to which 0 maps to (under ϕ) is the centroid of points splitting off it, so that we don’t overcount when
multiplying by Z. For C(Y ) = (Y × [0, 1))/(Y × {0}) the cone of Y , define a map

ϕ : C(Y )× Z → X,(
Ran`i(BRm

ti (0)), t, R
)
7→ Ran`i(BMtti(Ri)),

where t ∈ [0, 1) is the cone component and R = {R1, . . . , Rk} ∈ Z is an element of Rank(M) near P . It is sufficient
to describe where the Ran`i map to, as all the Q in a fixed Ran`i map in the same way into X.

The map ϕ is continuous by construction, injective by the centroid condition, and a homeomorphism onto its
image by the cone condition. Hence ϕ is an embedding, and since the image is open, it is an open embedding. Note
that we are taking “open embedding” to mean an embedding whose image is open. Hence every P ∈ X satisfies
Definition A.5.5 of Lurie, so f : X → A is conically stratified. �

Remark 5.5.4. Observe that BXε/k(P ) ⊆ im(ϕ) ⊆ BXε (P ), both inclusions coming from the
∑
ti = ε condition.

Combined with Proposition 5.4.2 of a previous post (“Splitting points in two,” 2017-11-02) and Theorem A.9.3
of Lurie, it follows that A-constructible sheaves on X are equivalent to functors of A-exit paths on X to the category
S of spaces. A previously given construction (in “Exit paths, part 2,” 2017-09-28) gives such a functor, indicating
that there exists an A-constructible sheaf on X.

Next steps may involve applying this approach to the space Ran6n(M) ×R>0, which was the motivator for all
this, or continuing with Lurie’s work to see how far this can be taken.

References: Lurie (Higher Algebra, Appendix A), nLab (article “Embedding of topological spaces”)
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5.6 Towards a sheaf of simplicial complexes

2017-11-26

Keywords: stratification, simplicial complex, poset

The goal of this post is to describe a new stratification of Rann(M)×R>0 that builds on the ideas from a previous
post (see “ The point-counting stratification of the Ran space is conical (really though) ,” 2017-11-15) and some
newer ones.

Let SCn be the set of simplicial complexes on n ordered vertices. There is a natural partial order on SCn given
by inclusion of sets, viewing every simplex as a subset of the power set P({1, . . . , n}). The symmetric group Sn has
a natural action on SCn and SCn/Sn has an induced partial order as well. Hence we have a map

f : Rann(M)×R>0 → SCn/Sn,
(P, t) 7→ V R(P, t),

where V R(P, t) is the Vietoris–Rips complex on P with radius t. We include a k-cell in V R(P, t) at the vertices
{P0, . . . , Pk} ⊂ P if d(Pi, Pj) < t for all 0 6 i < j 6 k. Because we have strict inequality, the map is continuous
in the upwards-directed, or Alexandrov topology on SCn/Sn. Indeed, taking the preimage of an open set US in
SCn/Sn based at some simplicial complex S (such US form the basis of topology on SCn/Sn), there is an open ball
of radius mini<j d(Pi, Pj)/2 in the Rann(M) component and min(Pi,Pj)⊂f(P,t) |t − d(Pi, Pj)| in the R>0 component
around any (P, t) ∈ f−1(US).

Remark 5.6.1. The above shows that Rann(M) × R>0 is poset-stratified by SCn/Sn, in the sense of Definition
A.5.1 of Lurie. However, the strata are all of the same dimension, so there is no chance of this being a conical
stratification, in the sense of Definition A.5.5 of Lurie. We hope to fix that with a different stratification.

Definition 5.6.2. Construct a poset (A,6A) in the following way:

• SCn/Sn ⊂ A, with S 6A T whenever S 6SCn/Sn T ,

• for every S 6= T ∈ SCn/Sn, let aST ∈ A with aST 6A S and aST 6A T ,

• for every {S1, . . . , Sk>2} ⊂ SCn/Sn, let aS1···Sk ∈ A with aS1···Sk 6A aS1···Ŝi···Sk for all 1 6 i 6 k.

Define a map into (A,6A) in the following way:

g : Rann(M)×R>0 → A,

(P, t) 7→

{
S, if (P, t) ∈ int(f−1(S)) for some S ∈ SCn/Sn,
aS1···Sk , if (P, t) ∈ cl(f−1(T )) ⇐⇒ T ∈ {S1, . . . , Sk}.

We now claim that g is a stratifying map.

Proposition 5.6.3. The map g is continuous.

Proof: Since int(f−1(S)) ∩ int(f−1(T )) = ∅ for all S 6= T ∈ SCn/Sn, the open sets US ⊆ A based at S all have open
preimage g−1(US) ⊆ X. Now take (P, t) ∈ g−1(UaS1···Sk ), for k > 2. If every open ball around (P, t) ∈ X intersects

XaT , for some T ⊆ SCn/Sn, then (P, t) must be in the closure of f−1(T ), for every T ∈ T. Hence the only possible
such T are T ⊆ {S1, . . . , Sk}, so g−1(UaS1···Sk ) is open in X. �

The next step would be to show that this stratification is conical, though it is not clear yet if it is.

References: Lurie (Higher Algebra, Appendix A)

5.7 Perspectives on the Ran space

2017-11-29

Keywords: Ran space, mapping space, compact-open, topology, stratification, coincidence, colimit

This post combines the finite subset approach with the mapping space approach of the Ran space, in the context
of stratifications. The goal is to understand the colimit construction of the Ran space, as that leads to more powerful
results.



123

Topology

Let X,Y be topological spaces.

Definition 5.7.1. The mapping space of X with respect to Y is the topological space XY = {f : Y → X continuous}.
The topology on XY is the compact-open topology which has as basis finite intersections of sets

{f ∈ XY : f(K) ⊆ U}, (10)

for all K ⊆ Y compact and all U ⊆ X open.

Now fix a positive integer n.

Definition 5.7.2. The Ran space of X is the space Ran6n(X) = {P ⊆ X : 0 < |P | 6 n}. The topology on
Ran6n(X) is the coarsest which contains{

P ∈ Ran6n(X) : P ⊆
k⋃
i=1

Ui, P ∩ Ui 6= ∅ ∀ i

}
(11)

as open sets, for all nonempty finite collection of parwise disjoint open sets {Ui}ki=1 in X.

From now on, we let I be a set of size n and M be a compact, smooth, connected m-manifold. There is a natural
map

ϕ : M I → Ran6n(M),
(f : I →M) 7→ f(I).

This map is surjective, and for n > 1, is not injective.

Proposition 5.7.3. The map ϕ is continuous and an open map.

Proof: For continuity, take an open set U ⊆ Ran6n(M) as in (11) and consider ϕ−1(U). We use the fact that {∗} ⊂ I
is a compact (in fact open and closed) subset of I and that all the Ui are open, as is their union. Observe that

ϕ−1(U) =

{
f ∈M I : f(I) ⊂

k⋃
i=1

Ui, f(I) ∩ Ui 6= ∅ ∀ i

}

=

{
f ∈M I : f(I) ⊂

k⋃
i=1

Ui

}
∩

k⋂
i=1

{
f ∈M I : f(∗ ∈ I) ∈ Ui

}
,

which is a finite intersection of sets of the type (10), and so ϕ−1(U) is open in M I .

For openness, take an open set V as in (10), so V =
⋂k
i=1{f ∈M I : f(K) ⊆ Ui} for different subsets K ⊆ I. By

Lemma 5.7.4, we may assume that the Ui are pairwise disjoint. For each Ui, let {Ui,j}∞j=1 be a sequence of increasing

open sets in Ui such that Ui,j ⊆ Ui,j+1 and Ui,j
j→∞−−−−−→ Ui. Then

ϕ(V ) =

{
P ∈M : P ⊂

k⋃
i=1

Ui, P ∩ Ui 6= ∅ ∀ i

}
︸ ︷︷ ︸

f∈MI with image completely in the Ui

∪
k⋂
i=1

∞⋃
j=1

{
P ∈M : P ⊂ Ui,j ∪

(
Ui,j

)c
, P ∩ Ui,j 6= ∅, P ⊂

(
Ui,j

)c 6= ∅}︸ ︷︷ ︸
f∈MI with image partially in the Ui

.

Note that Ui,j and
(
Ui,j

)c
, the complement of the closure of Ui,j are both open and disjoint in M . Since infinite

unions and finite intersections of elements in the topology are also open, we have that ϕ(V ) is open in Ran6n(M). �

The above proposition says that we may talk equivalently about the compact-open topology on M I and the Ran
space topology on Ran6n(M). Viewing the Ran space as a function space allows for more general terminology to be
applied.

Lemma 5.7.4. Let Ui ⊆M be open, for i = 1, . . . , k. Then
⋂k
i=1{f ∈M I : f(K) ⊆ Ui} may be written as a union

of intersections
⋂`
j=1{f ∈M I : f(K) ⊆ Vj} with the Vj open, pairwise disjoint, and ` 6 k.
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Proof: It suffices to prove this in the case k = 2. Let U, V ⊆M open and suppose than U ∩ V 6= ∅. Note that U \ V
and V \U are separated (that is, (U \V )∩V \ U = ∅ and (V \U)∩U \ V = ∅), and since RN is a completely normal
space (equivalently, satisfies the T5 axiom), there exist disjoint open sets A,B with U \ V ⊆ A and U \ V ⊆ B. So
for A′ = A ∩ (U ∪ V ) and B′ = B ∩ (U ∪ V ), we have

{f ∈M I : f(K) ⊆ U} ∩ {f ∈M I : f(K) ⊆ V }
=
(
{f ∈M I : f(K) ⊆ U \ V } ∩ {f ∈M I : f(K) ⊆ V \ U}

)
∪ {f ∈M I : f(K) ⊆ U ∩ V }

=
(
{f ∈M I : f(K) ⊆ A′} ∩ {f ∈M I : f(K) ⊆ B′}

)
∪ {f ∈M I : f(K) ⊆ U ∩ V },

for A′, B′, U ∩ V open, and A′ ∩B′ = ∅. �

Note that in the last calculation of the proof, the intersection of sets in the second line is smaller than the
intersection of sets in the last line (as U \ V ( A and V \ U ( B). However, all the extra ones in the third line
appear in the set {f ∈M I : f(K) ⊆ U ∩ V }.

Stratifications

Now we compare stratifications on M I and Ran6n(M). As before, I is a set of size n.

Corollary 5.7.5. An image-constant A-stratification on M I is equivalent to an A-stratification on Ran6n(M).

This follows from Proposition 5.7.3. By image-constant we mean if α, β ∈ M I have the same image (that is,
α(I) = β(I)), then α, β are sent to the same element of A.

Proof: If we start with a continuous map f : M I → A, setting g(P ) = f(I → M) whenever (I → M) ∈ ϕ−1(P )
is continuous, as ϕ(f−1(U)) is open, by continuity of f and openness of ϕ. The assignment g(P ) = f(I → M)
whenever (I → M) ∈ ϕ−1(P ) is well defined, as the stratification is image-constant, so any continuous map from
M I must send every element of ϕ−1(P ) to the same place.

Conversely, if we start with a continuous map g : Ran6n(M) → A, setting f(I → M) = g(ϕ(I → M))
is continuous, as ϕ−1(g−1(U)) is open, by continuity of g and continuity of ϕ. This map is image-constant, as
ϕ(α : I →M) = α(I). �

Next we consider a particular stratification of M I , adapted from Example 3.5.17 of Ayala–Francis–Tanaka,
simplified with P = {∗}. That is, the example begins with a stratified space M → P and proceeds to construct
another stratification M I → P ′, but we only consider the trivial stratification M → {∗}.

Definition 5.7.6. Given M and I, let the poset P(I) of coincidences on I be the set of equivalence relations on I,
ordered by reverse set inclusion. Let fI : M I → P(I) be the natural stratification that takes a map α : I → M to
the equivalence relation on I describing which elements of I coincide in the image of α.

Example 5.7.7. An element of P(I) is a subset of I × I always containing (a, a) for every a ∈ I (reflexivity), and
satisfying the symmetry and transitivity conditions. For example, if |I| = 3 or 4, then P(I) is ordered as in the
diagrams below, with order increasing from left to right. We simplify things by writing [x1, . . . , xk] for the collection
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(xi, xj) of all i 6= j (the equivalence class).

[a, b, c]

[a], [b, c]

[b], [a, c]

[c], [a, b]

[a], [b], [c]

P({a, b, c})

[a, b, c, d]

[a], [b, c, d]

[b], [a, c, d]

[c], [a, b, d]

[d], [a, b, c]

[a, b], [c, d]

[a, c], [b, d]

[a, d], [b, c]

[a], [b], [c, d]

[a], [c], [b, d]

[a], [d], [b, c]

[b], [c], [a, d]

[b], [d], [a, c]

[c], [d], [a, b]

[a], [b], [c], [d]

P({a, b, c, d})

To check that the map fI : M I → P(I) is continuous, we first note that an element U[x1],...,[xk] in the basis of
the upwards-directed topology on P(I) contains images of α ∈M I whose images have at most the elements of each
equivalence class [xi] coinciding. Hence

f−1
I (U[x1],...,[xk]) =

⋃
U1,...,Uk⊆M
open, disjoint

k⋂
i=1

{
α ∈M I : α(K = {x ∈ [xi]}) ⊆ Ui

}
,

which is an open set in the compact-open topolgy on M I .

The Ran space as a colimit

Beilinson–Drinfeld (Section 3.4) and Ayala–Francis–Tanaka (Section 3.7) describe the Ran space as a colimit, the
former of a functor into topological spaces, the latter of a functor into stratified spaces. See Mac Lane for a full
treatment of colimits. Both BD and AFT use the category Finsurj,6n of finite sets and surjections, that is,

Obj(Finsurj,6n) = {I ∈ Obj(Set) : 0 < |I| 6 n},

HomFinsurj,6n(I, J) =

{
∅, if |I| < |J |,
{surjections I → J} , if |I| > |J |.

AFT uses more involved terminology, with “conically smooth” stratified spaces instead of just poset-stratified. They
use a category Strat, which for our purposes we may define as

Obj(Strat) = {poset-stratified topological spaces X
f−−→ A},

HomStrat(X
f−−→ A, Y

g−−→ B) = {(µ ∈ HomTop(X,Y ), ν ∈ HomSet(A,B) : g ◦ µ = ν ◦ f}.

Remark 5.7.8. There is a natural functor FM : (Finsurj,6n)op → Top, given by I 7→ M I . A surjection s : I → J
induces a mapMJ →M I , with (f : J →M) 7→ (f◦s : I →M). BD use this to declare that Ran6n(M) = colim(FM ).

Remark 5.7.9. There is also a natural functor GM : (Finsurj,6n)op → Strat, given by I 7→ (M I → P(I)). AFT use
this to declare that (Ran6n(M)→ {1, . . . , n}) = colim(GM ).

The construction of AFT is even more general, as they consider the Ran space of an already stratified space.
Here we use their result for M → {∗} trivially stratified.

References: Ayala, Francis, and Tanaka (Local structures on stratified spaces, Sections 3.5 and 3.7), Beilinson
and Drinfeld (Chiral algebras, Section 3.4), Mac Lane (Categories for the working mathematician, Chapter III.3)
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6 The Ran space - sheaves

6.1 A naive constructible sheaf

2017-12-19

Keywords: sheaf, constructible sheaf, Ran space, direct image, simplicial complex

In this post we describe a constructible sheaf over X = Ran6n(M) ×R>0 valued in simplicial complexes, for a
compact, smooth, connected manifold M . We note however that it does not capture all the information about the
underlying space. Thanks to Joe Berner for helpful ideas.

Recall the category SC of simplicial complexes and simplicial maps, as well as the full subcategories SCn of
simplicial complexes with n vertices (the vertices are unordered). Let A =

⋃n
k=1 SCn with the ordering 6A as in a

previous post (“Ordering simplicial complexes with unlabeled vertices,” 2017-12-03), and f : X → A the stratifying
map. Let {Ak}Nk=1 be a cover of X by nested open sets of the type f−1(US) = f−1({T ∈ A : S 6A T}), whose
existence is guaranteed as A is finite. Note that f(A1) is a singleton containg the complete simplex on n vertices.

Remark 6.1.1. For every simplicial complex S ∈ A, there is a locally constant sheaf over f−1(S) ⊆ X. Given the
cover {Ak} of X, denote this sheaf by Fk ∈ Shv(Ak \Ak−1) and its value by Sk ∈ SC.

Let i1 : A1 ↪→ A2 and j2 : A2 \ A1 ↪→ A2 be the natural inclusion maps . Note that A1 is open and A2 \ A1 is
closed in A2. The maps i1, j2 induce direct image functors on the sheaf categories

i1∗ : Shv(A1)→ Shv(A2), j2
∗ : Shv(A2 \A1)→ Shv(A2).

The induced sheaves in Shv(A2) are extended by 0 on the complement of the domain from where they come. Note
that since A2 \ A1 ⊆ A2 is closed, j2

∗ is the same as j2
! , the direct image with compact support. We then have the

direct sum sheaf i1∗F1 ⊕ j2
∗F2 ∈ Shv(A2), which we interpret as the disjoint union in SC. Then

(
i1∗F1 ⊕ j∗2F2

)
(U) =


S1 if U ⊆ A1,

S2 if U ⊆ A2 \A1,

S1 t S2 else,

(
i1∗F1 ⊕ j∗2F2

)
(P,t)

=


S1 if (P, t) ∈ A1,

S2 if (P, t) ∈ int(A2 \A1),

S1 t S2 else,

for U ⊆ A2 open and (P, t) ∈ A2. Generalizing this process, we get a sheaf on X. The diagram

A1 A2 A3 A4 · · · AN

A2 \A1 A3 \A2 A4 \A3 AN \AN−1

i1

j2

i2

j3

i3

j4

iN−1

jN

i4

may be helpful to keep in mind. We use the fact that direct sums commute with colimits (used in the definition of
the direct image sheaf) to simplify notation. We then get sheaves

F1 ∈ Shv(A1),
i1∗F1 ⊕ j2

∗F2 ∈ Shv(A2),
i2∗i

1
∗F1 ⊕ i2∗j2

∗F2 ⊕ j3
∗F3 ∈ Shv(A3),

i3∗i
2
∗i

1
∗F1 ⊕ i3∗i2∗j2

∗F2 ⊕ i3∗j3
∗F3 ⊕ j4

∗F4 ∈ Shv(A4),

and finally

iN−1···1
∗ F1 ⊕

(
N−1⊕
k=2

iN−1···k
∗ jk∗Fk

)
⊕ jN∗ FN ∈ Shv(AN = X),

where iN−1···k
∗ is the composition iN−1

∗ ◦iN−2
∗ ◦· · ·◦ik∗ of direct image functors. Call this last sheaf simply F ∈ Shv(X).

Each ik∗ extends the sheaf by 0 on an ever larger domain, so every summand in F is non-zero on exactly one stratum
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as defined by f : X → A. We now have a functor F : Op(X)→ SC defined by

F(U) =

N⊔
k=1

SkδU,AK\Ak−1
, F(P,t) =

N⊔
k=1

Skδ(P,t),cl(,AK\Ak−1),

where δU,V is the Kronecker delta that evaluates to the identity if U ∩ V 6= ∅ and zero otherwise.

Remark 6.1.2. The sheaf F is A-constructible, as F|f−1(S) is a constant sheaf evaluating to the simplicial complex
S ∈ A. However, if we want the cohomology groups to capture how the simplicial complexes change between strata,
then we must use a different approach - all groups die when leaving a stratum because of the extension by zero
construction.

References: nLab (article “Simplicial complexes”)

6.2 Artin gluing a sheaf 1: a small example

2018-01-21

Keywords: Artin gluing, constructible sheaf, direct image, inverse image, pullback, simplicial complex

The goal of this post is to describe a sheaf on a particular stratified space using locally constant sheaves defined
on the strata. Thanks to Joe Berner for helpful discussions.

Recall the direct image and inverse image sheaves from a previous post (“Sheaves, derived and perverse,” 2017-
12-05). Let M be a smooth, compact, connected manifold, and X = Ran62(M)×R>0. Let SC be the category of
abstract simplicial complexes and simplicial maps. All sheaves will be functors Op(−)op → SC. The space X looks
like the diagram below.

C

B

A

= C

A

B

A = {(P, t) ∈ Ran2(M)×R>0 : t > d(P1, P2)},

B = {(P, t) ∈ Ran2(M)×R>0 : t 6 d(P1, P2)},

C = Ran1(M)×R>0.

Let Y = A∪B. Note that A ⊆ Y is open, B ⊆ Y is closed, Y ⊆ X is open, and C ⊆ X is closed. There is a natural
stratified map f : X → {1, 2, 3}, with {1, 2, 3} given the natural ordering. The map f is described by f−1(3) = A,
f−1(2) = B, and f−1(1) = C. Define the inclusion maps

i : A ↪→ Y, k : Y ↪→ X,

j : B ↪→ Y, ` : C ↪→ X.

Define the following constant sheaves on A,B,C, respectively:

F(U ⊆ A) = , G(U ⊆ B) = , H(U ⊆ C) = .

If U = ∅, all three give back the simplicial complex on a single vertex . We will now attempt to define a sheaf on
all of X by gluing sheaves on the strata. Choose some subsets of X as below on which to test the sheaves.

C

B

A
A′

B′

C ′

B′′B′′′

LL′

NN ′

MM ′



128

Step 1: Extend F and G to a sheaf on Y .

The direct image of F via i, as a sheaf on Y , is

i∗F(U) = F(i−1(U)) = F(U ∩A) =

{
if U ∩A 6= ∅
else,

for any U ⊆ Y . The inverse image of i∗F via j, as a sheaf on B, is

j∗i∗F(U) = colim
V⊇j(U)

[i∗F(V )] = colim
V⊇j(U)

[F(V ∩A)] =

{
if U ∩ cl(A) 6= ∅
else,

for any U ⊆ B. Note j∗i∗F(B′) = and j∗i∗F(B′′) = . The inverse image sheaf is actually defined as the
sheafification of the presheaf obtained by taking the colimit, but the sheaf axioms are easily seen to be satisfied here,
as the support is on a closed subset.

Following the MathOverflow question, we need to define a map G → j∗i∗F of sheaves on B. Since the support of
j∗i∗F is only cl(A) ∩ B, it suffices to define the map here, and we can do it on stalks. There is a natural simplicial
map

ϕ−−→

which we use as the sheaf map. It seems we should now have a sheaf on all of Y now, but the result is not immediate.
Following the proof of Theorem 3.10 in Chapter 2 of Milne, we need to take the fiber product, or pullback, of i∗F
and j∗G over j∗j

∗i∗F , call it K. Consider the pullback diagram on sets like B′′′:

j∗G(B′′′)

i∗F(B′′′)K(B′′′)

j∗j
∗i∗F(B′′′)

j∗ϕ
id =

K(B′′′)

j∗ϕ
id

Hence it makes sense to set K(B′′′) = . We now have a sheaf K on Y given by

K(U ⊆ Y ) =

{
if U ⊆ cl(A),

else,
Kx∈Y =

{
if x ∈ cl(A),

else.

Step 2: Extend K and H to a sheaf on X.

The direct image of K via k, as a sheaf on X, is

k∗K(U) = K(k−1(U)) = K(U ∩ Y ) =


if U ∩ Y ⊆ cl(A)

else if U ∩ Y 6= ∅,
else,

for any U ⊆ X. The inverse image of k∗K via `, as a sheaf on C, is

`∗k∗K(U) = colim
V⊇`(U)

[k∗K(V )] = colim
V⊇`(U)

[K(V ∩ Y )] =


if U ∩ cl(B) 6= ∅
else if U ∩ cl(A) 6= ∅,
else,

for any U ⊆ C. We need to again define a map H → `∗k∗K of sheaves on C. On stalks we naturally have maps

ϕ−−→ , and
ψ−−→ ,

due to the fact that both complexes are symmetric, so sending to one or the other vertex is the same. Let L be the
sheaf we should now have defined over all of X, by taking the fiber product of `∗H and k∗K over `∗`

∗k∗K. Let us
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consider its pullback diagrams for the sets L′,M ′, N ′.

L(L′)

`∗ϕ
id

L(M ′)

`∗ψ
id

L(N ′)

`∗ϕ
id

It seems that we should set L(L′) = L(M ′) = L(N ′) = . We now have a sheaf L on X given by

L(U ⊆ X) =


if U ⊆ cl(A),

else if U ⊆ cl(Y ),

else,

Lx∈X =


if x ∈ cl(A),

else if x ∈ cl(B),

else.

The next goal is to extend this approach to Ran6n(M) × R>0. An immediate difficulty seems to be finding
canonical simplicial maps like ϕ and ψ, but hopefully a choice of increasing nested open cover of the startifying set
of X will solve this problem.

References: MathOverflow (Question 54037), Milne (Étale cohomology, Chapter 2.3)

6.3 Artin gluing a sheaf 2: simplicial sets and configuration spaces

2018-01-31

Keywords: constructible sheaf, simplicial set, pullback, fiber product, Artin gluing, direct image, inverse image, con-
figuration space

The goal of this post is to extend the previous stratifying map to simplicial sets, and to generalize the sheaf con-
struction to X = Confn(M)×R>0 for arbitrary integers n, where M is a smooth, compact, connected manifold. We

work with Confn(M) instead of Ran6n(M) because Lemma 6.3.1 and Proposition 6.3.4 have no chance of extending
to Ran6n(M) without major modifications (see Remark 6.3.5 at the end of this post).

Recall SC is the category of simplicial complexes and simplicial maps, with SCn the full subcategory of simplicial
complexes on n vertices. Our main function is

f : X
f1−−→ SC

f2−−→ sSet,
(P, a) 7→ V R(P, a) 7→ HomSet(∆

•, V R(P, a)).

On Confn(M) we have a natural metric, the Hausdorff distance dH(P,Q) = maxp∈P minq∈Q d(p, q)+maxq∈Q minp∈P d(p, q).
This induces the 1-product metric on X, as

dX((P, a), (Q, b)) = dH(P,Q) + d(a, b),

where d without a subscript is Euclidean distance. We could have chosen any other p-product metric, but p = 1
makes computations easier. For a given (P, t) ∈ X, write P = {P1, . . . , Pn} and define its maximal neighborhood to
be the ball BX(min{δ1, δ2, t}, P ), where

δ1 = min
i<j
{d(Pi, Pj)}, δ2 = min

i<j
{|d(Pi, Pj)− t| : d(Pi, Pj) 6= t}.

Lemma 6.3.1. Any path γ : I → X induces a unique morphism f(γ(0))→ f(γ(1)) of simplicial sets.

Proof: Write γ(0) = {P1, . . . , Pn} and γ(1) = {Q1, . . . , Qn}. The map γ induces n paths γi : I →M for i = 1, . . . , n,
with γi the path based at Pi. Let s : γ(0)→ γ(1) be the map on simplicial complexes defined by Pi 7→ γi(1). Since
we are in the configuration space, where points cannot collide (as opposed to the Ran space), this is a well-defined
map. Then f2(s) is a morphism of simplicial complexes. �

Note the morphism of simplicial sets induced by any path in a maximal neighborhood of x ∈ X is the identity
morphism. We now move to describing a sheaf over all of X.
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Definition 6.3.2. Let X be any topological space and C a category with pullbacks. Let A ⊆ X open and B =
X \ A ⊆ X closed, with i : A ↪→ X and j : B ↪→ X the inclusion maps. Let F be a C-valued sheaf on A and G a
C-valued sheaf on B. Then the Artin gluing of F and G is the C-valued sheaf H on X defined as the pullback, or
fiber product, of i∗F and j∗G over j∗j

∗i∗F in the diagram below.

j∗G

i∗FH

j∗j
∗i∗F

j∗ϕ

restriction

Note the definition requires a choice of sheaf map ϕ : G → j∗i∗F . In the proof below, this sheaf map will be the
morphism of simplicial sets from Lemma 6.3.1 through the functor HomSet(∆

•,−) = f2(−).

Recall the ordering of SCn described by Definition 5.1.3 in a previous post (“Exit paths, part 2,” 2017-09-28).

Fix a cover {Ai}Ni=1 of SCn by nested open subsets (so N = |SCn|), with Bi := f−1
1 (Ai) and B6i :=

⋃i
j=1Bi.

We now have an induced order on and cover of im(f) = sSet′, as a full subcategory of sSet. Even more, we now
have an induced total order on sSet′ = {S1, . . . , SN}, with Si the unique simplicial set in Ai \ Ai−1. For example,
S1 = HomSet(∆

•,∆n) and SN = HomSet(∆
•,
⋃n
i=1 ∆0).

For ease of notation, we let B0 = ∅ and write S∅ = Hom(∆•, ∅), S0 = Hom(∆•,∆0).

Definition 6.3.3. Let Fi : Op(Bi)
op → sSet be the locally constant sheaf given by Fi(Ux) = Si, where Ux is a

subset of the maximal neighborhood of x ∈ Bi. In general,

Fi(U) =



Si if U 6= ∅,
U is path connected,

every loop γ : I → U induces id : f(γ(0))→ f(γ(1)),

S∅ else if U 6= ∅,
S0 else.

In general, we say U ⊆ X is good if it is non-empty, path connected, and every loop γ : I → U induces the identity
morphism on simplicial sets.

Proposition 6.3.4. Let F61 = F1, and F6i be the sheaf on B6i obtained by Artin gluing Fi onto F6i−1, for all
i = 2, . . . , N . Then F = F6N is the SCn-constructible sheaf on X described by

F(U) =


Smax{16`6N : U∩B` 6=∅} if U is good,

S∅ else if U 6= ∅,
S0 else.

(12)

Proof: We proceed by induction. Begin with the constant sheaf F1 on B1 and F2 on B2, which we would like to
glue together to get a sheaf F62 on B62. Since f1 is continuous in the Alexandrov topology on the poset SC6n,
B1 ⊆ B62 is open and B2 ⊆ B62 is closed. Let i : B1 ↪→ B62 and j : B2 ↪→ B62 be the inclusion maps. The sheaf
j∗i∗F1 has support cl(B1) ∩B2 6= ∅ with

j∗i∗F1(U) = colim
V⊇j(U)

[i∗F1(V )] = colim
V⊇U

[F1(V ∩B1)] =

{
S1 if U ∩ cl(B1) is good,

S∅ else,

for any non-empty U ⊆ B2. Let the sheaf map ϕ : F2 → j∗i∗F1 be the inclusion simplicial set morphism on good
sets (it can be thought of as induced through Lemma 6.3.1 by a path starting in U ∩B2 and ending in V ∩B1, for V a
small enough set in the colimit above). Note that S2 = HomSet(∆

•,∆n\∆1), where ∆n\∆1 is the simplicial complex
resulting from removing an edge from the complete simplicial complex on n vertices. Let F62 be the pullback of
i∗F1 and j∗F2 along j∗j

∗i∗F1, and U ⊆ B62 a good set. If U ⊆ B1, then F62(U) = F1(U) = S1, and if U ⊆ B2,
then F62(U) = F2(U) = S2. Now suppose that U ∩ B1 6= ∅ but also U ∩ B2 6= ∅, which, since U is good, implies
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that U ∩ cl(B1) ∩B2 6= ∅. Then we have the pullback square

j∗F2(U)

i∗F1(U)F62(U)

j∗j
∗i∗F1(U)

j∗ϕ

restriction

S2
=

S1
=

S1.
=

If U is not good, then the simplicial sets are S∅ or S0, with nothing interesting going on. The pullback over a good
set U can be computed levelwise as

F62(U)m = {(α, β) ∈ (S1)m × (S2)m : α = j∗ϕ(β)}. (13)

Since j∗ϕ is induced by the inclusion ϕ, it is the identity on its image. So α = j∗ϕ(β) means α = β, or in other
words, F62(U) = S2. Hence for arbitrary U ⊆ B62, we have

F62(U) =


Smax{`=1,2 : U∩B` 6=∅} if U is good,

S∅ else if U 6= ∅,
S0 else.

For the inductive step with k > 1, let F6k be the sheaf on B6k defined as in (12), but with k instead of N .
We would like to glue F6k to Fk+1 on Bk+1 to get a sheaf F6k+1 on B6k+1. As before, Bk ⊆ B6k+1 is open and
Bk+1 ⊆ B6k+1 is closed. For i : Bk ↪→ B6k+1 and j : Bk+1 ↪→ B6k+1 the inclusion maps, the sheaf j∗i∗F6k has
support cl(B6k) ∩Bk+1, with

j∗i∗F6k(U) = colim
V⊇j(U)

[i∗F6k(V )] = colim
V⊇U

[F6k(V ∩B6k)] =

{
Smax{16`6k : U∩cl(B`)6=∅} if U ∩ cl(B6k) is good,

S∅ else,

for any non-empty U ⊆ Bk+1. Let the sheaf map ϕ : Fk+1 → j∗i∗F6k be the inclusion simplicial set morphism on
good sets (it can be thought of as induced through Lemma 6.3.1 by a path starting in U∩Bk+1 and ending in V ∩B6k,
for V a small enough set in the colimit above). For U ⊆ B6k+1 a good set, if U ⊆ B6k, then F6k+1(U) = F6k(U),
and if U ⊆ Bk+1, then F6k+1(U) = Fk+1(U) = Sk+1. Now suppose that U ∩B6k 6= ∅ but also U ∩Bk+1 6= ∅, which,
since U is good, implies that U ∩ cl(B6k) ∩Bk+1 6= ∅. Then we have the pullback square

j∗Fk+1(U)

i∗F6k(U)F6k+1(U)

j∗j
∗i∗F6k(U)

j∗ϕ

restriction

Sk+1
=

Smax{16`6k : U∩B` 6=∅} = Sk
=

Smax{16`6k : U∩cl(B`) 6=∅} = Sk.
=

If U is not good, then the simplicial sets are S∅ or S0, with nothing interesting going on. Again, as in (13), the
pullback F6k+1 on a good set U is

F6k+1(U)m = {(α, β) ∈ (S`)m × (Sk+1)m : α = j∗ϕ(β)},

and as before, this implies that F6k+1(U) = Sk+1. Hence F6k+1 is exactly of the form (12), with k + 1 instead of
N , and by induction we get the desired description for F6N = F . �

Remark 6.3.5. The statements given in this post do not extend to Ran6n(M), at least not as stated. Lemma 6.3.1
fails if somewhere along the path γ a point splits in two or more points, as there is no canonical choice which of the
“new” points should be the image of the “old” point. This means that the proof of Proposition 6.3.4 will also fail,
because we relied on a uniquely defined sheaf map ϕ between strata.
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Next, we hope to use this approach to describe classic persistent homology results, and maybe link this to the
concept of persistence modules.

References: Milne (Étale cohomology, Chapter 2.3)

6.4 Artin gluing a sheaf 3: the Ran space

2018-02-05

Keywords: Ran space, constructible sheaf, Artin gluing, symmetric group

The goal of this post is to extend earlier ideas, of a sheaf defined on Confn(M) × R>0, to a family of sheaves

defined on
⋃n
k=1 Confn(M)×R>0 = Ran6n(M)×R>0.

Recall our main map f : Confn(M) × R>0
V R(−)−−−−−→ SCn

Hom(∆•,−)−−−−−−−−−→ sSet. Following Definition 6.3.3 and
Proposition 6.3.4 in a previous post (“Artin gluing a sheaf 2: simplicial sets and configuration spaces,” 2018-01-31),
define a sheaf Fk on Xk by

Fk(U) =

{
Sk,max{16`6Nk : U∩B` 6=∅} if U is good,

S∅ else if U 6= ∅,
(14)

for all k = 1, . . . , n. We have assumed a total order on all simplicial complexes on k vertices, induced by a cover
Uk, . . . , Uk,Nk of nested opens of Xk. This induces a total order Sk,1, . . . , Sk,Nk on the image of Rank(M)×R>0 in

sSet, and by the product order, a total order on all of sSet′ := f(Ran6n(M)×R>0).

A small example

Let n = 3, so X = Ran63(M) ×R>0. We already have F1,F2,F3 on X1, X2, X3, respectively, and we will extend
them from the top down to sheaves over all of X, as in the diagram below.

F3

F2

F1

Fd0 , Fd1 , Fd2
Fd0d0 , Fd1d0 , Fd2d0

Fd0d1 , Fd1d1 , Fd2d1

X1

X2

X3

The map i will be the inclusion of an open set into a larger one, and j the inclusion of a closed set into a larger one.
Recall that the pullback of two sheaves is defined equivalently by a map of sheaves on the boundary of the open nd
closed sets. With that in mind, for U ⊆ X2 ∪X3 good, the pullback square

j∗F2(U)

i∗F3(U)Fd0(U)

j∗j
∗i∗F3(U)

d0

restriction

S2,max{`=1,2 : U∩U2,` 6=∅}
=

S3,max{`=1,2,3,4 : U∩U3,` 6=∅}
=

S3,max{`=1,2,3,4 : U∩U3,` 6=∅}

=
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defines Fd0 , where the d0 indicates the face map that skips the 0th spot. The sheaf Fd1 is defined similarly, but by
the face map d1, and Fd2 by the face map d2. For each of these three sheaves on X3∪X2, we have two other sheaves,
based on where the single point maps to. However, we note that for U ⊆ X good and U ∩X1 6= ∅,

((i∗Fd0 × j∗F1)(U) defined by d0) = ((i∗Fd1 × j∗F1)(U) defined by d0) ,

where × denotes the pullback over the appropriate sheaf, and similarly for the other sheaves on good sets intersecting
X1. We now have 6 unique shaves on all of X.

Generalizing

Now let n be any positive integer, and X = Ran6n(M)×R>0. We reverse the indexation of the Fk and Xk above to

make notation less cumbersome (so now Fk is Fn−k+1 from (14), over Xk = Rann−k+1(M)×R>0). Define pullback
sheaves Fd`1 for `1 = 0, . . . , n on X2 ∪X2 by the diagram

j∗F2

i∗F1Fd`1

j∗j
∗i∗F1.

d`1

restriction

At the kth step, for 1 < k < n, we have sheaves Fd`1 ···d`k−1
over

⋃k
m=1Xm, defined by sequences of face maps d`k−1

when going from Xk to Xk−1 and so on, where `m ∈ {0, . . . , n−m+ 1}. Define pullback sheaves Fd`1 ···d`k−1
d`k

, for

`k = 0, . . . , n− k + 1 on
⋃k+1
m=1Xk by the diagram

j∗Fk+1

i∗Fd`1 ···d`k−1
Fd`1 ···d`k

j∗j
∗i∗Fd`1 ···d`k−1

.
d`k

restriction

At the end of this inductive process, we have n! distinct sheaves Fd`1 ···d`n−1
on all of X. Note there is a sheaf map

Fd`1 ···d`i ···d`n−1
→ Fd`1 ···d`′i ···d`n−1

, given on U good by

Fd`1 ···d`i ···d`n−1
(U) = S 7→

{
S if |S0| 6 n− i,
(`i `

′
i)(S) else,

where (`i `
′
i) ∈ Sn (the symmetric group on the numbers 0, . . . , n−1) is the transposition swaps the `i and `′i indices

of S0, the 0-cells of S, inducing a map of simplicial sets. If the two sheaves differ in only two indices `i 6= `′i and
`j 6= `′j , with i < j, then we get S 7→ (`j `

′
j)d`i−1

···d`j (`i `
′
i)(S). Here (`j `

′
j)d`i−1

···d`j is the element of Sn−i found by

taking (`j `
′
j) from Sn−j to Sn−i by the sequence of group inclusion maps induced by the face maps d`j , . . . , d`i−1

.

Remark 6.4.1. This construction is not the most satisfying for several reasons:

• we do not have a single sheaf, rather a family of sheaves, and

• the use of “good” sets leaves something to be desired, as we should be able to consider larger sets.

Both will hopefully be remedied in a later post.

6.5 Artin gluing a sheaf 4: a single sheaf in two ways

2018-02-10

Keywords: Ran space, constructible sheaf, simplicial complex, simplicial set, ordering, product order, colimit

The goal of this post is to give an alternative perspective on making a sheaf over X = Ran6n(M) × R>0,
alternative to that of a previous post (“Artin gluing a sheaf 3: the Ran space,” 2018-02-05). We will have one unique
sheaf on all of X, valued either in simplicial complexes or simplicial sets.
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Remark 6.5.1. Here we straddle the geometric category SC of simplicial complexes and the algebraic category sSet
of simplicial sets. There is a functor [ · ] : SC → sSet for which every n-simplex in S gets (n + 1)! elements in [S],
representing all the ways of ordering the vertices of S (which we would like to view as unordered, to begin with).

Recall from previous posts:

• maps f : X → SC and g = [f ] : X → sSet,

• the SCk-stratification of Rank(M)×R>0,

• the point-counting stratification of Ran6n(M),

• the combined (via the product order) SC6n-stratification of Ran6n(M)×R>0,

• an induced (by the SCk-stratification) cover by nested open sets Bk,1, . . . , Bk,Nk of Rank(M)×R>0,

• a corresponding induced total order Sk,1, . . . , Sk,Nk on f(Rank(M)×R>0).

The product order also induces a cover by nested opens of all of X and a total order on f(X) and g(X). We call
a path γ : I → X a descending path if t1 < t2 ∈ I implies h(γ(t1)) > h(γ(t2)) in any stratified space h : X → A.
Below, h is either f or g.

Lemma 6.5.2. A descending path γ : I → X induces a unique morphism h(γ(0))→ h(γ(1)).

Proof: Write γ(0) = {P1, . . . , Pn} and γ(1) = {Q1, . . . , Qm}, with m 6 n. Since the path is descending, points can
only collide, not split. Hence γ induces n paths γi : I →M for i = 1, . . . , n, with γi the path based at Pi. This induces
a map h(γ(0))0 → h(γ(1))0 on 0-cells (vertices or 0-objects), which completely defines a map h(γ(0)) → h(γ(1)) in
the desired category. �

Our sheaves will be defined using colimits. Fortunately, both SC and sSet have (small) colimits. Finally, we also
need an auxiliary function σ : Op(X)→ SC that finds the correct simplicial complex. Define it by

σ(U) =


Sk,` if U 6= ∅, for k = max{1 6 k′ 6 n : U ∩ Rank(M)×R>0 6= ∅},

` = max{1 6 `′ 6 Nk : U ∩Bk,`′ 6= ∅},
∗ if U = ∅.

Proposition 6.5.3. Let F be the function Op(X)op → SC on objects given by

F(U) = colim (σ(U)⇒ S : every σ(U)→ S is induced by a descending γ : I → U) .

This is a functor and satisfies the sheaf gluing conditions.

Proof: We have a well-defined function, so we have to describe the restriction maps and show gluing works. Since
V ⊆ U ⊆ X, every S in the directed system defining F(V ) is contained in the directed system defining F(U). As
there are maps σ(V ) → F(V ) and S → F(V ), for every S in the directed system of V , precomposing with any de-
scending path we get maps σ(U)→ F(V ) and S → F(V ), for every S in the directed system of U . Then universality
of the colimit gives us a unique map F(U)→ F(V ). Note that if there are no paths (decending or otherwise) from
U to V , then the colimit over an empty diagram still exists, it is just the initial object ∅ of SC.

To check the gluing condition, first note that every open U ⊆ X must nontrivially intersect Rann(M)×R>0, the
top stratum (in the point-counting stratification). So for W = U ∩ V , if we have α ∈ F(U) and β ∈ F(V ) such that
α|W = β|W is a k-simplex, then α and β must have been k-simplices as well. This is because a simplicial takes a
simplex to a simplex, and we cannot collide points while remaining in the top stratum. Hence the pullback of S 3 α
and T 3 β via some induced maps (by descending paths) from U to W and V to W , respectively, will restrict to the
identity on the chosen k-simplex. Hence the gluing condition holds, and F is a sheaf. �

Functoriality of [ · ] allows us to extend the proof to build a sheaf valued in simplicial sets.
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Proposition 6.5.4. Let G be the function Op(X)op → sSet on objects given by

G(U) = colim ([σ(U)]⇒ S : every [σ(U)]→ S is induced by a descending γ : I → U) .

This is a functor and satisfies the sheaf gluing conditions.

Remark 6.5.5. The sheaf G is non-trivial on more sets. For example, any path contained within one stratum of
X induces the identity map on simplicial sets (though not on simplicial complexes). Hence G is non-trivial on every
open set contained within a single stratum.

References: nLab (article “Simplicial complexes”), n-category Cafe (post “Simplicial Sets vs. Simplicial Com-
plexes,” 2017-08-19)
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7 Persistent homology - functoriality

7.1 Functorial persistence

2018-02-28

Keywords: persistence module, barcode, persistence diagram, filtration, induced matching, functor, natural transfor-
mation, pointed set

The goal of this post is to overcome some hurdles encountered by Bauer and Lesnick. In their approach, some
geometric information is lost in passing from persistence modules to matchings. Namely, if an interval ends, we
forget if the k-cycle it represents becomes part of another k-cycle or goes to 0. Recall:

• (R,6) is the category of real numbers and unique morphisms s→ t whenever s 6 t,

• Vect (BVect) is the category of (based) finite dimensional vector spaces, and

• Set∗ is the category of pointed sets.

We begin by recalling all the classical notions in the TDA pipeline.

Definition 7.1.1. A persistence module is a functor F : (R,6) → Vect. The barcode of a persistence module F is
a collection of pairs (I, k), where I ⊆ R is an interval and k ∈ Z>0 is a positive integer.

Crawley-Boevey describes how to find the decomposition of a persistence module into interval modules. The k
for each I is usually 1, but is 2 (and more) if the same interval appears twice (or more) in the decomposition. A
barcode contains the same information as a persistence diagram, though the former is drawn as horizontal bars and
the latter is presented on a pair of axes.

Definition 7.1.2. A matching χ of barcodes {(Ii, ki)}i and {(Jj , `j)}j is a bijection I ′ → J ′, for some I ′ ⊆ {(Ii, ki)}i
and J ′ ⊆ {(Jj , `j)}j .

We write matchings as χ : {(Ii, ki)}i 9 {(Jj , `j)}j .

Definition 7.1.3. A filtered persistence module is a functor F : (R,6) → BVect for which F (s 6 t)(ei) = fj or 0,
for every ei in the basis of F (s) and fj in the basis of F (t).

The notion of filtered persistence module is used for a stronger geometric connection. Indeed, for every filtered
space X the persistence module along this filtration is also filtered (once interval modules have been found), as then
inclusions Xs ↪→ Xt will induce isomorphisms in homology onto their image. That is, a pair of homology classes
from the source may combine in the target, but if the classes come from interval modules, a class from the source
can not be in two non-homologous classes of the target.

Remark 7.1.4. The above dicussion highlights that choosing a basis in the definition of a persistence module already
uses the decomposition of persistence modules into interval modules.

It is immediate that a morphism of persistence modules is a natural transformation. Let BPVect be the full
subcategory of BVect consisting of elements in the image of some filtered persistence module (the objects are the
same, we just have a restriction of allowed morphisms).

Definition 7.1.5. Let B be the functor defined by

B : BPVect → Set∗,
(V, {e1, . . . , en}) 7→ {0, 1, . . . , n},

(ϕ : (V, {ei})→ (W, {fj})) 7→

(
i 7→

{
j if ϕ(ei) = fj ,

0 if ϕ(ei) = 0 or i = 0.

)

The basepoint of every set in the image of B is 0.

Definition 7.1.6. Let F,G be persistence modules and η a morphism F → G.
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• The persistence diagram of F is the functor B ◦ F .

• The matching induced by η is the natural transformation B(η) : B ◦ F → B ◦G.

Bauer and Lesnick’s definition of “matching” allow for more freedom to mix and match barcode intervals, but
this also restricts how much information of a persistence module morphism can be tracked.

Example 7.1.7. The following example has a horizontal filtration with the degree 0 homology barcode on the left
and the degree 1 homology barcode on the right. Linear maps of based vector spaces have also been shown to indicate
how homology classes are born, die (column of zeros), and combine (row with more than one 1).

degree 0

[
1 0
0 1
0 0
0 0

]
[

1 0 0 0
0 1 1 0
0 0 0 1

]
[

1 0 0
0 1 0
0 0 0
0 0 1

]
[

1 0 0 0
0 1 1 0
0 0 0 1

]

[
1 0 0
0 1 0
0 0 1

]

degree 1

[
0
1
0
0

]
[

0 1 0 0
0 0 1 0
0 0 0 0

]

[ 1 0 1
0 1 0 ]

[ 1 0
0 1 ]

Example 7.1.8. Bauer and Lesnick present Example 5.6 to show that functoriality does not work in their setting.
We reproduce their example and show that functoriality does work in our setting. Note that vertical ordering of the
bars does not matter once they are named.

0 1 2 3 4

g1

f2

f1

e2

e1
L

M

N

η

ξ

7→

f1

g1

7→f1

g1

7→f2

0

7→e1

f2

7→e1

f2

7→e2

0
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Apply the functor B to the whole diagram to get the matchings induced by η and ξ, as below.

0 1 2 3 4

R

R

RB ◦ L

B ◦M

B ◦N

B(η)

B(ξ)

{0, 1} {0, 1} {0, 1} {0, 1} {0, 1}id id id id

{0} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}incl. incl. id id

{0} {0} {0} {0, 1} {0, 1, 2}id id incl. incl.

id

id

incl. incl.

17→

2

17→

2

27→

0

incl.

17→

1

27→

0

17→

1

27→

0

17→
1

27→
0

Next we hope to understand how interleavings fit into this setup.

References: Bauer and Lesnick (Induced matchings and the algebraic stability of persistence barcodes), Crawley-
Boevey (Decomposition of pointwise finite-dimensional persistence modules)
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