Stratifications and factorization

Jānis Lazovskis

UIC Algebraic K-theory seminar 2018-12-05

0.1 Poset stratifications

poset stratification of a topological space. stratum eg 1: SCs with subset partial order non-eg 2: SCs with $C \leq D$ if there is a simplicial map $D \to C$ surj on vert (preorder, no anti-symmetry) eg 3: iso classes of SCs (unlabeled SCs) with above relation. is partial order Let X be top space, $f: X \to A$ strat. Sing(X), Sing $_A(X)$, Sing $^A(X)$. These are ssets.

0.2 Application

Piecewise linear manifold M, integer $n \in \mathbb{Z}_{>0}$, Ran space $\operatorname{Ran}^{\leq n}(M)$ has topology on it.

Main space $X = \operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$, main map $u\check{C}: X \xrightarrow{\check{C}} SC \xrightarrow{\sim} uSC$, unlabeled Cech. Is continuous. Sing_{uSC}(X) is not necessarily ∞ -cat. Since PL, exists compatible strat uSC' (comm sq) Take ho cat $\operatorname{Ho}(\operatorname{Sing}_{\mathsf{uSC}'}(X))$, objects as in $\operatorname{Sing}_{\mathsf{uSC}'}(X)$, homotopy rel between objects. Lemma 1: every $\sigma \in \operatorname{Sing}_{\mathsf{uSC}'}(X)_1$ induces a unique simplicial map $\check{C}(\sigma(0)) \to \check{C}(\sigma(1))$ in SC. Proof: geometric argument from continuity. Get induced paths $\sigma_i: I \to X$ on vertices. Lemma 2: every $[\sigma] \in \operatorname{Ho}(\operatorname{Sing}_{\mathsf{uSC}'}(X))$ induces a unique simplicial map $\check{C}(\sigma(0)) \to \check{C}(\sigma(1))$ in SC. Proof: existence by Lemma 1. Uniqueness by homotopy on induced $\tau_i \in \operatorname{Sing}(M)_2$ with $d_0\tau_i = \sigma_i$. Def: Define functor $\operatorname{Ho}(\operatorname{Sing}_{\mathsf{uSC}}(X)) \to \operatorname{SC}$ in the natural way. Is also functor for all $U \subseteq X$ open. Theorem: the functor $\operatorname{Op}(X) \to \operatorname{Cat}_{/\operatorname{SC}}$ with $U \mapsto (\operatorname{Sing}_{\mathsf{uSC}'}(U) \to \operatorname{SC})$ is a cosheaf. Proof: Construct inverse to natural map $\operatorname{colim} \mathcal{F}(U_i) \to \mathcal{F}(U)$ for cover $\{U_i\}$ of U.

0.3 Factorization

Ran space has natural operad structure on it. product. define different cosheaf (as Lurie) on it.