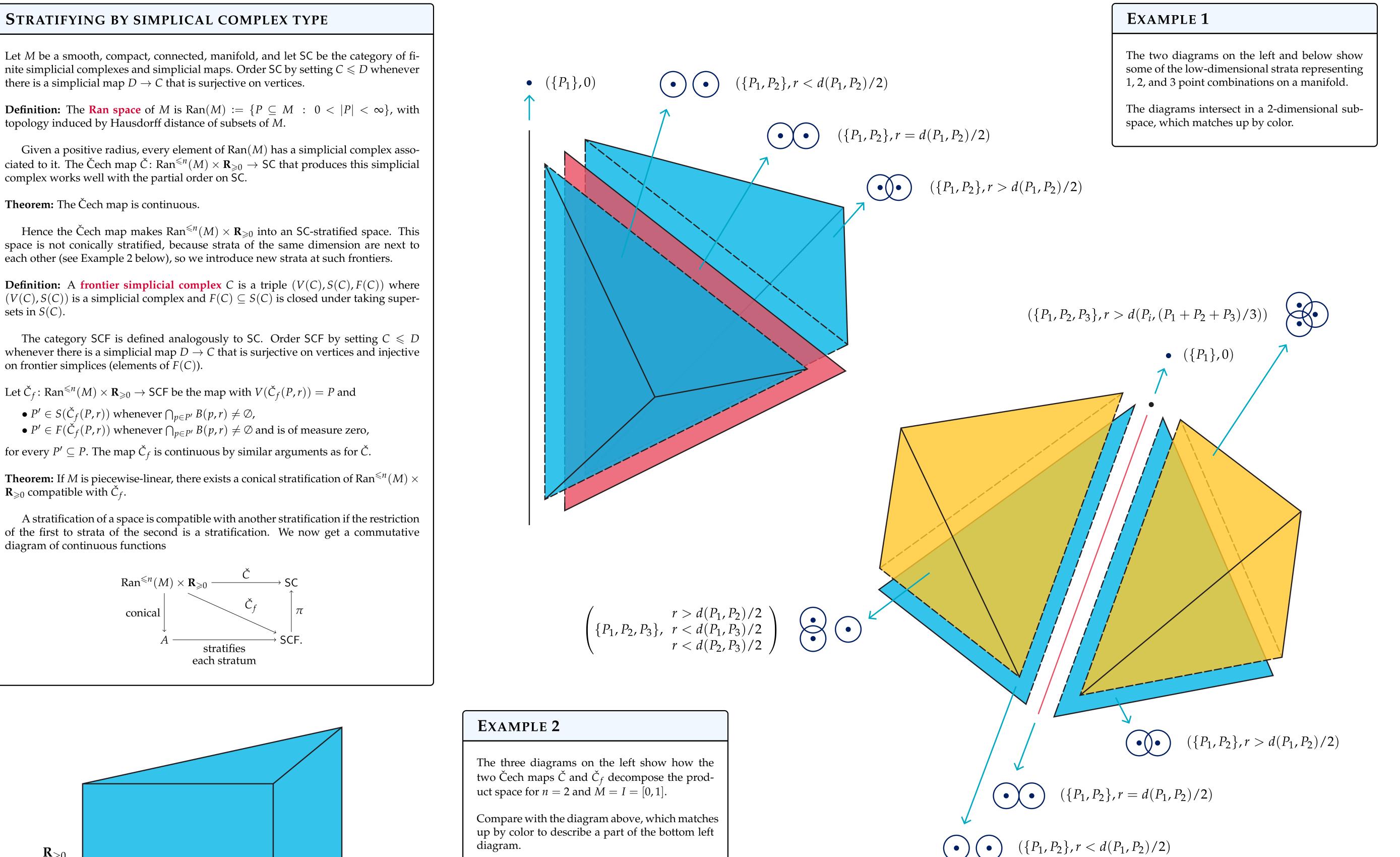
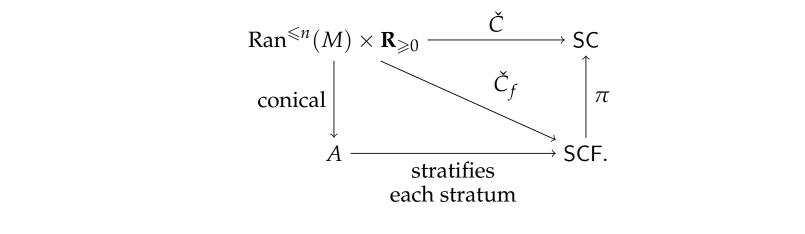
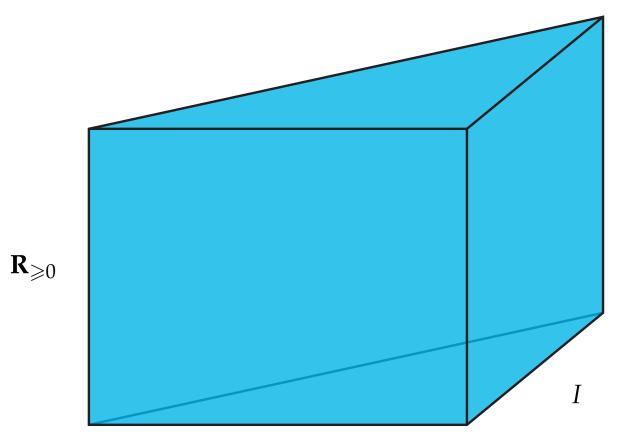
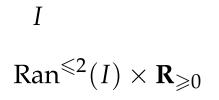
Constructible cosheaves over the Ran space

Jānis Lazovskis University of Illinois at Chicago



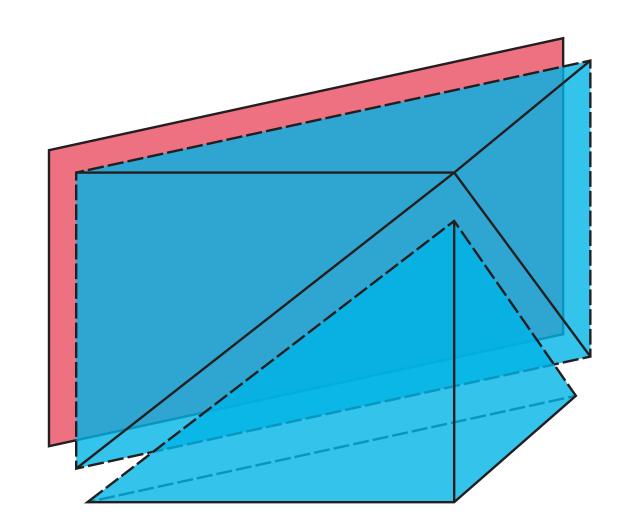




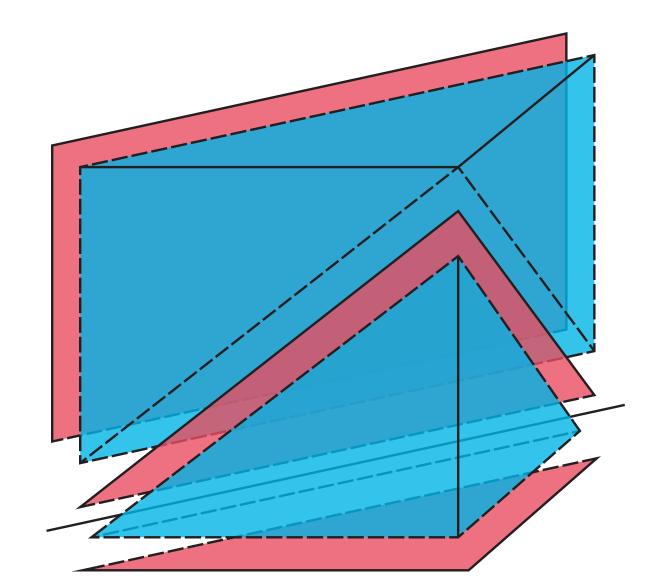


THE HOMOTOPY CATEGORY OF EXIT PATHS

Definition: An **exit path** in an *A*-stratified space *X* is a continuous map $\sigma \colon |\Delta^k| \to X$ for which there exists a chain $a_0 \leq \cdots \leq a_k$ in A such that $f(\sigma(t_0, \ldots, t_i, 0, \ldots, 0)) =$ a_i for $t_i \neq 0$. An entry path is an exit path with the opposite indexing of coordinates.



 $\check{C}\left(\operatorname{Ran}^{\leqslant 2}(I) \times \mathbf{R}_{\geqslant 0}\right)$



The full subcategory of Sing(X) of exit paths respecting the A-stratification is denoted $\operatorname{Sing}^{A}(X)$. We can consider homotopy classes of exit paths, forming the homotopy category $Ho(Sing^{A}(X))$.

Definition: Two exit paths $\sigma, \sigma' \in \text{Sing}^A(X)_1$ with common endpoints are **homotopic** if there exists a 2-simplex $\tau \in \text{Sing}^A(X)_2$ for which $d_2\tau = \sigma$, $d_1\tau = \sigma'$, and $d_0 \tau = c_{\sigma(0)}$ is the constant path at $\sigma(0)$.

Proposition: Every equivalence class of paths $[\gamma] \in \text{Ho}(\text{Sing}^{\mathsf{SC}}(\text{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}))$ defines a unique simplicial map $\check{\gamma} \colon \check{C}(\gamma(1)) \to \check{C}(\gamma(0)).$

Definition: Let $F: \operatorname{Ho}(\operatorname{Sing}^{\mathsf{SC}}(\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0})) \to \mathsf{SC}$ be the functor defined on objects by $F(P, r) = \check{C}(P, r)$ and on morphisms by $F([\gamma]) = \check{\gamma}$.

The functor *F* has some nice properties:

- It is cofinal, so combines colimits
- Restriction induces functors F_U : Ho(Sing^{SC}(U)) \rightarrow SC for all subsets U

APPLICATIONS

Since *F* is cofinal, it works well with colimit structures.

Theorem: The functor \mathcal{F} : Op $(\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}) \to \operatorname{SC}$ given by $U \mapsto \operatorname{colim} F_U$ is an SC-constructible cosheaf.

We can fix an element $P \in \text{Ran}^{\leq n}(M)$ and consider its lifetime over $\mathbf{R}_{\geq 0}$.

Proposition: The *k*th persistence module of *P* is the functor $PM_k: (\mathbf{R}, \leq) \rightarrow Vect$ given by $r \mapsto H_k(\mathcal{F}_{(P,r)})$ and $(r \leq s) \mapsto H_k(F_{\{P\} \times [r,s]})$.

The functor $F_{\{P\}\times[r,s]}$ may be viewed as a simplicial map, as there are finitely many times $r = t_0 < \cdots < t_N = s$ such that the natural path from (P, t_i) to (P, t_{i-1}) in Ho(Sing^{SC}(Ran^{$\leq n$}(*M*) × **R**_{≥ 0})) is an exit path for all *i* = 1, ..., *N*. The order on SC then gives a chain of simplicial maps.

The same construction of *F* may be repeated for the conical *A*-stratification, and then Sing^{*A*}(Ran^{$\leq n$}(*M*) × **R**_{≥ 0}) is an ∞-category, by Lurie. As nerves are spaces, the homotopy category-nerve adjunction means we have a functor

 $F: \operatorname{Sing}^{A}(\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}) \to N(\operatorname{SC}).$

SHEAVES AND COSHEAVES

7

Let \mathcal{F} be a presheaf on X, \mathcal{G} a precosheaf on X. For every open $U \subseteq X$ and every $\mathcal{U} = \{U_i\}$ an open cover of U, there are natural maps

$$F(U) \longrightarrow \lim_{V \in \mathcal{U}} \mathcal{F}(V), \qquad \operatorname{colim}_{V \in \mathcal{U}} \mathcal{G}(V) \longrightarrow \mathcal{G}(U).$$

If the first is an isomorphism, \mathcal{F} is a sheaf on *X*. If the second is an isomorphism, \mathcal{G} is a cosheaf on *X*.

Definition: Let $f: X \to A$ be an *A*-stratification and \mathcal{F} a pre(co)sheaf on *X*. For every $a \in A$, there is another natural presheaf \mathcal{F}_a on X_a and another natural precosheaf \mathcal{F}^a on X_a , given by

$$\mathcal{F}_a(U) = \operatorname{colim}_{V \supseteq U} \mathcal{F}(V), \qquad \mathcal{F}^a(U) = \lim_{V \supseteq U} \mathcal{F}(V).$$

We say \mathcal{F} is *A*-constructible if \mathcal{F}_a is a locally constant (co)sheaf, and *A*-coconstructible if \mathcal{F}^a is a locally constant (co)sheaf, for all $a \in A$.

The usual definition of constructibility only requires the sheafification to be a locally constant sheaf, so this definition is more restrictive. We may attach the adjective "strongly" to emphasize the difference.

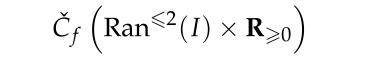
Definition: Let \mathcal{F} be a pre(co)sheaf on X. For every $x \in X$, the stalk \mathcal{F}_x and costalk \mathcal{F}^x are defined as

$$\mathcal{F}_x := \operatorname{colim}_{U \ni x} \mathcal{F}(U), \qquad \mathcal{F}^x := \lim_{U \ni x} \mathcal{F}(U).$$

There are natural maps $\mathcal{F}(U) \to \mathcal{F}_x$ and $\mathcal{F}^x \to \mathcal{F}(U)$ whenever $x \in U$.

FURTHER READING

[1] Jacob Lurie (2017), *Higher Algebra* (Section 5.5.1, Appendix A).



Again by Lurie, we then get an *A*-constructible sheaf on $\text{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$.

Masahiro Shiota (1997), Geometry of subanalytic and semialgebraic sets.

