Math 549 exercises

Updated 2015.12.07 - 12:04:47

- 1. (August 24) Find an atlas on the extended complex plane $\mathbf{C} \cup \{\infty\}$.
- 2. (August 24) Find an atlas on the real projective space $\mathbf{RP}^n = \{1 \text{-dimensional subspaces of } \mathbf{R}^n\}$.
- 3. (August 28) Show that the stereographic projection $\pi: S^2 \setminus \{N\} \to \mathbb{R}^2$ is a diffeomorphism, for N the "north pole" of the sphere S^2 .
- 4. (August 28) Show that O(n), the space of orthogonal $n \times n$ matrices, and SO(n), the space of orthogonal matrices with determinant 1, are both manifolds.
- 5. (August 31) Show that a smooth map of manifolds is continuous, using the topology of the manifolds.
- 6. (August 31) Show that SO(3) is diffeomorphic to \mathbb{RP}^3 .
- 7. (September 2) Show that $C^{\infty}(M)$, the space of smooth maps $M \to \mathbf{R}$, is a vector space.
- 8. (September 2) Describe an *n*-dimensional analogue of the smooth bump function presented in class.
- 9. (September 4) Let $M \ni a$ be a *n*-dimensional manifold in coordinates x_1, \ldots, x_n . Show that $(dx_1)_a, \ldots, (dx_n)_a$ span T_a^*M .
- 10. (September 9) Find a basis for $T_p S^3$, the tangent space of S^3 at a point p.
- 11. (September 11) Prove the following statement: Let $F: M \to N$ be a smooth map and $c \in N$ such that for all $a \in F^{-1}(c)$, the derivative DF_a is surjective. Then $F^{-1}(c)$ is a smooth manifold of dimension $\dim(M) \dim(N)$.
- 12. (September 11) Let $f: M \to N$ be a diffeomorphism of manifolds. Show that for each $x \in M$, $(Df)_x$ is an isomorphism of tangent spaces.
- 13. (September 11) Let X be a manifold with $U \subset X$ open. Show that $T_a U = T_a X$ for all $a \in U$.
- 14. (September 14) Consider the map $i: (-1, \infty) \to \mathbb{R}^2$ given by $t \mapsto (t^2 1, t(t^2 1))$. Show that this map does not give a submanifold of \mathbb{R}^2 .
- 15. (September 14) Let $M \ni x, N \ni y$ be two manifolds. Show that $T_{(x,y)}M \times N \cong T_xM \times T_yN$.
- 16. (September 18) Show that the 1-sphere S^1 has trivial tangent bundle.
- 17. (September 18) Prove the following statement: A manifold M^n has trivial tangent bundle iff there are n vector fields X_1, \ldots, X_n on M such that at each $a \in M$, the elements $(X_1)_a, \ldots, (X_n)_a$ form a basis for T_aM .
- 18. (September 18) Prove the following statement: Any linear transformation which satisfies the Leibniz property is a vector field.
- 19. (September 18) Let X, Y, Z be vector fields on a manifold M. Show the following properties hold, in coordinates:
 - (a) [X, Y + Z] = [X, Y] + [X, Z]
 - (b) [X, Y] = -[Y, X]
 - (c) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
 - (d) $\lambda[X, Y] = [X, \lambda Y]$ for any scalar λ

20. (September 21) Let A be a skew-symmetric $m \times m$ matrix, and set $\gamma(t) = \exp(tA) = \sum_{n=0}^{\infty} t^n A^n / n!$.

- (a) Show that γ defines a smooth curve in SO(m).
- (b) Find $\gamma'(0)$, the tangent vector defined by γ at 0.
- (c) Find $T_I SO(m)$.
- (d) Find $T_q SO(m)$, for arbitrary $g \in SO(m)$.

- 21. (October 12) Show that a smooth vector field on a manifold M that vanishes outside a compact set $K \subset M$ generates a 1-parameter group of diffeomorphisms on M.
- 22. (October 14) Consider $S^2 \subset \mathbf{R}^3$ in coordinates (x, y, z), and let $X = y \frac{\partial}{\partial x} x \frac{\partial}{\partial y}$ and $Y = z \frac{\partial}{\partial y} y \frac{\partial}{\partial z}$ be vector fields on S^2 . Calculate [X, Y].
- 23. (October 16) Let X, Y be vector fields on a smooth manifold M. Give the definition of the Lie bracket [X, Y] as a differential operator on smooth functions. Also show that $L_{[X,Y]} = [L_X, L_Y]$, for $L_X Y = [X, Y]$ the Lie derivative.
- 24. (October 16) Let v_1, \ldots, v_n be a basis of an *n*-dimensional vector space V. Show that the elements $v_{i_1} \wedge \cdots \wedge v_{i_p}$, for $1 \leq i_1 < \cdots < i_p \leq n$, form a basis for $\bigwedge^p V$.
- 25. (October 16) For $n \ge 1$, show that SL(n) is a smooth manifold, and find its dimension.
- 26. (October 16) Let M, N be smooth manifolds with $M \subset N$ a submanifold. Show that if X is a vector field defined on an open neighborhood of M, then there exists a vector field Y on N such that $Y|_M = X|_M$.
- 27. (October 21) Show that every compact manifold has a vector field with finitely many zeros.
- 28. (October 21) Calculate $F^*\alpha$ for $F: \mathbb{R}^3 \to \mathbb{R}^2$ given by $F(x_1, x_2, x_3) = (x_1x_2, x_2 + x_3)$ and $\alpha = xdx \wedge dy$.
- 29. (October 23) Let M be a smooth *n*-manifold and ω a *k*-form on M. Give $d\omega$ in local coordinates and show why it is independent of the basis chosen for M.
- 30. (October 26) Let $U \subset \mathbf{R}^n$, $V \subset \mathbf{R}^m$ be open sets with coordinates x_i , y_i , respectively, and $\theta : U \to V$ be a smooth map. Show that, for $\theta_i = y_i \circ \theta$,

$$\theta^*(dy_i) = \frac{\partial \theta_i}{\partial x_j} dx_j.$$

31. (October 26) Define the *Hodge star* operator

$$*: \Omega^{k}(\mathbf{R}^{m}) \to \Omega^{m-k}(\mathbf{R}^{m}), dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}} \mapsto \operatorname{sgn}(\sigma) dx_{i_{1}} \wedge \dots \wedge dx_{i_{m-k}},$$

with $1 \leq i_1 < \cdots < i_k \leq m$ and $1 \leq j_1 < \cdots < j_{m-k} \leq m$. Also $\{i_1, \ldots, i_k, j_1, \ldots, j_{m-k}\} = \{1, \ldots, m\}$ and σ is the permutation $(i_1 \cdots i_k j_1 \cdots j_{m-k}) \in S_m$ (the symmetric group on m elements). Let $\omega = a_{12}dx_1 \wedge dx_2 + a_{13}dx_1 \wedge dx_3 + a_{23}dx_2 \wedge dx_3$.

- (a) Calculate $*\omega$ for $\omega \in \Omega^2(\mathbf{R}^3)$.
- (b) Calculate $*\omega$ for $\omega \in \Omega^2(\mathbf{R}^4)$.
- 32. (October 26) Show that the formula $\mathscr{L}_X \alpha = d(i_X \alpha) + i_X(d\alpha)$ agrees with the definition of $\mathscr{L}_X \alpha$.
- 33. (October 28) Let $F: M \times [0,1] \to N$ be a smooth map and $\alpha \in H^p(N)$. Give a description of $F^*\alpha = \beta + dt \wedge \gamma$ in local coordinates.
- 34. (October 30) Let M be a smooth manifold. Show that $H^p(M \times \mathbf{R}^n) \cong H^p(M)$ for any p. This result is known as *Poincare's lemma*.
- 35. (October 30) Prove that $H^p(S^n) = \mathbf{R}$ if p = 0, n and 0 otherwise. You may assume the result for n = 1.
- 36. (November 2) Consider the space of straight lines in \mathbb{R}^3 .
 - (a) Describe this space as a manifold.
 - (b) What is the dimension of this manifold?
 - (c) Show this manifold is not orientable.
- 37. (November 2) Prove that the tangent bundle of a smooth manifold is orientable.
- 38. (November 2) Let α be a smooth 1-form on \mathbb{R}^2 . Show that α is exact if and only if it is closed.

- 39. (November 2) Let M be the complement of the origin in \mathbb{R}^3 . Construct a 2-form on M which is closed but not exact.
- 40. (November 4) Construct a smooth map $f: S^2 \to \mathbf{RP}^2$ and show, by contradiction, that \mathbf{RP}^2 is not orientable (by pulling back an orientation form on \mathbf{RP}^2 to an orientation form on S^2).
- 41. (November 6) Let M, N be smooth manifolds of dimension n, and $f: M \to N$ a smooth bijective immersion. Show that f is a diffeomorphism.
- 42. (November 6) Let M be a connected manifold without boundary. Show that if S, T are finite sets in M of the same size, then there is a diffeomorphism $f: M \to M$ sending S to T (that is, f(S) = T).
- 43. (November 6) Let M be a compact smooth orientable *n*-manifold. Show that there exists a smooth map $f: M \to S^n$ of non-zero degree.
- 44. (November 9) Let $P \subset \mathbf{R}^3$ be a finite set. Show that there is a smooth embedding $f : S^2 \to \mathbf{R}^3$ such that $P \subset f(S^2)$.
- 45. (November 9) Let C be a closed curve in \mathbf{R}^2 , given by the zero locus of f(x, y), and $\omega = xdy$ a 1-form on \mathbf{R}^2 . Show that the integral of ω over f is equal to the area enclosed by the curve.
- 46. (November 9) Describe an equivalent statement to the exercise above, but for surfaces in \mathbb{R}^3 .
- 47. (November 9) Let $M \ni x$ be an *n*-manifold without boundary and $B(x) \subseteq M$ a closed neighborhood of x diffeomorphic to the unit *n*-ball. Prove that $M \{x\}$ is diffeomorphic to M B(x).
- 48. (November 11) Show that $S^1 \times S^1$ is not diffeomorphic to S^2 .
- 49. (November 13) Let M be a manifold with boundary ∂M . Show that an orientation M defines an orientation on ∂M .
- 50. (November 13) Let M be a compact orientable manifold with boundary ∂M . Recall that a *retract* of M onto a subset $N \subset M$ is a continuous map $r : M \to N$ such that r(n) = n for all $n \in N$. Show that there is no smooth retract $M \to \partial M$.