Math 549 exercises

1. (August 24) Find an atlas on the extended complex plane $\mathbf{C} \cup\{\infty\}$.
2. (August 24) Find an atlas on the real projective space $\mathbf{R} \mathbf{P}^{n}=\left\{1\right.$-dimensional subspaces of $\left.\mathbf{R}^{n}\right\}$.
3. (August 28) Show that the stereographic projection $\pi: S^{2} \backslash\{N\} \rightarrow \mathbf{R}^{2}$ is a diffeomorphism, for N the "north pole" of the sphere S^{2}.
4. (August 28) Show that $O(n)$, the space of orthogonal $n \times n$ matrices, and $S O(n)$, the space of orthogonal matrices with determinant 1 , are both manifolds.
5. (August 31) Show that a smooth map of manifolds is continuous, using the topology of the manifolds.
6. (August 31) Show that $S O(3)$ is diffeomorphic to $\mathbf{R P}^{3}$.
7. (September 2) Show that $C^{\infty}(M)$, the space of smooth maps $M \rightarrow \mathbf{R}$, is a vector space.
8. (September 2) Describe an n-dimensional analogue of the smooth bump function presented in class.
9. (September 4) Let $M \ni a$ be a n-dimensional manifold in coordinates x_{1}, \ldots, x_{n}. Show that $\left(d x_{1}\right)_{a}, \ldots,\left(d x_{n}\right)_{a}$ $\operatorname{span} T_{a}^{*} M$.
10. (September 9) Find a basis for $T_{p} S^{3}$, the tangent space of S^{3} at a point p.
11. (September 11) Prove the following statement: Let $F: M \rightarrow N$ be a smooth map and $c \in N$ such that for all $a \in F^{-1}(c)$, the derivative $D F_{a}$ is surjective. Then $F^{-1}(c)$ is a smooth manifold of dimension $\operatorname{dim}(M)-\operatorname{dim}(N)$.
12. (September 11) Let $f: M \rightarrow N$ be a diffeomorphism of manifolds. Show that for each $x \in M,(D f)_{x}$ is an isomorphism of tangent spaces.
13. (September 11) Let X be a manifold with $U \subset X$ open. Show that $T_{a} U=T_{a} X$ for all $a \in U$.
14. (September 14) Consider the map $i:(-1, \infty) \rightarrow \mathbf{R}^{2}$ given by $t \mapsto\left(t^{2}-1, t\left(t^{2}-1\right)\right)$. Show that this map does not give a submanifold of \mathbf{R}^{2}.
15. (September 14) Let $M \ni x, N \ni y$ be two manifolds. Show that $T_{(x, y)} M \times N \cong T_{x} M \times T_{y} N$.
16. (September 18) Show that the 1 -sphere S^{1} has trivial tangent bundle.
17. (September 18) Prove the following statement: A manifold M^{n} has trivial tangent bundle iff there are n vector fields X_{1}, \ldots, X_{n} on M such that at each $a \in M$, the elements $\left(X_{1}\right)_{a}, \ldots,\left(X_{n}\right)_{a}$ form a basis for $T_{a} M$.
18. (September 18) Prove the following statement: Any linear transformation which satisfies the Leibniz property is a vector field.
19. (September 18) Let X, Y, Z be vector fields on a manifold M. Show the following properties hold, in coordinates:
(a) $[X, Y+Z]=[X, Y]+[X, Z]$
(b) $[X, Y]=-[Y, X]$
(c) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$
(d) $\lambda[X, Y]=[X, \lambda Y]$ for any scalar λ
20. (September 21) Let A be a skew-symmetric $m \times m$ matrix, and set $\gamma(t)=\exp (t A)=\sum_{n=0}^{\infty} t^{n} A^{n} / n!$.
(a) Show that γ defines a smooth curve in $S O(m)$.
(b) Find $\gamma^{\prime}(0)$, the tangent vector defined by γ at 0 .
(c) Find $T_{I} S O(m)$.
(d) Find $T_{g} S O(m)$, for arbitrary $g \in S O(m)$.
21. (October 12) Show that a smooth vector field on a manifold M that vanishes outside a compact set $K \subset M$ generates a 1-parameter group of diffeomorphisms on M.
22. (October 14) Consider $S^{2} \subset \mathbf{R}^{3}$ in coordinates (x, y, z), and let $X=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$ and $Y=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}$ be vector fields on S^{2}. Calculate $[X, Y]$.
23. (October 16) Let X, Y be vector fields on a smooth manifold M. Give the definition of the Lie bracket $[X, Y]$ as a differential operator on smooth functions. Also show that $L_{[X, Y]}=\left[L_{X}, L_{Y}\right]$, for $L_{X} Y=[X, Y]$ the Lie derivative.
24. (October 16) Let v_{1}, \ldots, v_{n} be a basis of an n-dimensional vector space V. Show that the elements $v_{i_{1}} \wedge \cdots \wedge v_{i_{p}}$, for $1 \leqslant i_{1}<\cdots<i_{p} \leqslant n$, form a basis for $\bigwedge^{p} V$.
25. (October 16) For $n \geqslant 1$, show that $S L(n)$ is a smooth manifold, and find its dimension.
26. (October 16) Let M, N be smooth manifolds with $M \subset N$ a submanifold. Show that if X is a vector field defined on an open neighborhood of M, then there exists a vector field Y on N such that $\left.Y\right|_{M}=\left.X\right|_{M}$.
27. (October 21) Show that every compact manifold has a vector field with finitely many zeros.
28. (October 21) Calculate $F^{*} \alpha$ for $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}, x_{2}+x_{3}\right)$ and $\alpha=x d x \wedge d y$.
29. (October 23) Let M be a smooth n-manifold and ω a k-form on M. Give $d \omega$ in local coordinates and show why it is independent of the basis chosen for M.
30. (October 26) Let $U \subset \mathbf{R}^{n}, V \subset \mathbf{R}^{m}$ be open sets with coordinates x_{i}, y_{i}, respectively, and $\theta: U \rightarrow V$ be a smooth map. Show that, for $\theta_{i}=y_{i} \circ \theta$,

$$
\theta^{*}\left(d y_{i}\right)=\frac{\partial \theta_{i}}{\partial x_{j}} d x_{j}
$$

31. (October 26) Define the Hodge star operator

$$
\begin{aligned}
*: \Omega^{k}\left(\mathbf{R}^{m}\right) & \rightarrow \Omega^{m-k}\left(\mathbf{R}^{m}\right) \\
d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} & \mapsto \operatorname{sgn}(\sigma) d x_{j_{1}} \wedge \cdots \wedge d x_{j_{m-k}}
\end{aligned}
$$

with $1 \leqslant i_{1}<\cdots<i_{k} \leqslant m$ and $1 \leqslant j_{1}<\cdots<j_{m-k} \leqslant m$. Also $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{m-k}\right\}=\{1, \ldots, m\}$ and σ is the permutation $\left(i_{1} \cdots i_{k} j_{1} \cdots j_{m-k}\right) \in S_{m}$ (the symmetric group on m elements). Let $\omega=$ $a_{12} d x_{1} \wedge d x_{2}+a_{13} d x_{1} \wedge d x_{3}+a_{23} d x_{2} \wedge d x_{3}$.
(a) Calculate $* \omega$ for $\omega \in \Omega^{2}\left(\mathbf{R}^{3}\right)$.
(b) Calculate $* \omega$ for $\omega \in \Omega^{2}\left(\mathbf{R}^{4}\right)$.
32. (October 26) Show that the formula $\mathscr{L}_{X} \alpha=d\left(i_{X} \alpha\right)+i_{X}(d \alpha)$ agrees with the definition of $\mathscr{L}_{X} \alpha$.
33. (October 28) Let $F: M \times[0,1] \rightarrow N$ be a smooth map and $\alpha \in H^{p}(N)$. Give a description of $F^{*} \alpha=\beta+d t \wedge \gamma$ in local coordinates.
34. (October 30) Let M be a smooth manifold. Show that $H^{p}\left(M \times \mathbf{R}^{n}\right) \cong H^{p}(M)$ for any p. This result is known as Poincare's lemma.
35. (October 30) Prove that $H^{p}\left(S^{n}\right)=\mathbf{R}$ if $p=0, n$ and 0 otherwise. You may assume the result for $n=1$.
36. (November 2) Consider the space of straight lines in \mathbf{R}^{3}.
(a) Describe this space as a manifold.
(b) What is the dimension of this manifold?
(c) Show this manifold is not orientable.
37. (November 2) Prove that the tangent bundle of a smooth manifold is orientable.
38. (November 2) Let α be a smooth 1 -form on \mathbf{R}^{2}. Show that α is exact if and only if it is closed.
39. (November 2) Let M be the complement of the origin in \mathbf{R}^{3}. Construct a 2-form on M which is closed but not exact.
40. (November 4) Construct a smooth map $f: S^{2} \rightarrow \mathbf{R} \mathbf{P}^{2}$ and show, by contradiction, that $\mathbf{R} \mathbf{P}^{2}$ is not orientable (by pulling back an orientation form on $\mathbf{R} \mathbf{P}^{2}$ to an orientation form on S^{2}).
41. (November 6) Let M, N be smooth manifolds of dimension n, and $f: M \rightarrow N$ a smooth bijective immersion. Show that f is a diffeomorphism.
42. (November 6) Let M be a connected manifold without boundary. Show that if S, T are finite sets in M of the same size, then there is a diffeomorphism $f: M \rightarrow M$ sending S to T (that is, $f(S)=T$).
43. (November 6) Let M be a compact smooth orientable n-manifold. Show that there exists a smooth map $f: M \rightarrow S^{n}$ of non-zero degree.
44. (November 9) Let $P \subset \mathbf{R}^{3}$ be a finite set. Show that there is a smooth embedding $f: S^{2} \rightarrow \mathbf{R}^{3}$ such that $P \subset f\left(S^{2}\right)$.
45. (November 9) Let C be a closed curve in \mathbf{R}^{2}, given by the zero locus of $f(x, y)$, and $\omega=x d y$ a 1-form on \mathbf{R}^{2}. Show that the integral of ω over f is equal to the area enclosed by the curve.
46. (November 9) Describe an equivalent statement to the exercise above, but for surfaces in \mathbf{R}^{3}.
47. (November 9) Let $M \ni x$ be an n-manifold without boundary and $B(x) \subseteq M$ a closed neighborhood of x diffeomorphic to the unit n-ball. Prove that $M-\{x\}$ is diffeomorphic to $M-B(x)$.
48. (November 11) Show that $S^{1} \times S^{1}$ is not diffeomorphic to S^{2}.
49. (November 13) Let M be a manifold with boundary ∂M. Show that an orientation M defines an orientation on ∂M.
50. (November 13) Let M be a compact orientable manifold with boundary ∂M. Recall that a retract of M onto a subset $N \subset M$ is a continuous map $r: M \rightarrow N$ such that $r(n)=n$ for all $n \in N$. Show that there is no smooth retract $M \rightarrow \partial M$.

